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ON SPECIAL TYPES OF NONHOLONOMIC 3-JETS

Ivan Kolář

Abstract. We deduce a classification of all special types of nonholono-
mic 3-jets. In the introductory part, we summarize the basic properties of
nonholonomic r-jets.

Generally speaking, a very attractive phenomenon of the problem of classifying
the special types of nonholonomic 3-jets is that its solution is heavily based on
the Weil algebra technique, even though no algebras appear in the formulation
of the problem. We start with summarizing some properties of classical r-jets
from the viewpoint used in the present paper and then we mention the basic
properties of nonholonomic r-jets, [2]. The second part of Section 1 is devoted to
the categorial approach to the concept of special type of nonholonomic r-jets from
[7]. In Section 2 we describe the nonholonomic 3-jets in detail. Section 3 contains our
previous classification results concerning nonholonomic 2-jets, [5], semiholonomic
3-jets, [3], and two lemmas on the invariant homomorphisms of the related Weil
algebras. Section 4 is devoted to the fundamental algebraic properties of the Weil
algebra D̃3

m corresponding to the nonholonomic 3-jets. In Section 5 we classify
those nonholonomic 3-jets that are not one-semiholonomic. The classification list is
completed in the last section.

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notation from [8].

1. Nonholonomic r-jets. The classical, or holonomic, r-jets X = jrxϕ of smooth
maps ϕ : M → N form a fibered manifold Jr(M,N)→M ×N with respect to the
source and target projections αX = x ∈M and βX = ϕ(x) ∈ N . All r-jets form
a category Jr over pointed manifolds (M,x): if X ∈ Jrx(M,N)y and Z = jryψ ∈
Jry (N,Q)z, then Z ◦X = jrx(ψ ◦ ϕ) ∈ Jrx(M,Q)z. We write Lrm,n = Jr0 (Rm,Rn)0.
Then

Lr =
⋃

m,n∈N
Lrm,n

is a category over integers called the skeleton of Jr. Clearly, Jr can be reconstructed
from Lr: if dimM = m and dimN = n, then Jr(M,N) coincides with the
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associated bundle
Jr(M,N) = (P rM × P rN)[Lrm,n] ,

where P rM(M,Grm) or P rN(N,Grn) is the r-th order frame bundle of M or N ,
[8]. Further, Jr is a bundle functor of the product category Mfm ×Mf , where
Mf denoted the category of all manifolds and all smooth maps and Mfm is the
category of m-dimensional manifolds and local diffeomorphisms. If f : M →M ′ is
a local diffeomorphism and g : N → N ′ is a smooth map, then
(1) Jr(f, g)(X) = (jryg) ◦X ◦ (jrxf)−1 ∈ Jr(M ′, N ′) ,
[8]. Clearly, Jr preserves products in the second factor, i.e.

Jr(M,N1 ×N2) = Jr(M,N1)×M Jr(M,N2) ,
where the fiber product is constructed with respect to the source projection.
Moreover, ϕ : M → N defines a map jrϕ : M → Jr(M,N), (jrϕ)(x) = jrxϕ. Then
jrxϕ can be identified with j1

x(jr−1ϕ).
The bundle J̃2(M,N) of nonholonomic 2-jets of M into N is the space of 1-jets

X = j1
xf of the α-sections of J1(M,N), i.e. the maps f : M → J1(M,N) satisfying

αf(u) = u, u ∈ M . This is a bundle over M × N with respect to the source
projection α(j1

xf) = x and the target projection β(j1
xf) = β(f(x)) ∈ N , where β

on the right hand side is the target projection of J1(M,N). Local coordinates xi
on M and yp on N induce the additional coordinates ypi on J1(M,N). It will be
useful to write yp = yp0 . So the coordinate expression of an α-section f(u) is fp0 (u),
fpi (u). Then xi and yph1h2

, h1, h2 = 0, 1 . . . ,m,

(2) yp00 = fp0 (x) , ypi0 = fpi (x) , yp0i = ∂fp0 (x)
∂ui

, ypij = ∂fpi (x)
∂uj

are the induced coordinates on J̃2(M,N). The subset J2(M,N) ⊂ J̃2(M,N) is
characterized by
(3) ypi0 = yp0i and ypij = ypji .

We have two projections %1, %2 : J̃2(M,N) → J1(M,N), %1(j1
xf) = f(x),

%2(j1
xf) = j1

x(β ◦ f). In coordinates, %1(X) = (xi, yp00, y
p
i0), %2(X) = (xi, yp00, y

p
0i).

We say that X ∈ J̃2(M,N) is semiholonomic, if %1(X) = %2(X), i.e. ypi0 = yp0i. We
write J̄2(M,N) for the bundle of all semiholonomic 2-jets of M into N , By (3),
J2(M,N) ⊂ J̄2(M,N).

Even the nonholonomic 2-jets form a category J̃2 over pointed manifolds. For
X = j1

xf(u) ∈ J̃2
x(M,N)y and Z = j1

yg(v) ∈ J̃2
y (N,Q)z one defines

(4) Z ◦X = j1
x

(
g(βf(u)) ◦ f(u)

)
∈ J̃2

x(M,Q)z
with the composition of 1-jets on the right hand side. If X and Z are holonomic,
then (4) coincides with the classical composition of 2-jets. Indeed, if X = j1

x(j1
uϕ)

and Z = j1
y(j1

vψ), then

(5) j1
x

(
j1
u(ψ ◦ ϕ)

)
= j1

x

(
j1
ϕ(u)ψ ◦ j

1
uϕ
)

and the right hand sides of (4) and (5) are the same.



ON SPECIAL TYPES OF NONHOLONOMIC 3-JETS 341

Assume by induction that we have constructed the bundle J̃r−1(M,N) →
M ×N with the source projection α : J̃r−1(M,N)→M and the target projection
β : J̃r−1(M,N)→ N and r − 1 canonical projections %1, . . . , %r−1 : J̃r−1(M,N)→
J̃r−2(M,N). Then we define the bundle of nonholonomic r-jets of M into N to be
the space J̃r(M,N) of 1-jets of α-sections f : M → J̃r−1(M,N). This is a bundle
over M × N with respect to the source and target projections α(j1

xf) = x and
β(j1

xf) = β(f(x)) ∈ N where β on the right hand side means the target projection
of J̃r−1(M,N).

Assume by induction that (xi, yph1...hr−1
), h1, . . . , hr−1 = 0, 1, . . . ,m, are the local

coordinates on J̃r−1(M,N) induced by xi on M and yp on N and the coordinate
form of %s is

%s(xi, yph1...hr−1
) =

(
xi, yph1...hr−s−10hr−s+1...hr−1

)
, s = 1, . . . , r − 1 .

The coordinate expression of f is fh1...hr−1(u). This induces the coordinates
(xi, yph1...hr

), h1, . . . , hr = 0, 1, . . . ,m on J̃r(M,N) by

(6) yph1...hr−10 = fph1...hr−1
(x) , yph1...hr−1j

=
∂fh1...hr−1(x)

∂uj
.

We construct r projections βs : J̃r(M,N)→ J̃r−1(M,N) by
(7) β1(j1

xf) = f(x) , βs+1(j1
xf) = j1

x(%s ◦ f) , s = 1, . . . , r − 1 .
Hence the coordinate form of βs is
(8) βs

(
xi, yph1...hr

)
=
(
xi, yph1...hr−s0hr−s+2...hr

)
.

An element X ∈ J̃r(M,N) is called semiholonomic, if β1X = · · · = βrX. The
bundle of all semiholonomic r-jets is denoted by J̄r(M,N). Write 〈h1 . . . hr〉 =
(i1 . . . is) for the subsequence of all nonzero indices and |h1 . . . hr| for the set
{i1, . . . , is}. Then the elements of J̄r(M,N) are characterized by

yph1...hr
= ypl1...lr whenever 〈h1 . . . hr〉 = 〈l1 . . . lr〉 .

The inclusion Jr(M,N) ↪→ J̃r(M,N) is defined by
(9) jrxϕ 7→ j1

x(jr−1ϕ)
Hence the elements of Jr(M,N) ⊂ J̄r(M,N) are characterized by

yph1...hr
= ypl1...lr whenever |h1 . . . hr| = |l1 . . . lr| .

Remark 1. G. Virsik clarified, [12], that the composition of various canoni-
cal projections J̃r(M,N) → · · · → J̃k(M,N) define

(
r
k

)
canonical projections

J̃r(M,N)→ J̃k(M,N). They are in bijection with the fixations of r − k zeros in
the sequence h1, . . . , hr. Given a fixation κ of r − k elements from 1, . . . , r, the
coordinate form of the corresponding projection is (xi, yph1...hr

) 7→ (xiypκ(h1...hr)),
where κ(h1 . . . hr) means that we replace the indices at the prescribe places by
zeros. Then we can define an element of J̃r(M,N) to be k-semiholonomic, if all
its canonical projections into J̃k(M,N) coincide. We write J̃r,k(M,N) for the
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bundle of all k-semiholonomic r-jets. Clearly, (r − 1)-semiholonomic means semi-
holonomic in the classical sense. In [4] we deduced some geometric properties of
one-semiholonomic r-jets.

The composition of X = j1
xf ∈ J̃r(M,N)y and Z = j1

yg ∈ J̃r(N,Q)z is defined
by
(10) Z ◦X = j1

x

(
g(βf(u)) ◦ f(u)

)
∈ J̃rx(M,Q)z

with the composition of nonholonomic (r − 1)-jets on the right hand side. The
associativity of (10) is proved e.g. in [7]. So J̃r is a category over pointed manifolds.
Modifying (5), we deduce that for two holonomic r-jets, (10) coincides with the
classical composition.

Lemma 1. Every projection βs, s = 1, . . . , r, preserves the composition of nonho-
lonomic jets.

Proof. For β1 this follows directly from(10). Assume by induction that every %s,
s = 1, . . . , r − 1, preserves the composition of nonholonomic jets. Then we have

βs
(
j1
x(g(βf(u)) ◦ f(u))

)
= j1

x

(
%s−1(g(βf(u)) ◦ f(u))

)
= j1

x

(
%s−1(g(βf(u))

)
◦ %s−1(f(u))

)
= βs(j1

yg) ◦ βs(j1
xf) .

In particular, Lemma 1 implies that the composition of two k-semiholonomic
r-jets is a k-semiholonomic r-jet.

Even J̃r can be interpreted as a functor on Mfm ×Mf by
(11) J̃r(f, g)(X) = (jryg) ◦X ◦ (jrxf)−1

with the composition of nonholonomic r-jets. Using induction, one verifies directly
J̃r(M,N1 ×N2) = J̃r(M,N1)×M J̃r(M,N2) .

The same holds in the k-semiholonomic case. Write
L̃rm,n = J̃r0 (Rm,Rn)0 , L̃r =

⋃
m,n∈N

L̃rm,n .

Then L̃r is a category over integers, called the skeleton of J̃r. Analogously to the
holonomic case,

J̃r(M,N) = (P rM × P rN)[L̃rm,n] .
We recall thatX ∈ J̃rx(M,N)y is said to be regular, if there exists Z ∈ J̃ry (N,M)x

such that Z ◦X = jrx idM . In [7], we introduced the following concept. �

Definition 1. A nonholonomic r-jet category C is a rule transforming every pair
(M,N) of manifolds into a fibered submanifold C(M,N) ⊂ J̃r(M,N) such that

(i) Jr(M,N) ⊂ C(M,N) is fibered submanifold,
(ii) if X ∈ Cx(M,N)y and Z ∈ Cy(N,Q)z, then Z ◦X ∈ Cx(M,Q)z,
(iii) if X is regular in J̃r, then there exists Z ∈ Cy(N,M)x such that Z ◦X =

jrx idM ,
(iv) C(M,N1 ×N2) = C(M,N1)×M C(M,N2).
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Write
LCm,n = C0(Rm,Rn)0 ⊂ L̃rm,n and LC =

⋃
m,n∈N

LCm,n .

This skeleton is a subcategory of L̃r and we have

C(M,N) = (P rM × P rN)[LCm,n] .

According to [7] and [3], the special types of nonholonomic r-jets are identified
with the nonholonomic r-jet categories.

2. Nonholonomic 3-jets. We summarize some facts and formulae concerning
nonholonomic 2-jets and 3-jets, that will be applied to our classification problem.

We have three projections β1, β2, β3 : J̃3(M,N)→ J̃2(M,N) and two projections
%1, %2 : J̃2(M,N) → J1(M,N). According to Remark 1, this gives rise to three
projections γ1, γ2, γ3 : J̃3(M,N)→ J1(M,N), γ1 = %1◦β1 = %1◦β2, γ2 = %2◦β1 =
%1 ◦ β3, γ3 = %2 ◦ β2 = %2 ◦ β3.

It is sufficient to write the related coordinate expressions on L̃2
m,n and L̃3

m,n.
The canonical coordinates of X ∈ L̃2

m,n are (ypi0, y
p
0i, y

p
ij) and %1(X) = (ypi0),

%2(X) = (yp0i). If Z ∈ L̃2
n,q, Z = (zap0, z

a
0p, z

a
pq), then the coordinates (vai0, va0i, vaij)

of V = Z ◦X ∈ L̃2
m,q are

(12) vai0 = zap0y
p
i0 , va0i = za0py

p
0i , vai0 = zapqy

p
i0y

q
0j + zap0y

p
ij .

In the third order, the coordinate expression of X ∈ L̃3
m,n is (ypi00, y

p
0i0, yp00i, y

p
ij0,

ypi0j , y
p
0ij , y

p
ijk). Then

(13)

β1X = (ypi00, y
p
0i0, y

p
ij0) , β2X = (ypi00, y

p
00i, y

p
i0j) ,

β3X = (yp0i0, y
p
00i, y

p
0ij) ,

γ1X = (ypi00) , γ2X = (yp0i0) , γ3X = (yp00i) .

If we express Z ∈ L̃3
n,q and V ∈ L̃3

n,q analogously as above, then the coordinate
expression of V = Z ◦X is

vai00 = zap00y
p
i00 , va0i0 = za0p0y

p
0i0 , va00i = za00py

p
00i ,(14)

(15)
vaij0 = zapq0y

p
i00y

q
0j0 + zap00y

p
ij0 , vai0j = zap0qy

p
i00y

q
00j + zap00y

p
i0j

va0ij = za0pqy
p
0i0y

q
00j + za0p0y

p
0ij

vaijk = zapqry
p
i00y

q
0j0y

r
00k + zapq0(ypi0ky

q
0j0 + ypi00y

q
0jk)

+ zap0qy
p
ij0y

q
00k + zap00y

p
ijk .(16)

Now we describe the related Weil algebras. In general, a Weil algebra is a finite
dimensional, commutative, associative and unital algebra of the form A = R×N ,
where N is the ideal of all nilpotent elements, [6]. There exists an integer r such
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that Nr+1 = 0, the smallest r is called the order of A. The multiplication in A is
determined by the multiplication in N , for

(x1 + n1)(x2 + n2) = x1x2 + x1n2 + x2n1 + n1n2 , x1, x2 ∈ R, n1, n2 ∈ N .

According to the general theory, D̃r
m = J̃r0 (Rm,R) = R× Ñr

m is a Weil algebra,
[6]. Clearly, Ñr

m = L̃rm,1. So Z ∈ Ñ3
m is of the form

(17) Z = (zi00, z0i0, z00i, zij0, zi0j , z0ij , zijk) .

The algebra multiplication in D̃rm is induced by the multiplication of reals, [6]. This
implies that the product Z of X, Y ∈ Ñ3

m is of the form

(18)
zi00 = 0 , z0i0 = 0 , z00i = 0 , zij0 = xi00y0j0 + yi00x0j0

zi0j = xi00y00j + yi00x00j , z0ij = x0i0y00j + y0i0x00j ,

(19) zijk = x0jkyi00 + x0j0yi0k + y0jkxi00 + y0j0xi0k + x00kyij0 + y00kxij0 .

The composition of 3-jets defines a right action of the groupG3
m = inv J3

0 (Rm,Rm)0
on D̃3

m. Its coordinate expression can be obtained by specifying (14)–(16).
Clearly, D3

m = J3
0 (Rm,R) = R × N3

m and D̄3
m = J̄3

0 (Rm,R) = R × N̄3
m are

G3
m-invariant subalgebras of D̃3

m. Consider the canonical injection im,n : Rm →
Rm+n, x 7→ (x, 0) and write I3

m,n = j3
0 im,n. The rule Z → Z ◦ I3

m,n defines an
algebra epimorphism D̃3

m+n → D̃3
m, whose coordinate expression is

(20) z̄h1h2h3 = zh1h2h3

with no appearence of zq1q2q3 with at least one qs greater thenm, qs = 0, 1, . . . ,m+n,
s = 1, 2, 3 on the right hand side.

3. Some previous classification results. In [5] we deduced that the only non-
trivial G2

m-invariant subalgebra of D̃2
m containing D2

m is D̄2
m. This implies directly

that the only nonholonomic 2-jet categories are J̃2, J̄2 and J2, [3].
In [3] we determined all semiholonomic 3-jet categories C, i.e. C(M,N) ⊂

J̄3(M,N). We write J̄3,2(M,N) ⊂ J̄3(M,N) for the semiholonomic 3-jets holo-
nomic in the second order. For every sixtuple d = (d1, d2, d3, d4, d5, d6) of reals
satisfying d1 + · · ·+ d6 = 1, we introduce L̄dm,n = {(ypi , y

p
ij = ypji, d1y

p
ijk + d2y

p
ikj +

d3y
p
jik + d4y

p
jki + d5y

p
kij + d6y

p
kji)} ⊂ L̄3,2

m,n = J̄3,2
0 (Rm,Rn)0. Then

L̄d =
⋃

m,n∈N
L̄dm,n is a subcategory of L̄3,2 =

⋃
m,n∈N

L̄3,2
m,n ,

which defines J̄d(M,N) ⊂ J̄3,2(M,N). Our result from [3] is: All semiholonomic
3-jet categories are J̄3, J̄3,2, J3 and J̄d for all d.

In [8], Section 32, we deduced certain properties of second order jet functors,
that we now reformulate on the algebra level.

Lemma 2. The only invariant algebra epimorphism D2
m → D2

m is the identity.
The only invariant algebra epimorphism D̃2

m → D̃2
m transforming D2

m into D2
m is
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the identity. All invariant algebra epimorphisms D̄2
m → D̄2

m form the one parameter
family ϕt
(21) z̄i = zi , z̄ij = tzij + (1− t)zji , t ∈ R , zi = zi0 = z0i .

Further, the geometric results from [10] can be reformulated as follows.

Lemma 3. There is no invariant algebra epimorphism D̃2
m → D̄2

m or D̃2
m → D2

m.
The only invariant algebra epimorphism σ : D̄2

m → D2
m is the symmetrization

(zi, zij) 7→ (zi, 1
2 (zij + zji)).

At the bundle level, σ maps J̄2(M,N) into J2(M,N). We remark that σ preserves
the jet composition: if X ∈ J̄2

x(M,N)y, Z ∈ J̄2
y (N,Q)z, then σ(X) ∈ J2

x(M,N)y,
σ(Z) ∈ J2

y (N,Q)z and σ(Z ◦X) = σ(Z) ◦ σ(X).
Consider a nonholonomic 3-jet category C. Then C defines a bundle functor Cm

onMfm×Mf . According to the general theory, DCm = C0(Rm,R) is a G3
m-invariant

Weil algebra satisfying D3
m ⊂ DCm ⊂ D̃3

m, [7], [3]. We can reconstruct C from the
sequence DCm = R×NC

m by setting LCm,n = (NC
m)n.

Thus the problem of finding all nonholonomic 3-jet categories can be divided
into 3 steps.

I. We determine all invariant subalgebras D3
m ⊂ A ⊂ D̃3

m.
II. We consider sequences of them DSm = R×NS

m satisfying (20).
III. We define LSm,n = (NS

m)n and we discuss whether LS =
⋃

m,n∈N
LSm,n is a

subcategory of L̃3.
We point out that in all concrete cases mentioned in this sections, condition III

is automatically satisfied. However, in Section 5 below we meet a case in which
this is not true. This clarifies that III is independent of I and II.

4. The Weil algebra D̃3
m. In general, every Weil algebra A = R × N of order

r defines the underlying Weil algebra Ak = A/Nk+1 in every order k ≤ r. Every
algebra homomorphism µ : A→ B induces the underlying algebra homomorphism
µk : Ak → Bk, [6]. We have

(D̃3
m)2 =: B3,2

m = {(X1, X2, X3) ∈ D̃2
m × D̃2

m × D̃2
m, %1X1 = %1X2,

%2X1 = %1X3, %2X2 = %2X3} .(22)

The injection D2
m ↪→ B3,2

m is X 7→ (X,X,X). We write B3,2
m = R×N3,2

m . Hence
the coordinates on N3,2

m are
(23) (zi00, z0i0, z00i, zij0, zi0j , z0ij) .

We have D̃3
m = B3,2

m ×
3⊗

Rm∗. The right action of G3
m on D̃3

m induces a right action
of G2

m on B3,2
m . We define D̃3,1

m = J̃3,1
0 (Rm,R). This is an invariant subalgebra of

D̃3
m, that is characterized by zi00 = z0i0 = z00i.
A subalgebra D3

m ⊂ A ⊂ D̃3
m or D2

m ⊂ B ⊂ B3,2
m will be called admissible, if it

is G3
m-invariant or G2

m-invariant, respectively. Write δ : D̃3
m → B3,2

m for the factor
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projection. We say that δ(A) is the boundary of A. Consider the canonical injection
GL(m,R) = G1

m ↪→ G3
m, aij 7→ (aij , 0, 0). Using (10), we find immediately

Lemma 4. If A ⊂ D̃3
m is admissible, then the kernel KA of δ | A is a G1

m-invariant

subspace of
3⊗

Rm∗ containing S3Rm∗.

Consider an admissible subalgebra B ⊂ B3,2
m . By (14)–(19) we obtain directly

Lemma 5. B ×
3⊗

Rm∗ ⊂ B3,2
m ×

3⊗
Rm∗ is an admissible subalgebra of D̃3

m.

We write B ×
3⊗

Rm∗ = [B] and we say that [B] is the inverse of B. So every
admissible subalgebra B ⊂ B3,2

m is the boundary of an admissible subalgebra of D̃3
m.

Thus, we will be interested in the admissible subalgebras of B3,2
m .

Remark 2. The general problem of the underlying lower order bundle func-
tors was studied by M. Doupovec, [1]. In general, every Weil algebra of or-
der r and a group homomorphism H : Grm → Aut A defines a bundle func-
tor F on Mfm × Mf by F (M,N) = P rM [TAN,HN ], where HN is the ac-
tion of Grm on the Weil bundle TAN determined by the natural transforma-
tions corresponding to the algebra automorphisms H(v) : A → A, v ∈ Grm, and
F (f, g) = P rf [TAg] : P rM [TAN ] → P rM ′[TAN ′], f : M → M ′, g : N → N ′.
Then the bundle functor (δJ̃3) corresponding to B3,2

m is determined by the generali-
zed fiber product

(δJ̃3)(M,N) ={X1, X2, X3 ∈ J̃2(M,N), %1X1 = %1X2,

%2X1 = %1X3, %2X2 = %2X3}

and δ : D̃3
m → B3,2

m induces a projection

δM,N : J̃3(M,N)→ (δJ̃3)(M,N) , δM,N (X) = (β1X,β2X,β3X) ,

[1]. Every admisssible subalgebra B ⊂ B3,2
m defines a subbundle P 2M [TBN ] ⊂

(δJ̃3)(M,N). The subbundle of J̃3(M,N) determined by [B] is the inverse image
of P 2M [TBN ] ⊂ (δJ̃3)(M,N) with respect to δM,N .

Let B = R×NB be an admissible subalgebra of B3,2
m . Write πs, s = 1, 2, 3, for

the projections of B into the individual components of (22). By invariancy and
Section 3, πs(B) is D̃2

m or D̄2
m or D2

m, s = 1, 2, 3. We write Ds for any of them,
if suitable. We say that the pair (πr, πs), r 6= s, is projectable, if there exists an
induced map ψ : Dr → Ds satisfying ψ ◦ πr = πs. By (14)–(16), one deduced easily

Lemma 6. In the projectable case, ψ is an G2
m-invariant algebra epimorphism

transforming D2
m into D2

m.

Let A ⊂ D̃3
m be an admissible subalgebra with δA = B. Consider B1 = B/N2

B =
R×N1. If ξ ∈ N2

B and η ∈ N1, then
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ξ = x+KA , η = y +N2
B , x ∈ (Ñ3

m)2 , y ∈ Ñ3
m and

ξη = (x+KA)(y +N2
B) = xy ∈

3⊗
Rm∗ .

Definition 2. The linear span of all these elements will be denoted by QB .

Hence QB is a linear subspace of
3⊗

Rm∗ that is determined by B only. Clearly,
QB ⊂ KA. According to the definition, the coordinate expression of QB is
(24) zijk = x0jkyi00 + x0j0yi0k + y0jkxi00 + y0j0xi0k + x00kyij0 + y00kxij0 ,

x, y ∈ NB . In particular, S3Rm∗ ⊂ QB .
Using (14)–(19), we verify easily

Lemma 7. B ×QB is an admissible subalgebra of D̃3
m.

Example 1. For B = B3,2
m , we have QB =

3⊗
Rm∗. Indeed, the x’s and y’s are

arbitrary. For xij0 = 1, y00k = 1 and all zeros otherwise, we obtain that every
zijk = 1, all zeros otherwise, belongs to QB . Since QB is a linear subspace, we have

QB =
3⊗

Rm∗.

Example 2. In the case of B = (D2
m, D̃2

m, D̃2
m) with D2 = D3, we have QB =

S2Rm∗ ⊗ Rm∗. Indeed, our conditions are zi00 = z0i0, zij0 = zji0, zi0j = z0ij . This
implies that (24) is symmetric in i and j.

So, if we start from an admissible subalgebra B ⊂ B3,2
m , every admissible

subalgebra A ⊂ D̃3
m with δA = B must satisfy

S3Rm∗ ⊂ QB ⊂ KA ⊂
3⊗

Rm∗ ,

where KA is a G1
m-invariant linear subspace. In all cases that we shall meet in the

sequel, this implies KA = QB or KA =
3⊗

Rm∗.

5. Strongly nonholonomic 3-jets. A nonholonomic 3-jet will be called strongly
nonholonomic, if it is not one-semiholonomic.

In [5], we deduced: If A ⊂ D̃3
m is an admissible subalgebra such that γs | A,

s = 1, 2, 3 do not lie on the same straight line in Hom (A,D1
m), then A = D̃3

m. Take
a = (a1, a2, a3) 6= 0 with a1 + a2 + a3 = 0 and define D̃am = {Z ∈ D̃3

m, a1zi00 +
a2z0i0 + a3z00i = 0}. Using (14)–(16) and (18), one verifies directly that this is
an admissible subalgebra. (Hence D̃am = R × Ña

m defines a bundle functor on
Mfm ×Mf , [5].) Write

L̃am,n = (Ña
m)n and L̃a =

⋃
m,n∈N

L̃am,n .

Lemma 8. L̃a is a subcategory of L̃3 if and only if zi00 = z0i0 or zi00 = z00i or
z0i0 = z00i.
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Proof. We start with the case a1 6= 0, so that

zi00 = bz0i0 + cz00i b+ c = 1 .

Then the elements of L̃am,n satisfy ypi00 = byp0i0 + cyp00i. In the notation of Section 2,
we also have zap00 = bza0p0 + cza00p and vai00 = bva0i0 + cva00i. Then (14) implies
vai00 = (bza0p0 + cza00p) (byp0i0 + cyp00i) = b2va0i0 + bcza0p0y

p
00i + bcza00py

p
0i0 + c2va00i. This

yields bc = 0, b2 = b, c2 = c, b+ c = 1. Hence b = 1, c = 0 or b = 0, c = 1. If we
start with a2 6= 0 or a3 6= 0, we obtain the remaining possibility z0i0 = z00i. �

In general, we write D12 = {(X1, X2) ∈ D1 × D2, %1X1 = %1X2}. We define
π12 : B → D12, X 7→ (π1X,π2X). Since the algebras πs(B) can be D̃2

m, D̄2
m and

D2
m only, we shall indicate them by writing simply n, s and h in the expression for

B of the form (22).

Lemma 9. Let B ⊂ (n, n, s) be an admissible subalgebra that is not projectable
over π1, π2 : B → D̃2

m. Then π12 : B → D12 is surjective. The same holds in the
cases of (n, n, h), (s, n, n) and (h, n, n).

Proof. Consider (xi00, x0i0 = x00i, xij0, xi0j , x0ij) ∈ NB. In the nonprojectable
case, there exist x, y ∈ B such that π1(x) = π1(y) and π2(x) 6= π2(y). Hence y is
of the form

(xi00, x0i0 = x00i, xij0, xi0j + wi0j , x0ij + w0ij) with (wi0j) 6= o .

By continuity, this holds on a neighbourhood of y. Hence π12 is surjective on an
open subset. But π12 is a linear map, so that π12 is surjective everywhere. The
cases (n, n, h), (s, n, n) and (h, n, n) are discussed in the same way. �

In what follows, the inverses satisfying some additional conditions are indicated

by adding them into the square bracket. Further, in the case of QB 6=
3⊗

Rm∗, we
write all data determining A into a round bracket.

Proposition 1. All strongly nonholonomic 3-jet categories are determined by the
inverses
(i) [n, n, n], which corresponds to J̃3,
(ii) [s, n, n], — ”— β−1

1 (J̄2),
(iii) [n, s, n], — ”— β−1

2 (J̄2),
(iv) [n, n, s], — ”— β−1

3 (J̄2),
(v) [s, n, n, π2 = π3], — ”— J1J̄2,
(vi) [n, n, s, π1 = π2], — ”— J̄2J1,
(vii) [h, n, n], — ”— β−1

1 (J2),
(viii) [n, h, n], — ”— β−1

2 (J2),
(ix) [n, n, h], — ”— β−1

3 (J2),
(x) [h, n, n, π2 = π3], — ”— β−1

1 (J2) ∩ J1J̄2,
(xi) [n, n, h, π1 = π2], — ”— β−1

3 (J2) ∩ J̄2J1

and there are two more cases with nontrivial QB
(xii) (h, n, n, π2 = π3, zijk = zjik) corresponding to J1J2,
(xiii) (n, n, h, π1 = π2, zijk = zikj) corresponding to J2J1.
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Proof. By the above mentioned result from [5] and Lemma 8, the only nonholono-
mic 3-jet category corresponding to an algebra A with β1(A) = D̃2

m, β2(A) = D̃2
m

and β3(A) = D̃2
m is J̃3. By Lemmas 2 and 9, the cases (ii)–(xi) correspond to all

possible inverses in this situation. We point out that the case [n, s, n, π1 = π3] is
characterized by (zi00, z0i0, zij0) = (z0i0, z00i, z0ij), so that it is one-semiholonomic.
In the cases (ii)–(ix), we deduce, analogously to Example 1, that QB =

3
⊗Rm∗

is the only possibility. The case (x) was discussed in Example 2. The conditions
characterizing (xi) are (zi00, z0i0, zij0) = (zi00, z00i, zi0j) and z0ij = z0ji. If we put
these data into Example 2, we obtain zijk = zikj . One verifies directly that all
algebras in question determine subcategories of L̃3. �

6. Properly one-semiholonomic 3-jets. It remains to discuss the 3-jets that
are properly one-semiholonomic, i.e. not semiholonomic. We write B3,1

m ⊂ B3,2
m for

the subset zi00 = z0i0 = z00i.
Lemma 10. Let B ⊂ B3,1

m be an admissible subalgebra that is not projectable over
π1, π2 : B → D̄2

m. Then π12 : B → D12 is surjective. The same holds in the case
π1, π2 : B → D2

m.

The proof is a replica of the proof of Lemma 9.

The description of the inverses in Propositions 2–5 are quite analogous to
Proposition 1, so that we do not express them explicitely.
Proposition 2. In the case of three s’s, we have the categories determined by the
inverses
(i) [s, s, s],
(ii) [s, s, s, π2 = ϕt ◦ π3],
(iii) [s, s, s, π1 = ϕt ◦ π3],
(iv) [s, s, s, π1 = ϕt ◦ π2],
(v) [s, s, s, π2 = ϕt ◦ π1, π3 = ϕτ ◦ π1], t 6= 1 or τ 6= 1.

Proof. This is a direct consequence of Lemma 2 and the evaluations similar to
Example 1. In the case π1 = π2 and π2 = π3 we obtain J̄3. To verify that all
algebras in question determine subcategories of L̃3, one uses the following geometric
fact. At the bundle level, ϕt induces a map ϕt : J̄2(M,N)→ J̄2(M,N) for every t.
These maps preserve the jet composition: if X ∈ J̄2

x(M,N)y and Z ∈ J̄2
y (N,Q)z,

then ϕt(Z ◦X) = ϕt(Z) ◦ ϕt(X), t ∈ R. �

The proofs of Propositions 3–5 are quite analogous to Propositions 1 and 2.
Proposition 3. In the case of two s’s, we have the categories determined by the
inverses
(i) [h, s, s], (vii) [s, s, h, π3 = σ ◦ π2],
(ii) [h, s, s, π1 = σ ◦ π2], (viii) [s, s, h, π1 = ϕt ◦ π2],
(iii) [h, s, s, π1 = σ ◦ π3], (ix) [s, h, s],
(iv) [h, s, s, π2 = ϕt ◦ π3], (x) [s, h, s, π2 = σ ◦ π1],
(v) [s, s, h], (xi) [s, h, s, π2 = σ ◦ π3],
(vi) [s, s, h, π3 = σ ◦ π1], (xii) [s, h, s, π1 = ϕt ◦ π3]



350 I. KOLÁŘ

and there are two more cases with nontrivial QB
(xiii) (h, s, s, π2 = π3, zijk = zjik) corresponding to J1J2 ∩ J̃3,1,
(xiv) (s, s, h, π1 = π2, zijk = zikj) corresponding to J2J1 ∩ J̃3,1.

Proposition 4. In the case of two h’s, we have the categories determined by the
inverses
(i) [s, h, h], (vii) [h, h, s, π1 = σ ◦ π3],
(ii) [s, h, h, π2 = π3], (viii) [h, h, s, π2 = σ ◦ π3],
(iii) [s, h, h, π2 = σ ◦ π1], (ix) [h, s, h],
(iv) [s, h, h, π3 = σ ◦ π1], (x) [h, s, h, π1 = π3],
(v) [h, h, s], (xi) [h, s, h, π1 = σ ◦ π2],
(vi) [h, h, s, π1 = π2], (xii) [h, s, h, π3 = σ ◦ π2].

In the following assertion, (β2 = β3)−1(J2) or (β1 = β2)−1(J2) means all
X ∈ J̃3,1(M,N) satisfying β2X = β3X ∈ J2(M,N) or β1X = β2X ∈ J2(M,N),
respectively.
Proposition 5. In the case of three h’s, we have the categories determined by the
inverses
(i) [h, h, h],
(ii) [h, h, h, π2 = π3],
(iii) [h, h, h, π1 = π2],
(iv) [h, h, h, π1 = π3]

and there are two more cases with nontrivial QB
(v) (h, h, h, π2 = π3, zijk = zjik) corresponding to J1J2 ∩ (β2 = β3)−1(J2),
(vi) (h, h, h, π1 = π2, zijk = zikj) corresponding to J2J1 ∩ (β1 = β2)−1(J2).

Clearly, the case [h, h, h, π1 = π2 = π3] corresponds to J̄3,2.
Since the special types of semiholonomic 3-jets are determined in [3], we have

classified all special types of nonholonomic 3-jets.
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