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STATE-SPACE REALIZATION OF NONLINEAR CONTROL
SYSTEMS: UNIFICATION AND EXTENSION
VIA PSEUDO-LINEAR ALGEBRA

Juri Belikov, Ülle Kotta and Maris Tõnso

In this paper the tools of pseudo-linear algebra are applied to the realization problem, al-
lowing to unify the study of the continuous- and discrete-time nonlinear control systems under
a single algebraic framework. The realization of nonlinear input-output equation, defined in
terms of the pseudo-linear operator, in the classical state-space form is addressed by the polyno-
mial approach in which the system is described by two polynomials from the non-commutative
ring of skew polynomials. This allows to simplify the existing step-by-step algorithm-based
solution. The paper presents explicit formulas to compute the differentials of the state co-
ordinates directly from the polynomial description of the nonlinear system. The method is
straight-forward and better suited for implementation in different computer algebra packages
such as Mathematica or Maple.

Keywords: nonlinear control systems, input-output models, realization, pseudo-linear al-
gebra

Classification: 93E12, 62A10

1. INTRODUCTION

This paper has to be understood as continuation of research in [11], the polynomial tools
we employ are the same as those in [11]. The former paper applied the pseudo-linear alge-
bra to unify the results on system reduction for continuous- and discrete-time nonlinear
control systems whereas this paper focuses on the closely related problem of state-space
realization. Namely, the realization procedure ends up with the controllable (accessible)
realization iff the input-output (i/o) equation is reduced to the simplest form, being
transfer equivalent to the original equation. The explicit polynomial formulas for find-
ing the differentials of the state coordinates have been represented earlier separately for
continuous-time [20], shift operator based discrete-time [14] and the difference operator
based discrete-time case [2], respectively. In this paper we derive general tools which al-
low to formalize and handle different cases under a single unified framework. The results
of those papers follow as special cases from the results of this paper. In computation
of the differentials of the state variables left1 polynomial division operation is applied

1Note that polynomials are from the non-commutative ring.
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repeatedly. Our method uses left quotients of polynomials and thus it is different from
Euclidean division algorithm, producing the sequence of remainders.

The realization problem has been addressed in many papers, but the polynomial
method has several advantages if compared with the earlier algorithm-related methods,
based either on the sequence of the subspaces of differential one-forms [6], on the sequence
of distributions of vector fields as in [18], on the iterative Lie brackets of the vector fields
as in [7]. The most powerful argument is computation speed, but also the program
code is shorter and more compact. What is also important, these formulas practically
coincide in the special case of linear time-invariant (LTI) systems with the respective
formulas of the LTI systems theory [17], except that in the linear case the polynomials
may be understood as operators that are applied to the variables u and y whereas in the
nonlinear case they are applied to their differentials. The latter aspect brings along the
integrability restriction which is a well-known phenomena since it is known for a long
time that nonlinear i/o equations, unlike linear i/o equations, are not always realizable
in the state space form.

Note that necessary and sufficient realizability conditions for nonlinear i/o equations,
defined in terms of the pseudo-linear operator, have been given in [12]. Whereas the
paper [12] suggests that the state coordinates may be found by integrating the exact
basis vectors of certain vector space of differential one-forms, it did not address the
computation of this vector space. The main result of this paper is to provide explicit
formulas for computation of the basis one-forms of the above vector space. This is
achieved by using the polynomial framework built upon the formalism of differential
one-forms, like in [11].

The paper is organized as follows. Section 2 recalls the basic notions of the algebraic
framework used in this paper. The next section presents the solution of the realization
problem. In Section 4 polynomial formulas within the context of pseudo-linear algebra
are illustrated on several examples, followed by a brief description of implementation of
the theoretical results from this paper and from [11] in Mathematica within the symbolic
software package NLControl. Concluding remarks are drawn in the last section.

2. ALGEBRAIC FRAMEWORK

In this paper, the realization problem is stated and solved in a unified manner. In
particular, this means that both the i/o and state equations are described in terms
of the pseudo-linear operator, and the formulas to find the state coordinates are also
given in terms of these operators. For the special cases of continuous- and discrete-time
systems, these operators take the form of differential, difference or shift operators. Below
we shortly recall the algebraic setup from [11] that we use in this paper, see also [3].

Let K be a field and σ : K → K an automorphism of K. A map δ : K → K which
satisfies

δ(a+ b) = δ(a) + δ(b),
δ(ab) = σ(a)δ(b) + δ(a)b

for a, b ∈ K, is called a pseudo- or σ-derivation. A σ-differential field is a triple (K, σ, δ),
where K is a field, σ is an automorphism of K and δ is a σ-derivation. Hereinafter
(K, σ, δ) will be denoted by K.
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Let V be a vector space over the field K. An operator θ : V → V is called pseudo-
linear if

θ(v + w) = θ(v) + θ(w),
θ(aw) = σ(a)θ(w) + δ(a)w (1)

for any a ∈ K, v, w ∈ V . Note that any field K is a vector space itself. Hence, (1) holds
for any a, v, w ∈ K. Any pseudo-derivation δ : K → K is a pseudo-linear operator by
letting θ = δ. Also for a shift operator, when δ = 0, (1) is clearly satisfied by letting
θ = σ. Thus, pseudo-linear operators allow to handle differential, shift and difference
structures from a unified standpoint. The basic types of operators that can be addressed
within the pseudo-linear algebra are listed in Table 1.

Tab. 1. Basic types of operators.

Operator σ δ θ f 〈1〉(t)

differential idK d
dt δ df(t)

dt

shift σ 0 σ f(t+ 1)
difference σ ∆ δ 1

µ (f(t+ 1)− f(t))

Hereinafter we use the abridged notation θ(y(t)) = y〈1〉. It can be a derivation
y〈1〉 = ẏ that corresponds to the continuous-time case, a shift y〈1〉 = σ(y), or a difference
y〈1〉 = 1

µ (σ(y) − y) with µ ∈ R that correspond to two alternative discrete-time cases.
Moreover, we use notation θk(y(t)) = y〈k〉 for the k-fold application of the pseudo-linear
operator.

Consider a nonlinear control system, described by the i/o equation

y〈n〉 = φ
(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
, (2)

where u, y ∈ R are the input and the output of the system, respectively, φ is a real
analytic function, and n, s are non-negative integers such that s < n. Assume that
system (2) is generically submersive, i.e.

rank
∂σn(y)
∂(y, u)

6≡ 0. (3)

Note that assumption (3) is not restrictive since it is necessary condition for system
accessibility. Besides, it reduces to the well-known condition in case of the discrete-
time nonlinear systems when y〈1〉 = σ(y) [8], and is trivially satisfied in case of the
continuous-time systems y〈1〉 = ẏ when σ(y) = y.

Let K denote from now on the field of meromorphic functions in the independent
system variables C =

{
y, y〈1〉, . . . , y〈n−1〉, u〈k〉, k ≥ 0

}
and let δ be a pseudo-derivation

defined on K. The field K may be endowed with a σ-differential structure (K, σ, δ),
determined by the system equations (2), see [11]. Define a pseudo-linear operator θ :
K → K as follows

θ(ζ) =

{
δ(ζ), if δ 6= 0
σ(ζ), if δ = 0.
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Moreover, it should be mentioned that application of the operator θ to y〈n−1〉 results
in y〈n〉 which, according to (2), has to be replaced by φ(·), whenever it occurs in some
expression.

Under assumption (3), there exists, up to an isomorphism, a unique difference over-
field K∗ ⊇ K, called the inversive closure of K, with σ being an automorphism of K∗,
see [5]. An explicit construction of inversive closure is given in [1] and [9] for the cases
when θ is the difference or shift operator, respectively. In the continuous-time case when
σ = idK, K∗ = K.

In general, the new independent variables of the (isomorphic) field extension may be
chosen in two different ways, either as σ−k(y), k ≥ 1, or as σ−k(u), k ≥ 1. Here the σ−k

means the k-time application of the backward-shift operator σ−1. The other variables,
that is, σ−k(u), or σ−k(y), respectively, may be calculated from the i/o equation (2),
applying to it σ−1 the required number of times. Over the field K∗ one can define the
vector space E := spanK∗dC of differential one-forms, where either

dC =
{

dy,dy〈1〉, . . . ,dy〈n−1〉,dy〈−k〉, k ≥ 1,du〈l〉, l ≥ 0
}

or
dC =

{
dy,dy〈1〉, . . . ,dy〈n−1〉,du〈l〉, l ≥ 0,du〈−k〉, k ≥ 1

}
,

respectively. The space E may be also endowed with the pseudo-linear operator θ : E → E
as follows

θ(αdζ) = σ(α)d(θ(ζ)) + δ(α)dζ.

Note that the operator θ commutes with the operator d, θ(dϕ) = d(θ(ϕ)).
A left polynomial can be uniquely written in the form a =

∑n
i=0 αiz

n−i, αi ∈ K∗. If
α0 6≡ 0, then n is called the degree of a, denoted by deg(a). The pseudo-linear operator
θ induces a (left) skew polynomial ring of polynomials in z (if z is interpreted as θ) over
K∗ with the commutation rule given by

z · α = σ(α)z + δ(α) (4)

for any α ∈ K∗. A ring is called an integral domain, if it does not contain any zero
divisors. The ring K∗[z;σ, δ] is an integral domain [15].

The nonlinear system (2) may be represented in terms of two skew polynomials in
the ring K∗[z;σ, δ], since by differentiating (2) we obtain

dy〈n〉 −
n−1∑
i=0

∂φ

∂y〈i〉
dy〈i〉 −

s∑
j=0

∂φ

∂u〈j〉
du〈j〉 = 0 (5)

which may be rewritten as
pdy + qdu = 0, (6)

where p = zn −
∑n−1

i=0 piz
i, q = −

∑s
j=0 qjz

j and pi = ∂φ
∂y〈i〉

∈ K∗, qj = ∂φ
∂u〈j〉

∈ K∗, i.e.
are polynomials over the σ-differential field K∗.
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3. REALIZATION

The realization problem can be stated as follows. Given an i/o equation of the form (2),
find, if possible, the state coordinates x = ψ

(
y, . . . , y〈n−1〉, u, . . . , u〈s〉

)
∈ Rn such that

in these coordinates the system takes the classical state-space form

x〈1〉 = f(x, u)
y = h(x)

(7)

and sequences {u(t), y(t), t ≥ 0}, generated by descriptions (2) and (7), coincide. The i/o
equation (2) is said to be realizable if it admits a realization of the form (7). Note that
since we are looking for minimal, i.e. accessible and observable realization, irreducibility
plays an important role. A function ϕ 6≡ constant in K∗, such that ϕ(0, . . . , 0) = 0,
is said to be an autonomous variable for control system (2) if there exist an integer
ν ≥ 1 and a non-constant analytic function F so that F

(
ϕ,ϕ〈1〉, . . . , ϕ〈ν〉

)
= 0. Control

system (2) is said to be irreducible if it does not admit any non-constant autonomous
variable in K∗. Otherwise system (2) is called reducible, see [11] for details.

An nth-order realization of equation (2) is accessible if and only if system (2) is
irreducible, see [11] for technical details. Besides, according to [19], system (7) is said
to be single-experiment observable if the observability matrix has generically full rank

rankK∗
∂

(
h(x), . . . , h〈n−1〉 (x, u, . . . , u〈n−2〉))

∂x
= n.

Define the non-increasing sequence {Hk}∞k=1 of subspaces from E as follows

H1 = spanK∗

{
dy, . . . ,dy〈n−1〉,du, . . . ,du〈s〉

}
,

Hk+1 =
{
ω ∈ Hk | ω〈1〉 ∈ Hk

}
, k ≥ 1,

(8)

playing the key role in the study of realization problem, see [12]. There exists an integer
k∗ such that H1 ⊃ H2 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞. Existence of k∗

comes from the fact that each Hk is finite-dimensional K∗-vector space, so that at each
step either its dimension decreases or Hk+1 = Hk. We assume that the i/o equation (2)
is in the irreducible form, i.e. H∞ = {0}, see [11] for details.

We say that ω ∈ E is an exact one-form, if there exists ξ ∈ K∗ such that dξ = ω.
A one-form ω for which dω = 0 is said to be closed. A subspace is said to be completely
integrable or closed, if it has locally a basis which consists only of exact one-forms.
Integrability of the subspace of one-forms may be checked by the Frobenius theorem
below, where the symbol dω denotes the exterior derivative of one-form ω and ∧ means
the exterior or wedge product.

Theorem 3.1. (Choquet et al. [4]) Let V = spanK∗{ω1, . . . , ωr} be a subspace of E .
V is closed if and only if dωi ∧ ω1 ∧ · · · ∧ ωr = 0 for all i = 1, . . . , r.

We recall now the necessary and sufficient realizability conditions.

Theorem 3.2. (Kotta et al. [12]) The nonlinear i/o equation (2) has an observable
state-space realization if and only if the subspace Hs+2, defined by (8), is completely
integrable.
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Though [12] provides necessary and sufficient realizability conditions for i/o equation
(2), and the sufficiency part of the proof suggests that the integrable basis of Hs+2

defines the differentials of the state coordinates dxi, i = 1, . . . , n, it does not address the
computation of the subspace Hs+2. Whereas [12] and this paper both use the formalism
of differential forms, we build upon the latter the polynomial framework as in [11]. Our
main result formulated below in Theorem 3.3 provides explicit polynomial formulas for
computing the basis vectors of the subspace Hs+2 in Theorem 3.2.

Since σ is an automorphism of K∗, the left division operation is well-defined in
K∗[z;σ, δ]. Given two polynomials p, q ∈ K∗[z;σ, δ], q 6= 0 with deg(p) > deg(q) there
exist a unique left quotient polynomial γ and unique left remainder polynomial r such
that p = qγ+ r and deg(r) < deg(q). Below we need certain sequences of left quotients,
which are computed by starting with the skew polynomials p0 := p and q0 := q in (6)
and then the element pl (ql) for l = 1, . . . , n is found as the left quotient of pl−1 (ql−1)
and the polynomial z:

pl−1 = z · pl + rl, deg rl = 0,
ql−1 = z · ql + ρl, deg ρl = 0.

(9)

We introduce certain one-forms, in terms of which we will formulate our main result
in Theorem 3.3:

ωl =
[
pl ql

] [
dy
du

]
, l = 1, . . . , n. (10)

Theorem 3.3. For the input-output model (2), the subspaces Hk may be calculated as

Hk = spanK∗

{
ω1, . . . , ωn,du, . . . ,du〈s−k+1〉

}
(11)

for k = 1, . . . , s+ 1 and
Hs+2 = spanK∗{ω1, . . . , ωn}. (12)

P r o o f . The proof is based on the principle of mathematical induction. First, we show
that formula (11) holds for k = 1. To show this, prove that H1 in (8) may be represented
as (11) for k = 1. In order to simplify the proof note that the recursive formulas (9)
may be rewritten for l = 1, . . . , n explicitly as

p = zl · pl +Rl, degRl < l,

q = zl · ql + Pl, degPl < l,
(13)

with Rl =
∑l

i=1 z
i−1ri and Pl =

∑l
j=1 z

j−1ρj .
Suppose l = n. According to (10), ωn = pndy + qndu. Due to the structure of the

i/o equation, deg(p) = n, and p is monic. Then, it follows from (13) that pn is a left
quotient of p and zn, i.e. pn = 1. Notice that s < n meaning that the quotient of q
and zn is equal to zero. Consequently, ωn = dy. Next, take l = n − 1 and compute
ωn−1. Now, it follows from (13) that pn−1 is a polynomial of the first order. Thus,
ωn−1 = dy〈1〉 + αωn + βdu with α, β ∈ K∗, where ωn and du are independent elements
in H1, so ωn−1 may be replaced by the more simple one-form dy〈1〉. Continuing in
the similar manner, it is possible to show that the remaining basis one-forms ωl, for
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l = n− 2, . . . , 1, in (12) may be replaced by dy〈2〉, . . . ,dy〈n−1〉, respectively. As a result,
the statement is true for k = 1.

Assume now that formula (11) holds for r and prove it to be valid for r+1. We have
to prove that

Hr+1 = spanK∗

{
ω1, . . . , ωn,du, . . . ,du〈s−r〉

}
, (14)

calculated according to formula (11), satisfies condition (8).
First, note that the one-forms ω1, . . . , ωn,du, . . . ,du〈s−r〉 ∈ Hr, since (11) holds for

r. We have to prove that also the derivatives of the basis one-forms in (14) belong to
Hr. By (10), we have for l = 1, . . . , n

ω
〈1〉
l =

[
z · pl z · ql

] [
dy
du

]
.

Using relations (9), we get

ω
〈1〉
l =

[
pl−1 − rl ql−1 − ρl

] [
dy
du

]
or after reordering the terms

ω
〈1〉
l =

[
pl−1 ql−1

] [
dy
du

]
−

[
rl ρl

] [
dy
du

]
. (15)

Thus, the one-form ω
〈1〉
l is represented as a sum of two terms. For the first term

we consider two separate cases. In case l = 1, the first term yields p0dy + q0du =
pdy + qdu = 0 due to polynomial system description (6). In case l = 2, . . . , n, the first
term of (15) is equal to ωl−1 by (10) and, therefore, in Hr. The second term of (15) is
a linear combination of dy,du ∈ Hr, since the elements of rl and ρl are functions from
K∗. Consequently, ω〈1〉l ∈ Hr for l = 1, . . . , n. Finally, we observe that the derivatives
of the rest of the basis one-forms in (14) are du〈1〉, . . . ,du〈s−r+1〉, which are also in Hr.
It should be mentioned that the subspace Hs+2 does not contain the elements du〈j〉,
j = 1, . . . , s − k + 1. Thus, we have shown that Hk, computed according to (11) for
k = 1, . . . , s+ 1 and (12) for k = s+ 2, agrees with definition (8). �

Note that from the computational point of view the polynomial formulas (9) are faster,
straight-forward and therefore better suited for implementation in symbolic software
than the algorithm, based on definition (8).

Remark 3.4. Note that, according to Theorem 3.2, in order to find the minimal state-
space realization, one has to check the integrability of the subspace Hs+2, computed for
irreducible i/o equation. However, Theorem 3.3 allows to find not only this subspace,
but all the previous subspaces as well. Though the latter subspaces are not necessary
to solve the realization problem, they may be important in the solutions of the related
problems, for example, in the problem of lowering the input derivatives in the generalized
state equations [13].
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Remark 3.5. Note that though in case of the realizable i/o equation, Hs+2, defined
by (12), is completely integrable, the one-forms ωl for l = 1, . . . , n are not necessarily
always exact. In such a case, one has to find for Hs+2 a new (locally) exact basis, using
linear transformations over the field K∗.

In the algorithm below we summarize the realization procedure:

Step 1. Given the i/o equation (2), find the polynomial description of the system by
rewriting (5) in the form (6).

Step 2. Given p0 := p and q0 := q, obtained at Step 1, calculate, according to (9), two
sequences {pl}n

l=1, {ql}n
l=1 of left quotients of polynomials p and q, respectively.

Step 3. Construct the vector space Hs+2 = spanK∗{ω1, . . . , ωn}, where the one-forms
ωl := pldy+qldu, for l = 1, . . . , n, and simplify the basis elements ofHs+2 whenever
possible.

Step 4. Check the integrability of the vector space Hs+2. If Hs+2 is integrable, go
to Step 5. Otherwise, inform that the i/o equation is not realizable and go to
Step 7.

Step 5. Check whether the basis one-forms of Hs+2 are exact or not. If this is true,
integrate the one-forms ω1, . . . , ωn to get x1, . . . , xn. Otherwise, use before a linear
transformation to find a new integrable basis.

Step 6. Compute the state equations, applying to x1, . . . , xn the pseudo-linear opera-
tor.

Step 7. End of the algorithm.

4. EXAMPLES AND SYMBOLIC SOFTWARE

Example 4.1. ([22]) Consider the i/o equation

y〈2〉 + α1y
〈1〉 + α0y(1 + ε1y

2) = β0(1 + ε2y)u, (16)

where α0, α1, β0, ε1, ε2 ∈ R. In [22] the system was studied separately for continuous-
and discrete-time cases, the latter being based on the difference operator description.
Here, however, we address the model within the framework of pseudo-linear algebra
which accommodates both special cases in a single model.

Equation (16) can be described as in (6) by two polynomials p = z2 + α1z + α0 +
3α0ε1y

2 − β0ε2u and q = −β0(1 + ε2y). From (16), n = 2 and s = 0. Given p0 = p
and q0 = q, compute iteratively, according to (9), the polynomials pl and ql for l = 1, 2
dividing respectively pl−1 and ql−1 by z from the left:

p0 = z2 + α1z + α0 + 3α0ε1y
2 − β0ε2u, q0 = −β0(1 + ε2y),

p1 = z + α1, q1 = 0,
p2 = 1, q2 = 0.
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Since s = 0, according to Remark 3.4 and using (10), the basis elements of the last
subspace Hs+2 = H2 = spanK∗{ω1, ω2} can be represented in the following form

ω1 = p1dy + q1du = (z + α1)dy,
ω2 = p2dy + q2du = dy.

Finally, we get H2 = spanK∗

{
dy,dy〈1〉 + α1dy

}
. Simplifying the basis one-forms, the

subspace may be rewritten as H2 = spanK∗

{
dy,dy〈1〉

}
. The basis elements are exact,

so one may choose dx1 = dy,dx2 = dy〈1〉 and the state equations are

x
〈1〉
1 = x2

x
〈1〉
2 = −α1x2 − α0

(
1 + ε1x

2
1

)
x1 + β0(1 + ε2x1)u

y = x1.

(17)

For the special cases of continuous- and discrete-time models, (17) takes the forms

ẋ1 = x2 x∆
1 = x2

ẋ2 = f(x1, x2, u) and x∆
2 = f(x1, x2, u)

y = x1 y = x1

respectively, with f(x1, x2, u) = −α1x2 − α0(1 + ε1x
2
1)x1 + β0(1 + ε2x1)u, like in [22].

It should be mentioned that since equation (16) depends only on u, but not on
u〈k〉, k ≥ 1, H2 = spanK∗

{
dy,dy〈1〉

}
by (8), see [6] for details. In fact, we may skip

the intermediate computations and directly write out the state space realization of i/o
equations (16); however, we decided to show them to illustrate the theory presented
above.

Example 4.2. Consider the i/o equation

y〈2〉 = y〈1〉u〈1〉 + uy

that may be described as in (6) by two polynomials p = z2−u〈1〉z−u and q = −y〈1〉z−y.
Note that n = 2 and s = 1. Given p0 := p and q0 := q, compute, according to (9), two
sequences of the left quotients as follows

p1 = z − σ−1
(
u〈1〉

)
, q1 = −σ−1

(
y〈1〉

)
,

p2 = 1, q2 = 0.

By (10), the one-forms of the subspace Hs+2 = H3 = spanK∗{ω1, ω2} are

ω1 = p1dy + q1du =
(
z − σ−1

(
u〈1〉

))
dy − σ−1

(
y〈1〉

)
du,

ω2 = p2dy + q2du = dy.

Since dy is the basis vector of the subspace H3, ω1 may be simplified, resulting
in H3 = spanK∗

{
dy,dy〈1〉 − σ−1(y〈1〉)du

}
. Note that integrability of H3 depends on
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σ−1
(
y〈1〉

)
. Next, we separately consider three typical cases. In the continuous-time

case, when σ = σ−1 = idK, the subspace

H3 = spanK∗{dy,dẏ − ẏdu}

is, by Theorem 3.1, integrable. The choice x1 = y, x2 = e−uẏ yields the classical state
equations

ẋ1 = eux2

ẋ2 = e−uux1

y = x1.

In the discrete-time case, when θ = σ and σ−1(σ(y)) = y, the subspace

H3 = spanK∗{dy,dσ(y)− ydu}

is again, by Theorem 3.1, integrable, yielding the state coordinates x1 = y, x2 = σ(y)−uy
and the state equations

σ(x1) = ux1 + x2

σ(x2) = ux1

y = x1.

In the discrete-time case, when θ = ∆, the subspace

H3 = spanK∗

{
dy,dy∆ − σ−1(y∆)du

}
= spanK∗

{
dy,

1
µ

dσ(y) +
1
µ

(
σ−1(y)− y

)
du

}
is, according to Theorem 3.1, not integrable, since dω2 ∧ω1 = 1

µd[σ−1(y)]∧du∧dy 6= 0.
Recall that either σ−1(y) or σ−1(u) may be chosen as the independent variable of field
extension K∗. In the latter case σ−1(y) = σ(y)−2y−yu+σ−1(u)y

(µ2+1)σ−1(u)−u−1 , yielding again that
dω2 ∧ ω1 6= 0.

Example 4.3. Consider the “ball and beam” system, with input being the angle and
output being the ball position. The input-output equation of the system is

y〈2〉 =
mR2

J +mR2

(
y

(
u〈1〉

)2

− g sin(u)
)
, (18)

where the constant parameters J,R,m represent, respectively, the inertia, radius and
mass of the ball, and g is the gravitational constant. Usually, system (18) is considered
separately for continuous- and discrete-time cases, see for example [10] and [16], respec-
tively. Here, however, we consider the pseudo-linear operator based system description
which accommodates both continuous- and discrete-time models.

System (18) can be described as in (6) by two polynomials p = z2 − mR2

J+mR2

(
u〈1〉

)2

and q = − 2mR2

J+mR2 yu
〈1〉z+ gmR2

J+mR2 cos(u). Note that n = 2 and s = 1. Given p0 := p and
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q0 := q, compute, according to (9), two sequences of the left quotients as follows

p1 = z, q1 = − 2mR2

J +mR2
σ−1

(
yu〈1〉

)
,

p2 = 1, q2 = 0.

By (10), the one-forms of the subspace Hs+2 = H3 = spanK∗{ω1, ω2} are

ω1 = p1dy + q1du = dy〈1〉 − 2mR2

J +mR2
σ−1

(
yu〈1〉

)
du,

ω2 = p2dy + q2du = dy.

Next, we consider separately three typical cases. In the continuous-time case, when
σ = σ−1 = idK, the subspace

H3 = spanK∗

{
dy,dẏ − 2mR2

J+mR2 yu̇du
}

is, by Theorem 3.1, not integrable.
In the discrete-time case, when θ = σ, the subspace

H3 = spanK∗

{
dy,dσ(y)− 2mR2

J+mR2σ
−1(y)udu

}
is again not integrable.

In the discrete-time case, when θ = ∆, the subspace

H3 = spanK∗

{
dy,dy∆ − 2mR2

J+mR2σ
−1(yu∆)du

}
is not integrable.

Thus, we may conclude that it is not possible to find the classical state-space real-
ization of system (18) for the cases listed above.

The above examples are all quite simple, but in case of more complicated i/o equations
the computations can be very labour-consuming. In order to facilitate the calculations,
we have created a set of Mathematica functions, implementing the reduction algorithm
from [11] and the realization algorithm from this paper. These functions are part of our
previously developed Mathematica package NLControl, devoted to modelling, analysis
and synthesis problems of nonlinear control systems [21]. The user has to specify the
σ-differential field K, i.e. the operators σ and δ.

The main advantage of the pseudo-linear approach is that it allows to optimize the
code. The multiplication of the skew polynomials in NLControl package is based on
formula (4), therefore the multiplication program is universal – it can handle polyno-
mials with coefficients either in difference or differential field. Moreover, one can easily
define the skew polynomial ring based on the new type of the pseudo-linear operator,
for instance either q-shift or q-difference operator [11], not originally included into NL-
Control, and the multiplication of such polynomials can be performed immediately. The
latter also means that one can define the control system in terms of the new type of
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pseudo-linear operator and both the reduction and realization functions are immediately
applicable to this system.

Note that the NLControl package is made partly available through the web site [24].
The main benefit of the web site is that user does not need Mathematica to be in-
stalled into local computer, only internet connection and a browser are necessary to run
the functions. The implemented functions from NLControl are grouped according to
the time domain, e.g. continuous- and discrete-time, in order to make their use more
convenient for users. However, the functionality behind the interface is based on the
pseudo-linear algebra.

5. CONCLUSIONS

In this paper the minimal realization problem has been studied for nonlinear single-input
single-output equation defined in terms of the pseudo-linear operator. The pseudo-linear
algebra allowed to unify the realization theory of continuous- and discrete-time systems.
Three main cases (continuous-time, shift- and difference operators based discrete-time)
are merged into a single formalism. Moreover, we employed the tools from the theory
of the non-commutative ring of skew polynomials. The latter requires system to be
represented via two polynomials. The explicit formulas to compute the basis one-forms
of certain vector space directly from the polynomial system description are presented.
If this vector space is not integrable, the i/o equation is not realizable in the state-
space form. However, when the vector space is integrable, integration of its exact basis
vectors results in the desired state coordinates. Combining the results of this paper
with those presented in [11], the complete procedure for deriving the minimal state
equations starting from the possibly reducible i/o equation is worked out. In addition,
we have implemented the results of this paper and those from [11] in Mathematica
package NLControl [21]. Thus we may conclude that the program code of the introduced
algorithm is shorter and more compact compared to those of the previous methods.

The possible direction for the future extension of this work is to construct the polyno-
mial realization method for the multi-input multi-output equations. Moreover, detailed
comparison of our results with those in [23] should be addressed since minimality in
these two papers is defined in a different manner. Whereas we call the realization mini-
mal when it is both accessible and observable, the paper [23] defines minimality by the
minimal dimension of the state-space. The comparison is, however, not a simple task,
since the mathematical tools employed are different.
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Maris Tõnso, Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21,

12618, Tallinn. Estonia.

e-mail: maris@cc.ioc.ee

http://nlcontrol.ioc.ee

		webmaster@dml.cz
	2013-09-24T12:51:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




