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EXTENDING THE APPLICABILITY OF NEWTON’S METHOD

USING NONDISCRETE INDUCTION

Ioannis K. Argyros, Lawton, Säıd Hilout, Poitiers

(Received November 3, 2011)

Abstract. We extend the applicability of Newton’s method for approximating a solution
of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical
induction concept introduced by Potra and Pták. We obtain new sufficient convergence
conditions for Newton’s method using Lipschitz and center-Lipschitz conditions instead of
only the Lipschitz condition used in F.A.Potra, V. Pták, Sharp error bounds for Newton’s
process, Numer. Math., 34 (1980), 63–72, and F.A.Potra, V. Pták, Nondiscrete Induction
and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing
Program, Boston, 1984. Under the same computational cost as before, we provide: weaker
sufficient convergence conditions; tighter error estimates on the distances involved and more
precise information on the location of the solution. Numerical examples are also provided
in this study.

Keywords: Newton’s method, Banach space, rate of convergence, semilocal convergence,
nondiscrete mathematical induction, estimate function
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique

solution x⋆ of the equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a closed and convex subset

D of a Banach space X with values in a Banach space Y .

Computational sciences have received substantial and significant interest of re-

searchers in recent years in several areas such as engineering sciences, economic

equilibrium theory and mathematics. These sciences can solve various problems by
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passing first through mathematical modelling and then later looking for the solution

iteratively [9], [12], [15]. For example, finding a local minimum of a function is con-

nected to solving a set of nonlinear equations. So, numerical methods are crucial and

necessary for solving these nonlinear equations. Dynamic systems are also mathe-

matically modeled by nonlinear differential or difference equations and their solutions

usually represent the states of the systems. For the sake of simplicity, assume that

a time-invariant system is driven by the equation ẋ = Λ(x), for some suitable opera-

tor Λ, where x is the state. Then the equilibrium states are determined by solving the

equation (1.1). Note that similar equations are used in the case of discrete systems.

The unknowns of engineering equations can be functions (difference, differential and

integral equations), vectors (systems of linear or nonlinear algebraic equations), or

real or complex numbers (single algebraic equations with single unknowns).

In computer graphics, the intersection of two surfaces is also modeled by nonlin-

ear equation and can be complicated in general, because of some closed loops and

singularities. This requires finding efficient algorithms for solving this intersection.

We often need to compute and display the intersection C = A ∩ B of two surfaces

A and B in R
3 [28]. If the two surfaces are explicitly given by

A = {(u, v, w)T : w = F1(u, v)} and B = {(u, v, w)T : w = F2(u, v)},

then the solution x⋆ = (u⋆, v⋆, w⋆)T ∈ C must satisfy the nonlinear equation

F1(u
⋆, v⋆) = F2(u

⋆, v⋆) and w⋆ = F1(u
⋆, v⋆).

Hence, we must solve equation of the form (1.1) with F := F1 − F2. There is

a signifiant literature addressing the surface intersection problem [11], [27].

Except in special cases, the most commonly used solution methods are iterative-

when starting from one or several initial approximations a sequence is constructed

that converges to a solution of the equation. Iteration methods are also applied for

solving control and optimization problems. In such cases, the iteration sequences

converge to an optimal solution of the problem at hand. Since all of these methods

have the same recursive structure, they can be introduced and discussed in a general

framework. Finally, note that in computational sciences, the practice of numerical

analysis for finding such solutions is essentially connected to variants of Newton’s

method [4], [12], [15], [19], [26], [29], [46], [66].

Newton’s method (NM)

(1.2) xn+1 = xn − F ′(xn)−1F (xn) (n > 0), (x0 ∈ D),

is undoubtedly the most popular iterative process for generating a sequence {xn}
approximating x⋆ [1]–[26], [29]–[68]. Here, F ′(x) (x ∈ D) is the Fréchet-derivative
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of F at x. There is an extensive literature on local as well as semilocal convergence

results of (NM) under various Lipschitz-type conditions. Recent results can be found

in [9], [12], [15] and the references there (see also [11], [14], [47], [48]).

Let x0 ∈ D be such that F ′(x0)
−1 ∈ L (Y , X ), the space of bounded linear op-

erators from Y into X . We say that F ′(x0)
−1F ′(.) satisfies the Lipschitz-condition

on D with constant L (L > 0), if

(1.3) ‖F ′(x0)
−1(F ′(x) − F ′(y))‖ 6 L‖x− y‖ for all x, y ∈ D .

Set

(1.4) ‖F ′(x0)
−1F (x0)‖ 6 r0.

Then, a sufficient convergence condition for the semilocal convergence of (NM) is the

Kantorovich hypothesis (KH), famous for its simplicity and clarity, given by (see [9],

[12], [26])

(1.5) HK = 2Lr0 6 1.

In the scalar case (1.5) coincides with the condition given earlier by Ostrowski [30]–

[32]. If strict inequality holds in (1.5), the convergence is quadratic. Otherwise it is

only linear. Later Ostrowski [32] obtained sharp a priori estimates. Simpler sharp

a priori estimates were provided (using different method and proofs) by Gragg and

Tapia [24] and some papers of Pták in [53], [54], [56], [58]. The celebrated method

of nondiscrete induction is first used by Pták [55], [57]. Subsequently, Potra and

Pták developed in a series of papers and an excellent book [35], [42], [43], [46] the

nondiscrete induction and provided a posteriori estimates which are in general better

than those given by Gragg and Tapia [24]. Other works on iterative methods and

nondiscrete induction can be found in [39], [41], [42], [44], [59].

The hypothesis (1.5) is not a sufficient condition for the convergence of (NM). In

Section 5 we provide an example where the hypothesis (1.5) is violated but (NM) (1.2)

converges to the solution x⋆. Therefore, any hypothesis using the same information

(F, x0, L) weaker than (1.5) will expand applicability of (NM).

Let us report on what has been done in this direction. First of all note that in

view of (1.3), F ′(x0)
−1F ′(.) satisfies a center-Lipschitz condition with constant L0

(L0 > 0). That is

(1.6) ‖F ′(x0)
−1(F ′(x) − F ′(x0))‖ 6 L0‖x − x0‖ for all x ∈ D .

Note that in general

(1.7) L0 6 L
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holds, and L/L0 can be arbitrarily large [5]–[15] (see Section 5 for Examples). Con-

dition (1.6) is not an additional (to (1.3)) hypothesis, since in practice the com-

putation of the Lipschitz constant L requires that of the center-Lipschitz constant

L0. We can then use (1.6) instead of (1.3) to compute upper bounds on the norms

‖F ′(x)−1F ′(x0)‖. This observation has lead to the following set of advantages (A )

in the discrete case when L0 < L (see [5]–[15]):

⊲ a weaker hypothesis than (KH) (1.5);

⊲ tighter error bounds on the distances involved;

and

⊲ at least as precise information on the location of the solution x⋆.

These advantages (A ) are obtained under the same information (x0, F, L).

We have provided the following hypothesis instead of (1.5) (see, e.g. [5], [6], [8],

[9], [12], [14], [15], [20])

H1 = (5 + 2
√

6)L0r0 6 1,(1.8)

H2 = (L + L0)r0 6 1,(1.9)

H3 = 2Lr0 6 1,(1.10)

where,

(1.11) L =
1

8
(L + 4L0 + (L2 + 8L0L)1/2).

Note that in particular

(1.12) HK 6 1 =⇒ H2 6 1 =⇒ H3 6 1,

but not necessarily vice versa unless if L0 = L. We also have

H3

HK
→ 1

4
as

L0

L
→ 0,(1.13)

H2

HK
→ 1

2
as

L0

L
→ 0(1.14)

and

(1.15)
H3

H2
→ 1

2
as

L0

L
→ 0,

which provide a maximum measure on the expandability of (NM) under the hypothe-

ses (1.8) or (1.9) or (1.10). By comparing (1.5) to (1.8) we get

(1.16)
L

L0
>

5 + 2
√

6

2
and HK 6 1 =⇒ H1 6 1
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or

(1.17)
L

L0
6

5 + 2
√

6

2
and H1 6 1 =⇒ HK 6 1.

Clearly, the first case (1.16) expands the applicability of (NM) when

(1.18)
L

L0
>

5 + 2
√

6

2
, H1 6 1 and HK > 1.

The hypothesis (1.8) requires the computation of the constant L0 only, whereas (1.9)

and (1.10) require both constants L0 and L. In [8], Argyros further weakened (1.8)

in some sense using

(1.19) HM = 2L0r0 6 1,

which is a sufficient convergence condition for the modified Newton’s method (MNM)

(1.20) yn+1 = yn − F ′(y0)
−1F (yn) (n > 0), (y0 = x0 ∈ D).

But this time a certain number of iterates yn in (1.20) must be computed until

yN = x0 (N is a finite naturel number), for more details, see [8]. We also note that if

(1.8) or (1.19) hold, then the convergence of (NM) is shown only to be linear. Note

also that (1.19) is the weakest of the H hypotheses given by (1.5) and (1.8)–(1.10).

In this study we are motivated by optimization considerations and the method

of nondiscrete mathematical induction as developed by Potra and Pták [42]. We

show that the advantages (A ) carry over from the discrete to the nondiscrete case

using (1.8) or (1.9) or (1.10) instead of (1.5) and smaller rate of convergence ω and

corresponding estimate functions s (to be precised in Section 2). Note that ω and s

are used to measure the error distances involved.

Potra and Pták [42] defined functions ω (see Figure 1) and s (see Figure 2) by

(1.21) ω(r) =
1

2
r2(r2 + a2)−1/2

and

(1.22) s(r) = r + (r2 + a2)1/2 − a,

where a > 0. Under hypothesis (1.5), Potra and Pták [42] showed that the optimum

value for a is given by

(1.23) a = aP =
( 1

L

( 1

L
− 2r0

))1/2

.
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Figure 1. Functions ω(r) (from top to bottom) on [0, 2] a = 0, .5, .7, .9, 1, 1.2, 1.5, 7, 20, 30,
respectively.
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Figure 2. Functions s(r) (from top to bottom) on [0, 2] for a = 0, .5, .7, .9, 1, 1.2, 1.5, 7, 20, 30,
respectively.

The error bounds are related with functions w and s by

(1.24) d(xn, xn−1) 6 ω(n)(r0)

and

(1.25) d(xn, x⋆) 6 s(ω(n)(r0)),
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where ω(n) is the n-iterate of the function ω so that

ω(0)(r) = r, ω(1)(r) = ω(r), ω(2)(r) = ω(ω(r)), . . . , ω(n)(r) = ω(ω(n−1)(r)).

It follows from (1.21)–(1.25) that the larger the parameter “a” is the tighter the

estimates (1.24) and (1.25) will be. If (1.9) holds, set:

(1.26) a1 =
1

L
((1 − L0r0)

2 − L2r2
0)

1/2 > 0.

Moreover, if (1.19) is satisfied, let

(1.27) aM =
( 1

L0

( 1

L0
− 2r0

))1/2

> 0.

Note that if L0 = L, then aM = a1 = aP . Otherwise, we have

(1.28) aP < a1 < aM .

Other values for the parameter “a” have been given in Sections 3–5.

Our introduction of the center-Lipschitz condition in the discrete case has pro-

duced the advantages (A ) for other iterative processes such as the Secant method,

the directional Newton method, Stirling’s method, Steffensen’s method and Newton-

like methods [5], [9], [11], [12]–[15].

In this study we show that the advantages (A ) can carry from discrete to nondis-

crete case. In particular we provide using the same information (F, x0, L) a finer

convergence analysis than in [34]–[37] for (NM).

The paper in organized as follows: In order to make the study as self contained

as possible we have summarized some necessary concepts related to the method of

nondiscrete mathematical induction in Section 2. The results on the enlargement

of the parameter “a” are given in Section 3. The semilocal convergence of (NM) is

given in Section 4. In the concluding Section 5 we provide numerical examples to

support the claims made in the advantages (A ).

2. Nondiscrete mathematical induction and (NM)

Pták inaugurated in his Gatlinburg lecture [55] the method of Nondiscrete Math-

ematical Induction (NMI). We refer the reader to the excellent monograph by Potra

and Pták [46] for more details about the motivation and general principles for (NMI).

For z ∈ X and r > 0, we denote by U(z, r) the closed ball centered at z and of ra-

dius r. Let T be either the positive real axis or an interval of the form

T = {r ∈ R : 0 < r < α} = (0, α).

We need the definition of the rate of convergence.
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Definition 2.1. A function ω : T → T is called a rate of convergence on T if

the series

(2.1)

∞
∑

n=0

ω(n)(r)

is convergent for each r ∈ T . The sum (2.1) is denoted by s(r) and is called the

corresponding estimate function. Then we write

(2.2) s(r) =
∞
∑

n=0

ω(n)(r) for all r ∈ T .

Functions ω and s satisfy the functional equation

(2.3) s(r) = r + s(ω(r)).

It then follows from (2.3) that (with the exception of pathological cases) we have:

(2.4) ω(r) = s−1(s(r) − r).

That is, given s, the function ω can be recovered using the functional equation

(2.4). The computation of the function s is very difficult or impossible in general.

We have the following result characterizing rates of convergence.

Proposition 2.2 [46]. Let ω : T → T and ν : T → T be such that

(2.5) ν(r) = r + ν(ω(r)) for all r ∈ T .

Then the following items hold:

(a) ω is a rate of convergence on T

and

(b) if the limit ν(0) = lim
rց0

ν(r) exists, then

(2.6) s(r) =

∞
∑

n=0

ω(n)(r) = ν(r) − ν(0) for all r ∈ T .

It can easily be seen by verifying (2.5), that the function ω given by (1.16) is a rate

of convergence on T with the corresponding estimate function s given by (1.17).

Another example is given for δ ∈ [0, 1) by

(2.7) ω(r) = δr
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and

(2.8) s(r) =
r

1 − δ
.

Define G : D → Y by

(2.9) G(x) = x − F ′(x)−1F (x).

We need the following result relating the (MNI), (2.9) and (NM).

Lemma 2.3 [42], [46].

(1) Assume that for a given pair (G, x0) there exists a rate of convergence ω on

an interval T and a family of sets Z (r) ⊆ X such that the inclusion conditions

x0 ∈ Z (r0) for a certain r0 ∈ T and

(2.10) r ∈ T and x ∈ Z (r) =⇒ G(x) ∈ U(x, r) ∩ Z (ω(r))

are satisfied.

Then, sequence {xn} generated by (NM) is well defined and converges to
a point x⋆. Moreover, (1.24), (1.25) and the following estimate

(2.11) xn ∈ Z (ω(n)(r0))

hold.

(2) If, in addition, for a certain n > 1, we have

(2.12) xn−1 ∈ Z (d(xn, xn−1)),

then for this n, the following estimate holds

(2.13) d(xn, x⋆) 6 f(d(xn, xn−1))

for some function f : [0,∞) → [0,∞) such that

(2.14) f(r) = s(r) − r.

Lemma 2.3 is essentially a corollary of the induction theorem (see Proposition 1.7

in [46, p. 5]). This theorem is related to the graph theorem of functional analysis.

The closed graph theorem can be seen as a limit case of the induction theorem for

an infinitely fast rate of convergence (see, e.g. [46, Theorem 1.15]).
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We use the following measure of invertibility

(2.15) d(B) = inf
‖x‖=1

‖B(x)‖ for B ∈ L (X , Y ).

If B is invertible and B−1 ∈ L (Y , X ), then

(2.16) d(B) = ‖B−1‖−1.

We also need the following Banach-type result on invertible operators [4], [9].

Lemma 2.4. If B and C belong inL (X , Y ) such thatB is boundedly invertible

and

(2.17) d(B) > ‖B − C ‖

then C is also boundedly invertible and

(2.18) d(C ) > d(B) − ‖B − C ‖.

3. Enlarging the parameter “a”

Nondiscrete induction for iterative processes requires verification of inclusion hy-

potheses in (1) of Lemma 2.3. We shall illustrate how this method works in the case

of (NM).

The differences between our approach and the one given by Potra and Pták [42],

[46] will also be given in our description that follows.

First, we need to define a suitable nonempty approximate set Z for some rate of

convergence ω. If x is an initial guess, we hope

(3.1) x+ = x − F ′(x)−1F (x)

to be closer to the solution x⋆. Let r be the distance between x and x+. We must

have for x ∈ Z (r) that x+ ∈ Z (ω(r)).

Potra and Pták [46, p. 23] used the following approximate set Z (r) (r > 0) for

a rate of convergence ω (first in non-affine invariant form):

(3.2) Z (r) = {x ∈ X : ‖x − x0‖ 6 g(r), F ′(x) is invertible,

‖F ′(x)−1F (x)‖ 6 r and d(F ′(x0)
−1F (x)) > h(r)},
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where g and h are functions to be determined later. This way they produced

a plethora of results on (NM) that have improved the error bounds on the distances

d(xn, xn−1) and d(xn, x⋆) of the discrete case but not the sufficient convergence con-

dition (1.5).

Let x ∈ Z (r), then for x+ ∈ Z (ω(r)), the following must hold:

‖x+ − x0‖ 6 g(ω(r)),(3.3)

d(F ′(x0)
−1F ′(x+)) > h(ω(r))(3.4)

and

(3.5) ‖F ′(x+)−1F (x+)‖ 6 ω(r).

But we can write

(3.6) ‖x0 − x+‖ 6 ‖x+ − x‖ + ‖x − x0‖ 6 r + g(r).

We also have

(3.7) d(F ′(x0)
−1F ′(x+)) > d(F ′(x0)

−1F ′(x)) − ‖F ′(x0)
−1(F ′(x+) − F ′(x))‖

> d(F ′(x0)
−1F ′(x)) − (‖F ′(x0)

−1(F ′(x+) − F ′(x0))‖
+ ‖F ′(x0)

−1(F ′(x0) − F ′(x))‖)
> d(F ′(x0)

−1F ′(x)) − L0(‖x+ − x0‖ + ‖x − x0‖)
> h(r) − L0(r + 2g(r)).

As long as h(r)−L0(r+2g(r)) is positive, the Banach lemma on invertible operators

[4], [9], [26] and Lemma 2.4 guarantee the existence of F ′(x)−1 and the estimate

(3.8) ‖F ′(x)−1F ′(x0)‖ 6 (h(r) − L0(r + 2g(r)))−1.

Using the approximation

F (x+) = F (x+)−F (x)−F ′(x)(x+ −x) =

∫ 1

0

(F ′(x+ t(x+ −x))−F ′(x))(x+ −x) dt

and (1.3), we get

(3.9) ‖F ′(x0)
−1F (x+)‖ 6

1

2
L‖x+ − x‖2.
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Then, we have by (3.8) and (3.9)

(3.10) ‖F ′(x+)−1F (x+)‖ 6 ‖F ′(x+)−1 F ′(x0)‖‖F ′(x0)
−1F (x+)‖

6
1

2
L(h(r) − L0(r + 2g(r)))−1r2.

In view of (3.6), (3.8) and (3.10), the conditions (3.3)–(3.5) hold if there exist func-

tions h, g and parameter b satisfying the system of inequations SAH :

g(r) + r 6 g(ω(r)),(3.11)

h(r) − L0(r + 2g(r)) > h(ω(r)),(3.12)

L

2
r2

(

h(r) − L0(r + 2g(r))
)−1

6 ω(r),(3.13)

g(r) < b(3.14)

and

(3.15) 0 < h(r) 6 1.

The system SPP in [46, p. 25] uses inequation

(3.16) h(r) − Lr > h(ω(r))

instead of (3.12). The rest of the inequations are the same.

We shall see later that replacing (3.16) by (3.12) is a major modification leading

to the advantages (A ) already stated in the Introduction of this study.

Next, we shall show that the system SAH is satisfied in two cases when the rate

of convergence ω is given by (1.16) or (2.7) and

h(r) = L
(

a +
L − L0

L

(

s(r) − r
)

+
L0

L

(

2s(r0) − s(r)
)

)

,(3.17)

g(r) = s(r0) − s(r),(3.18)

b0 = s(r0) < b,(3.19)

where s is the estimate function corresponding to rate of convergence ω and a > 0

is to be determined later.

In the first case the functions ω, s are given by (1.21) and (1.22), respectively.
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Proposition 3.1. Let r0 > 0 and L > L0 > 0. Let also the functions ω, s be

given by (1.21) and (1.22), respectively.

Assume that (1.9) and

(3.20) b1 =
1

L
(1 + (L − L0)r0 − ((1 − L0r0)

2 − L2r2
0)

1/2) < b

hold.

Then, the system SAH has a solution (h, g, b1), where

h(r) = L
(

a1 +
L − L0

L
((r2 + a2

1)
1/2 − a1)(3.21)

+
L0

L
(a1 + 2b1 − r − (r2 + a2

1)
1/2)

)

,

g(r) =
1 + (L − L0)r0

L
− r − (r2 + a2

1)
1/2(3.22)

and a1 is given by (1.26).

Moreover, we have

(2.23) x0 ∈ Z (r0).

P r o o f. By the hypothesis (1.9), a1 > 0. Indeed, if L0 6= L, we have:

(L2
0 − L2)

(

r0 −
1

L0 − L

)(

r0 −
1

L0 + L

)

> 0 =⇒ (L2
0 − L2)r2

0 − 2L0r0 + 1 > 0

=⇒ (1 − L0r0)r
2
0 − L2r2

0 > 0 =⇒ a1 > 0.

If L0 = L, then again we deduce a1 > 0, since 2Lr0 6 1.

Moreover it can easily be seen by simple substitution that the triplet (h, g, b1)

satisfies the system SAH . Note in particular that (3.21) implies (3.15). Finally,

the inclusion (3.23) follows from (3.1) and (3.15). That completes the proof of

Proposition 3.1. �

Remark 3.2. If L0 = L, the hypothesis (1.9) reduces to (1.5). In this case we

have a = a1 = aP .

If L0 < L, Proposition 3.1 improves the results in [46] and a1 > aP (see also

Example 5.1).

In the second case the functions ω, s are given by (2.7) and (2.8), respectively.
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Proposition 3.3. Let r0 > 0 and L > L0 > 0. Let also the functions ω, s be

given by (2.7) and (2.8), respectively, for δ = 1
2 .

Assume that (1.9) for L > 3L0 or 4L0r0 6 1 for L 6 3L0 and

(3.24) b2 = 2r0 < b

hold.

Then, the system SAH has a solution (h, g, b2), where

(3.25) h(r) = (L − 3L0)r + 4L0r0

and

(3.26) g(r) = 2(r0 − r).

P r o o f. It is easy to see by substitution that the system SAH is satisfied with

the above choices of g, h, b2 and b. That completes the proof of Proposition 3.3. �

Remark 3.4. It turns out that if the approximate set Z is defined in a way

other than (3.2), then the system SAH can be simplified and weaker hypotheses than

before are needed (in some cases).

This time, we define

Z0(r) = {x ∈ X : ‖x − x0‖ 6 g(r), F ′(x) is invertible,(3.27)

‖F ′(x)−1F (x)‖ 6 r and d(F ′(x0)
−1F (x)) > 1 − L0(r + g(r))}.

The motivation for the introduction of the new approximate set Z0 is due to the

estimate

(3.28) d(F ′(x0)
−1F ′(x+)) > d(F ′(x0)

−1F ′(x0)) − ‖F ′(x0)
−1(F ′(x+) − F ′(x0))‖

> 1 − L0‖x+ − x0‖ > 1 − L0(r + g(r)).

Then, in view of the implications

(3.29) ω(r) > 0 =⇒ ω(r) + s(r0) − s(ω(r)) > r + s(r0) − s(r)

=⇒ 1 − L0(r + g(r)) > 1 − L0(ω(r) + g(ω(r))),

the inequation (3.12) can be dropped from the system SAH . Denote the resulting

system by S⋆
AH defined by

S⋆
AH



























g(r) + r 6 g(ω(r)),

L

2
r2(1 − L0(r + g(r)))−1 6 ω(r),

g(r) < b,

0 < L0(r + g(r)) 6 1.
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Then, we can have results corresponding to Propositions 3.1 and 3.3, respectively.

Proposition 3.5. Under the hypotheses of Proposition 3.1, S⋆
AH has a solution

(g, b1), where g and b1 are given in Proposition 3.1.

Moreover, we have

(3.30) x0 ∈ Z0(r0).

P r o o f. It can easily be seen that the pair (g, b1) satisfies the system S⋆
AH . In

particular for the verification of (3.13), we must show

(3.31) 1 − L0(r + g(r)) > 0

and

(3.32) Lr2 6 2ω(r)(1 − L0(r + g(r))).

We have

(3.33) 1 − L0(r + g(r)) = 1 − L0(r + (r2 + a2
1)

1/2) > 0

by the choice of a1 and r ∈ [0, r0]. Hence the estimate (3.31) holds. We also have

a2
1 6

(1 − L0r)
2 − L2r2

L2
=⇒ L2a2

1 6 (1 − L0r)
2 − L2r2 =⇒ L2(r2 + a2

1)

6 (1 − L0r)
2 =⇒ L(r2 + a2

1)
1/2

6 1 − L0r =⇒ L(r2 + a2
1)

1/2

6 1 − L0(r + (r2 + a2
1)

1/2) + L0(r
2 + a2

1)
1/2 =⇒ Lr2

6 r2(r2 + a2
1)

−1/2(1 − L0(r + (r2 + a2
1)

1/2) + L0(r
2 + a2

1)
1/2) =⇒ (3.31).

That completes the proof of Proposition 3.5. �

Proposition 3.6. Let r0 > 0 and L > L0 > 0. Let also ω, s be given by (2.6)

and (2.8), respectively, with

(3.34) δ =
2L

L + (L2 + 8L0L)1/2
.

Suppose that (1.10) and

(3.35) b3 =
r0

1 − δ
< b

hold.
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Then the system S⋆
AH has a solution (g, b3), where,

(3.36) g(r) =
1

1 − δ
(r0 − r).

Moreover, we have x0 ∈ Z0(r0). Furthemore, δ ∈ [1/2, 1).

P r o o f. We shall show how do we arrive at the hypothesis (1.10) and the choice

of δ. The rest shall follow by substituting (g, b3) in S⋆
AH .

Indeed, we have

Lr2 6 2ω(r)(1 − L0(r + g(r)))

or

r
(

L − 2L0δ
2

1 − δ

)

6 0

or

(3.37) 2L0δ
2 + Lδ − L > 0,

which is true as equality by (3.34). We must also show

(3.38) g(r) > 0

or

s(r0) > s(r)

or
r

1 − δ
6

1

L0

or

r0L0 6 1 − δ = 1 − 2L

L + (L2 + 8L0L)1/2

or

r0L0 6
−L + (L2 + 8L0L)1/2

L + (L2 + 8L0L)1/2

or

r0L0(L + (L2 + 8L0L)1/2)2 6 8L0L

or

r0(L + 4L0 + (L2 + 8L0L)1/2) 6 4,

which is exactly the hypothesis (1.10). That completes the proof of Proposition 3.6.

�

Remark 3.7. If L = L0, then (1.10) reduces to (1.5) and δ = 1/2. If L0 < L,

then (1.10) is weaker than (1.9) and (1.5).
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4. Semilocal convergence of (NM)

The only difference in the proofs of [46, Sections 1 and 5], [42] and ours is that we

use different value of “a” and (1.9) or (1.10) instead of (1.5). Therefore the proofs

of semilocal convergence results (corresponding to Propositions 3.1, 3.3 and 3.6) for

(NM) are omitted.

For brevity, we only provide estimates of the form (1.24), (1.25) and (2.11). Es-

timates of the form (2.13) can also follow immediately as in [46], [42] but using

different “a” as in Propositions 3.1, 3.3 and 3.6.

Theorem 4.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator and let

x0 ∈ D . Assume that

(i)

F ′(x0)
−1 ∈ L (Y , X );

(ii) F ′(x0)
−1F ′ satisfies the Lipschitz condition with constant L and the center-

Lipschitz condition with constant L0 on D ;

(iii)

‖F ′(x0)
−1F (x0)‖ 6 r0;

(iv) the hypotheses of Proposition 3.1 hold; and

(v)

U(x0, b1) ⊆ D .

Then the sequence {xn} (n > 0) generated by (NM) is well defined, remains in

U(x0, b1) for all n > 0 and converges to a unique solution x⋆ of the equation

(1.1) in U(x0, b1).

Moreover, the following error estimates hold for all n > 1:

d(xn, xn−1) 6 ω(n)(r0) =
2a1θ1(r0)

2n

1 − θ1(r0)2
n+1

,(4.1)

d(xn, x⋆) 6 s(ω(n)(r0)) =
2a1θ1(r0)

2n

1 − θ1(r0)2
n

(4.2)

and

(4.3) d(xn, x⋆) 6 (a2
1 + ‖xn − xn−1‖2)1/2 − a1,

where

(4.4) θ1(r) =
(r2 + a2

1)
1/2 − a1

r
,

where a1 is given by (1.26).
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Theorem 4.2. Let F : D ⊆ X → Y be a Fréchet-differentiable operator and let

x0 ∈ D . Assume that

(1) the hypotheses (i)–(iii) of Theorem 4.1 hold;

(2) the hypotheses of Proposition 3.3 hold and

(3)

U(x0, b2) ⊆ D .

Then the sequence {xn} (n > 0) generated by (NM) is well defined, remains in

U(x0, b2) for all n > 0 and converges to a unique solution x⋆ of the equation (1.1) in

U(x0, b2).

Moreover, the following error estimates hold for all n > 1:

(4.5) d(xn, xn−1) 6 ω(n)(r0) =
(1

2

)n

r0

and

(4.6) d(xn, x⋆) 6 s(ω(n)(r0)) =
(1

2

)n−1

r0.

Theorem 4.3. Let F : D ⊆ X → Y be a Fréchet-differentiable operator and let

x0 ∈ D . Assume that

(1) the hypotheses (i)–(iii) of Theorem 4.1 hold;

(2) the hypotheses of Proposition 3.6 hold

and

(3)

U(x0, b3) ⊆ D .

Then, the conclusions of Theorem 4.2 hold with b3,
1
2δ replacing b2 and

1
2 , respec-

tively.

Remark 4.4. If L0 = L, the results reduce to the corresponding ones in [42], [46].

Otherwise they constitute an improvement since (1.9) or (1.10) are weaker than (1.5),

error estimates are tighter and the information on the location of the solution x⋆ is

more precise, since our a1 is larger than aP . Indeed, under the hypotheseis (1.5), the

error bounds in [42], [46] are:

d(xn, xn−1) 6
2aP θP (r0)

2n

1 − θP (r0)2
n+1

,(4.7)

d(xn, x⋆) 6
2aP θP (r0)

2n

1 − θP (r0)2
n

(4.8)
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and

(4.9) d(xn, x⋆) 6 (a2
P + ‖xn − xn−1‖2)1/2 − aP ,

where

(4.10) θP (r) =
(r2 + a2

P )1/2 − aP

r
,

where aP is given by (1.23), and

(4.11) b0 =
1

L
−

( 1

L

( 1

L
− 2r0

))1/2

< b.

Then, we have by (1.21), (1.23), (1.26), (3.20) and (4.11)

θ1(r) < θP (r), r ∈ [0, r0]

and

b1 < b0.

Concerning (MNM) defined by (1.20), we have the following semilocal convergence

result.

Theorem 4.5. Let F : D ⊆ X → Y be a Fréchet-differentiable operator and let

x0 ∈ D . Assume that

(1) the hypotheses (i)–(iii) of Theorem 4.1 and (1.19) hold

and

(2)

U(x0, bM ) ⊆ D ,

where

bM =
1

L0
−

( 1

L0

( 1

L0
− 2r0

))1/2

.

Then the sequence {xn} (n > 0) generated by (MNM) given by (1.20) is well

defined, remains in U(x0, bM ) for all n > 0 and converges to a unique solution

x⋆ of the equation (1.1) in U(x0, bM ).

Moreover, the estimates (1.24), (1.25) and

‖xn − x⋆‖ 6 s(‖xn − xn−1‖) − ‖xn − xn−1‖

hold, with

ω(r) =
1

2
L0r

2 + r(1 − (L2
0a

2
M + 2L0r)

1/2)
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and

s(r) =
(

a2
M +

2r

L0

)1/2

− aM ,

where aM is given by (1.27).

Remark 4.6. If L0 = L, Theorem 4.5 reduces to the corresponding one in [42],

[46]. Otherwise they constitute an improvement, since aP < aM , bM < b0 and our

functions ω, s are smaller than the ones in [42], [46].

5. Numerical examples

We provide examples where our results apply but earlier ones do not. When all

results apply we show that ours provide tighter error bounds and better information

on the location of the solution.

Example 5.1. Let X = Y = R, equipped with the max-norm, x0 = 1, D =

[̺, 2 − ̺], ̺ ∈ [0, 1
2 ) and define the function F on D by

(5.1) F (x) = x3 − ̺.

Using (1.3), (1.4) and (1.6) we get:

r0 =
1

3
(1 − ̺), L0 = 3 − ̺ and L = 2 (2 − ̺).

Then, we obtain the conditions (1.5) and (1.8), respectively, as follow

HK =
4

3
(1 − ̺)(2 − ̺) > 1

and

H1 =
1

3
(5 + 2

√
6)(3 − ̺)(1 − ̺) > 1 for all ̺ ∈

[

0,
1

2

)

.

Hence, there is no guarantee that (NM) converges to x⋆ = 3
√

̺, starting at x0.

However, if we consider our conditions (1.19), (1.8) and (1.10), respectively, we

get

HM =
2

3
(3 − ̺)(1 − ̺) 6 1 for all ̺ ∈ [.418861170, .5),

H2 =
1

3
(7 − 3̺)(1 − ̺) 6 1 for all ̺ ∈ [.464816242, .5)
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and

H3 =
1

6
(8 − 3̺ + (5̺2 − 24̺ + 28)1/2)(1 − ̺) 6 1 for all ̺ ∈ [.450339002, .5).

Next we pick three values of ̺ such that all hypotheses are satisfied, so we can

compare the “a” values and the corresponding error bounds.

Case ̺ = .49999

By Maple 13, we have the following results

x⋆ = .7936952346, HK = 1.000026667 > 1, H1 = 4.124673776 > 1,

H2 = .9166899999 < 1, H3 = .8877981560 < 1, HM = .8333533332 < 1,

a1 = .1001396659, aM = .1632888647

and

b1 = .2609701491, b2 = .3333400000, b3 = .3551178419.

We can not compare (4.1) and (4.7) in the case ̺ ∈ (.5, 1) since (1.5) does not hold

and aP is a complex number in this interval. Note that we have

aP > 0 ⇐⇒ ̺ ∈ (.5, 2.5).

Case ̺ = .5

By Maple 13, we have the following results

x⋆ = .7937005260, HK = 1, H2 = .9166666665 < 1,

aP = 0, a1 = .1001542021, b1 = .5109569091 and b2 = .3333333333.

Then the convergence is only linear in [42], [46] (see also the estimates (4.7)–(4.9) in

Remark 4.4) since aP = 0, but our Theorems 4.1 and 4.2 apply and we can produce

the following tables (Tables 1 and 2) for estimating error bounds (4.1), (4.2) and

(4.5), (4.6), respectively.

n xn (4.1) (4.2)
1 .8333333333 .05612119686 .07077314850

2 .8151148834 .01371698569 .01465195163

3 .8059078274 .0009306422249 .0009349659389

4 .8008359800 .000004323620699 .000004323714024

5 .7979271348 9.332457124e-11 9.332457129e-11

6 .7962228487 4.348033039e-20 4.348033039e-20

7 .7952122874 9.438141843e-39 9.438141843e-39

8 .7946089091 4.447068601e-76 4.447068601e-76

9 .7942471777 9.872985216e-151 9.872985216e-151

10 .7940297902 4.866287937e-300 4.866287937e-300

Table 1.
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n xn (4.5) (4.6)
1 .8333333333 .08333333335 .1666666666

2 .8151148834 .04166666666 .08333333335

3 .8059078274 .02083333334 .04166666666

4 .8008359800 .01041666666 .02083333334

5 .7979271348 .005208333335 .01041666666

6 .7962228487 .002604166666 .005208333335

7 .7952122874 .001302083334 .002604166666

8 .7946089091 .0006510416665 .001302083334

9 .7942471777 .0003255208334 .0006510416665

10 .7940297902 .0001627604166 .0003255208334

Table 2.

Case ̺ = .52

By Maple 13, we have the following results

x⋆ = .8041451517, HK = .9472000000 < 1, H1 = 3.927915060 > 1,

H2 = .8703999998 < 1, H3 = .8438043214 < 1, HM = .7935999998 < 1,

a1 = .1262055091, aM = .1831905919, aP = .07762922486

and

b1 = .2375782746, b2 = .3200000000, b3 = .3402436781.

We can now compare our results of Theorem 4.1 (see also the estimates (4.1)–(4.3)

with the ones in [42], [46] (see also the estimates (4.7)–(4.9)).

n xn (4.1) (4.7)
1 .8400000000 .07006258936 .07909638766

2 .8229000192 .01700313396 .02822534747

3 .8144944601 .001135124615 .004822385995

4 .8099973466 .000005104594030 .0001494969517

5 .8074963585 1.032319444e-10 1.439489908e-7

6 .8060774320 4.222016307e-20 1.334633444e-13

7 .8052635983 7.062061639e-39 1.147278253e-25

8 .8047939593 1.975853311e-76 8.477782648e-50

9 .8045219996 1.546682206e-151 4.629235881e-98

10 .8043641969 9.477501671e-302 1.380267862e-194

Comparison Table 3.

Comparison Tables 3 and 4 show that our error bounds (4.1) and (4.2) are finer

than (4.7) and (4.8) given in [42], [46].
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n xn (4.2) (4.8)
1 .8400000000 .08820595264 .1122937620

2 .8229000192 .01814336327 .03319737437

3 .8144944601 .001140229312 .004972026896

4 .8099973466 .000005104697262 .0001496409008

5 .8074963585 1.032319444e-10 1.439491243e-7

6 .8060774320 4.222016307e-20 1.334633444e-13

7 .8052635983 7.062061639e-39 1.147278253e-25

8 .8047939593 1.975853311e-76 8.477782648e-50

9 .8045219996 1.546682206e-151 4.629235881e-98

10 .8043641969 9.477501671e-302 1.380267862e-194

Comparison Table 4.

Finally, we provide examples where the inequality between the Lipschitz and the

center-Lipschitz constants is strict (i.e., L0 < L).

Example 5.2. Define the scalar function F by F (x) = d0x + d1 + d2 sin ed3x,

x0 = 0, where di, i = 0, 1, 2, 3 are given parameters. Then it can easily be seen that

for d3 large and d2 sufficiently small, L/L0 can be arbitrarily large.

Example 5.3. Let X = Y = C [0, 1], equipped with the max-norm. Consider

the following nonlinear boundary value problem [9]

{

u′′ = −u3 − γu2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(5.2) u(s) = s +

∫ 1

0

Q(s, t)(u3(t) + γu2(t)) dt

where Q is the Green function:

Q(s, t) =

{

t(1 − s), t 6 s,

s(1 − t), s < t.

We observe that

max
06s61

∫ 1

0

|Q(s, t)| dt =
1

8
.

Then the problem (5.2) is in the form (1.1), where, F : D → Y is defined as

[F (x)](s) = x(s) − s −
∫ 1

0

Q(s, t)(x3(t) + γx2(t)) dt.
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If we set u0(s) = s and D = U(u0, R), then since ‖u0‖ = 1, it is easy to verify that

U(u0, R) ⊂ U(0, R + 1). If 2γ < 5, then the operator F ′ satisfies the conditions of

Theorem 4.1, with

r0 =
1 + γ

5 − 2γ
, L =

γ + 6R + 3

4
, L0 =

2γ + 3R + 6

8
.

Note that L0 < L.

Other applications and examples including the solution of nonlinear Chandra-

sekhar-type integral equations appearing in radiative transfer are also found in

[9], [15].

Conclusion

For approximating a solution of a nonlinear operator equation in a Banach space

setting, we provided new results for (NM) and (MNM) using the concept of (NMI)

introduced by Potra and Pták [42], [46]. We obtained new sufficient convergence

conditions for (NM) and (MNM) using Lipschitz and center-Lipschitz conditions on

the Fréchet-derivative of the operator involved instead of only the Lipschitz condition

used in [42], [46]. Our results extend the applicability of these methods studied in

[42], [46]. Numerical examples are also provided in this study.
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