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Abstract. First we summarize some properties of the nonholonomic r-jets from the func-
torial point of view. In particular, we describe the basic properties of our original concept of
nonholonomic r-jet category. Then we deduce certain properties of the Weil algebras associ-
ated with nonholonomic r-jets. Next we describe an algorithm for finding the nonholonomic
r-jet categories. Finally we classify all special types of semiholonomic 3-jets.
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All manifolds and maps are assumed to be infinitely differentiable. Unless other-

wise specified, we use the terminology and notation from [8]. The author acknowl-

edges Josef Šilhan for advice concerning representation theory.

1. Introduction

LetMf be the category of all manifolds and all smooth maps andMfm be the

category of m-dimensional manifolds and their local diffeomorphisms. Every two

manifolds M and N determine the bundle Jr(M,N) → M × N of all r-jets of M

into N . In [8] we pointed out that Jr is a bundle functor on the product category

Mfm × Mf , m = dimM . Indeed, every local diffeomorphism f : M → M ′ and

every map g : N → N ′ induce a map

Jr(f, g) : Jr(M,N) → Jr(M ′, N ′)

The author was supported by the Ministry of Education of the Czech Republic under
the project MSM 0021622409 and by GAČR under the grant 201/09/0981.
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by the jet composition

(1) Jr(f, g)(X) = (jr
yg) ◦X ◦ (jr

xf)−1, X ∈ Jr
x(M,N)y.

Clearly, Jr(M,N1 ×N2) = Jr(M,N1) ×M Jr(M,N2).

In [1], C. Ehresmann introduced the bundle J̃r(M,N) →M ×N of nonholonomic

r-jets of M into N , Jr(M,N) ⊂ J̃r(M,N), see also [5]. He defined a composition

(2) X2 ◦X1 ∈ J̃r
x(M,Q)z

for every X1 ∈ J̃r
x(M,N)y and X2 ∈ J̃r

y (N,Q)z, that is associative and generalizes

the composition of the classical holonomic r-jets. Hence J̃r can be interpreted as

a bundle functor onMfm ×Mf , if we set

(3) J̃r(f, g) = (jr
yg) ◦X ◦ (jr

xf)−1, X ∈ J̃r
x(M,N)y,

with the composition of nonholonomic r-jets. Even in this case we have J̃r(M,N1 ×

N2) = J̃r(M,N1) ×M J̃r(M,N2).

The best known example of special type of nonholonomic r-jets are the bundles

J
r
(M,N) of semiholonomic r-jets

Jr(M,N) ⊂ J
r
(M,N) ⊂ J̃r(M,N),

[1], [5], [9]. There is a simple description of J
r
(V,W ) in the case of two vector spaces

V , W , [1]. Analogously to the classical formula

(4) Jr(V,W ) = V ⊕W ⊗

( r∑

i=0

SiV ∗

)

with symmetric tensor powers of V ∗, we have

(5) J
r
(V,W ) = V ⊕W ⊗

( r∑

i=0

i
⊗V ∗

)

with arbitrary tensor powers of V ∗. The composition of two semiholonomic r-jets is

semiholonomic as well. Further, J
r
(M,N1 × N2) = J

r
(M,N1) ×M J

r
(M,N2). We

denote by πr
s : J

r
(M,N) → J

s
(M,N), s < r, the canonical projection, [1].

We have been interested in the general concept of special type of nonholonomic r-

jets. In our first attempt, [3], we started from the description of all bundle functors

on the category Mfm × Mf preserving product in the second factor, [7], [5]. In
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general, a bundle functor F on Mfm × Mf is said to preserve products in the

second factor, if

F (M,N1 ×N2) = F (M,N1) ×M F (M,N2).

Further, F is said to be of order r in the first factor, if for every two local diffeomor-

phisms f1, f2 : M1 →M2 and every g : N1 → N2, jr
xf1 = jr

xf2 implies

F (f1, g) | Fx(M1, N1) = F (f2, g) | Fx(M1, N1),

where Fx(M1, N1) means the fiber of F (M1, N1) over x ∈ M1. Such functors are

identified with pairs (A,H), where A is a Weil algebra and H : Gr
m → AutA is

a group homomorphism of the r-th jet group Gr
m in dimension m into the group

AutA of all algebra automorphisms of A. Then F (M,N) is the associated bundle

P rM [TAN,HN ], where P rM is the r-th order frame bundle of M and HN is the

induced action of Gr
m on T

AN . We have F (f, g) = P rf [TAg].

In the special case F = Jr, the Weil algebra is Dr
m = Jr

0 (Rm,R), we haveAutDr
m ≈

Gr
m and H = idGr

m
. This yields a classical formula Jr(M,N) = P rM [T r

mN ]. In the

case F = J̃r, the Weil algebra is D̃r
m = J̃r

0 (Rm,R), T D̃
r

mN = T̃ r
mN = J̃r

0 (Rm, N) is

the bundle of nonholonomic (m, r)-velocities over N , the jet composition defines an

action of Gr
m on D̃

r
m and J̃

r(M,N) = P rM [T̃ r
mN ].

In our first approach, [3], we considered a Gr
m-invariant Weil algebra Φ, Dr

m ⊂

Φ ⊂ D̃
r
m, and we defined an r-th order jet functor onMfm ×Mf by

(6) F (M,N) = P rM [TΦN, iΦN ], F (f, g) = P rf [TΦg],

where iΦ is the action of Gr
m on Φ. Clearly,

(7) Jr(M,N) ⊂ F (M,N) ⊂ J̃r(M,N).

Conversely, if F is a bundle functor on Mfm × Mf satisfying (7) and preserving

products in the second factor, then F is determined by a Weil algebra Φ of the above

type, [3].

Using the Weil algebra technique, [4], we deduced that the only nonholonomic

2-jet functors onMfm ×Mf are J2, J
2
and J̃2.

However, this model does not includes the composition of jets. That is why we

have recently introduced the general concept of nonholonomic r-jet category C, [6].

In Section 2 of the present paper, we describe C in terms of its skeleton. Then we

deduce some algebraic properties of the algebra D̃r
m and we characterize C in terms

of the induced sequence DC
m ⊂ D̃

r
m of Weil algebras. Our above mentioned result
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from [4] implies directly that the only nonholonomic 2-jet categories are J2, J
2
and

J̃2, see Example 2 below. However, there are so many nonholonomic 3-jet categories

that we do not find it reasonable to classify all of them without further reasons. So

we restrict ourselves to the semiholonomic 3-jet categories and we classify them in

Section 4.

2. Nonholonomic r-jet categories

We recall that X ∈ J̃r
x(M,N)y is said to be regular if there exists Z ∈ J̃r

y (N,M)x

such that Z ◦X = jr
x idM , [6].

In [6], we introduced a nonholonomic r-jet category C as a rule transforming every

pair (M,N) of manifolds into a fibered submanifold C(M,N) ⊂ J̃r(M,N) such that

(i) Jr(M,N) ⊂ C(M,N) is a fibered submanifold,

(ii) if X ∈ Cx(M,N)y and Z ∈ Cy(N,Q)z , then Z ◦X ∈ Cx(M,Q)z ,

(iii) if X ∈ Cx(M,N)y is regular in J̃r(M,N), then there exists Z ∈ Cy(N,M)x

such that Z ◦X = jr
x idM ,

(iv) C(M,N ×Q) = C(M,N) ×M C(M,Q).

Analogously to the case of Jr, [8], we define LC
m,n = C0(R

m,Rn)0 and

LC =
⋃

m,n∈N

LC
m,n

is called the skeleton of C. Clearly, we can reconstruct C from LC in the same way

as in the case of Jr, [8]. We have a left action of Gr
m ×Gr

n on L
C
m,n

(8) (g1, g2)(X) = g2 ◦X ◦ g−1
1 , g1 ∈ Gr

m, g2 ∈ Gr
n, X ∈ LC

m,n

and C(M,N) coincides with the associated bundle

(9) C(M,N) = (P rM × P rN)[LC
m,n].

We define TC
mN = C0(R

m, N). This gives rise to a product preserving bundle

functor on Mf , so a Weil functor TD
C

m , Dr
m ⊂ D

C
m. Clearly, each D

C
m is a G

r
m-

invariant Weil subalgebra of D̃r
m. We are going to clarify how C can be determined

by such a sequence.

168



3. Some algebraic properties of D̃
r
m

By the iteration theorem for Weil bundles, [5], we have

(10) D̃
r
m ≈ D

1
m ⊗ . . .⊗︸ ︷︷ ︸

r-times

D
1
m, D

1
m = R× R

m∗.

Write ei
s, i = 1, . . . ,m, s = 1, . . . , r for the canonical basis of Rm∗ and e0s = 1s for

the unit in the s-th component of (10). For a sequence k1, . . . , kr of 0, 1, . . . ,m, we

define

(11) ek1...kr = ek1

1 ⊗ . . .⊗ ekr

r .

This is a basis of the vector space D̃r
m, so that every X ∈ D̃

r
m is of the form X =

xk1...kr
ek1...kr . The multiplication in D̃

r
m is determined by

(12) ek1...krel1...lr = eh1...hr ,

where eh1...hr = 0 if ks 6= 0 6= ls for at least one s and hs = ks + ls otherwise.

Write 〈k1 . . . kr〉 = (i1 . . . is), s 6 r, for the subsequence of all nonzero indices and

|k1 . . . kr| for the set {i1, . . . , is}. The semiholonomic subalgebra D
r

m = J
r

0(R
m,R) is

characterized by

(13) xk1...kr
= xl1...lr whenever 〈k1 . . . kr〉 = 〈l1 . . . lr〉

and the holonomic subalgebra Dr
m satisfies

(14) xk1...kr
= xl1...lr whenever |k1 . . . kr| = |l1 . . . lr|.

In the holonomic case, a simple assertion is that the set of all Weil algebra ho-

momorphisms Hom(Dr
m,D

r
n) coincides with Lr

n,m, [5]. This identification is a special

case of the following construction.

Proposition 1. For every Z ∈ L̃r
n,m the rule

(15) Zh(X) = X ◦ Z, X ∈ D̃
r
m

defines a Weil algebra homomorphism Zh : D̃
r
m → D̃

r
n.

P r o o f. A quick proof is based on a general result concerning Weil bundles,

[5], [8]. Consider the bundle functors T̃ r
m and T̃

r
n on Mf . For f : Q → Q′ and

X ∈ (T̃ r
mQ)x, we have T̃ r

mf(X) = jr
xf ◦X . Since the composition of nonholonomic

jets in associative, we have (T̃ r
mf(X)) ◦ Z = (jr

xf) ◦ X ◦ Z = T̃ r
nf(X ◦ Z), so that

Z induces a natural transformation T̃ r
m → T̃ r

n . These are determined by the algebra

homomorphisms D̃r
m → D̃

r
n. �
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Write D̃r
m = R × Ñ r

m, so that Ñ
r
m = J̃r

0 (Rm,R)0. Since J̃r preserves products in

the second factor, we have L̃r
m,n = J̃r

0 (Rm,Rn)0 = (Ñ r
m)n. Analogously, L

r

m,n : =

J
r

0(R
m,R)0 = (N

r

m)n and Lr
m = Jr

0 (Rm,Rn)0 = (N r
m)n with D

r

m = R × N
r

m and

D
r
m = R×N r

m.

Proposition 2. We have Hom(D
r

m,D
r

n) = L
r

n,m.

P r o o f. Consider an algebra homomorphism ϕ : D
r

m → D
r

n. The algebraic

generators of N
r

m are e
i : = ei0...0 + . . . + e0...0i. Write ϕi = ϕ(ei) ∈ N

r

n, so that

Φ := (ϕ1, . . . ϕm) ∈ L
r

n,m. Then the algebra homomorphism Φh coincides with ϕ on

the algebraic generators, so that ϕ = Φh. �

Example 1. Direct evaluation in the case r = 2 shows that L̃2
m,n is a proper

subset of Hom(D̃2
n, D̃

2
m) only. Indeed, if we consider the standard coordinate ex-

pressions a = (ap
i0, a

p
0i, a

p
ij) ∈ L̃2

m,n and b = (bvp0, b
v
0p, b

v
pq) ∈ L̃2

n,p the composition

c = b ◦ a = (cvi0, c
v
0i, c

v
ij) ∈ L̃2

m,p, i, j = 1, . . . ,m, p, q = 1, . . . , n, v = 1, . . . , p, is of

the form

(16) cvi0 = bvp0a
p
i0, cv0i = bv0pa

p
0i,

cvij = bvpqa
p
i0a

q
0j + bvp0a

p
ij .

Thus, for x = (xi0, x0i, xij) ∈ Ñ2
m and a ∈ L̃2

n,m, we have

(17) ah(x) = x ◦ a = (xi0a
i
p0, x0ia

i
0p, xija

i
p0a

j
0q + xi0a

i
pq).

On the other hand, an algebra homomorphism f : D̃
2
m → D̃

2
n is determined by

(18) f(ei0) = di0
p0e

p0 + di0
0pe

0p + di0
pqe

pq,

f(e0i) = d0i
p0e

p0 + d0i
0pe

0p + d0i
pqe

pq.

Then

(19) f(eij) = f(ei0e0j) = (di0
p0d

0j
0q + di0

0qd
0j
p0)e

pq.

By direct evaluation, we find f(x) in the form

(20) (xi0d
i0
p0 + x0id

0i
p0)e

p0 + (xi0d
i0
0p + x0id

0i
0p)e

0p

+ [xi0d
i0
pq + x0id

0i
pq + xij(d

i0
p0d

0j
0q + di0

0qd
0j
p0)]e

pq.

Clearly, (20) reduces to (17) iff d0i
p0 = 0, di0

0p = 0, d0i
pq = 0.
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Consider the immersion im,n : R
m → R

m+n, x 7→ (x, 0), and the submersion

sm,n : R
m,n → R

m, (x1, x2) 7→ x1, and write Ir
m,n = jr

0 im,n. Since sm,n◦im,n = idRm ,

the induced algebra homomorphism (Ir
m,n)h : D̃

r
m+n → D̃

r
m is surjective. One verifies

directly that its coordinate expression is

(21) x̄k1...kr
= xk1...kr

with no appearance of xq1...qr
with at least one qs greater thanm, qs = 0, 1, . . . ,m+n,

on the right hand side.

Let DC
m be the sequence of Weil algebras determined by a nonholonomic r-jet

category C. Then Ir
m,n induces a restricted and corestricted algebra homomorphism

(22) IC
m,n : D

C
m+n → D

C
m, IC

m,n(DC
m+n) = D

C
m,

whose coordinate expression is of the form (21).

Consider now an arbitrary sequence DS
m of Weil algebras, D

r
m ⊂ D

S
m ⊂ D̃

r
m, D

S
m =

R×NS
m, and write

(23) LS
m,n = (NS

m)n, LS =
⋃

m,n

LS
m,n.

Hence LS
m,n ⊂ L̃r

m,n.

Definition 1. The sequence DS
m is called admissible, if L

S is a subcategory of L̃r.

Proposition 3. A sequence DS
m is determined by a nonholonomic r-jet category

C, if and only if it is admissible.

P r o o f. For an admissible sequence DS
m, we define

C(M,N) = (P rM × P rN)[LS
m,n].

For X1 ∈ Cx(M,N)y and X2 ∈ Cy(N,Q)z, X1 = {u, v, ξ1}, X2 = {v, w, ξ2}, u ∈

P r
xM , v ∈ P r

yN , w ∈ P r
zQ, ξ1 ∈ LS

m,n, ξ2 ∈ LS
n,p, we set

X2 ◦X1 = {u,w, ξ2 ◦ ξ1}

with composition in LS on the right hand side. One verifies directly that C has all

required properties. �
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In particular, if DS
m is an admissible sequence, then I

r
m,n maps D

S
m+n onto D

S
m.

Further, since Gr
m acts on (NS

m)n fiberwise, every algebra DS
m is G

r
m-invariant.

Thus, in order to find all nonholonomic r-jet categories, we can proceed in the

following way.

(i) We determine all Gr
m-invariant Weil algebras D

r
m ⊂ D

S
m ⊂ D̃

r
m for every m.

(ii) We restrict ourselves to the sequences satisfying (22).

(iii) We analyze under what conditions (23) is a subcategory of L̃r.

Example 2. In [4], we deduced that all G2
m-invariant subalgebras of D̃

2
m are

D
2
m, D

2

m, and D̃
2
m. The sequences satisfying (22) are D

2
m, D

2

m and D̃
2
m, m ∈ N. They

determine the categories J2, J
2
and J̃2.

4. Semiholonomic 3-jet categories

A nonholonomic r-jet category C is called semiholonomic, if C(M,N) ⊂ J
r
(M,N)

for all M and N . We are going to describe the semiholonomic 3-jet categories. In

the course of direct evaluations, we use the coordinate formula for the composition

of semiholonomic 3-jets. In the coordinates determined by (5), if a = (ap
i , a

p
ij , a

p
ijk) ∈

L
3

m,n and b = (bvp, b
v
pq, b

v
pqr) ∈ L

3

n,p, then c = b ◦ a = (cvi , c
v
ij , c

v
ijk) ∈ L

3

m,p is of the

form

(24) cvi = bvpa
p
i , cvij = bvpqa

p
i a

q
j + bvpa

p
ij ,

cvijk = bvpqra
p
i a

q
ja

r
k + bvpqa

p
ika

q
j + bvpqa

p
i a

q
jk + bvpqa

p
ija

q
k + bvpa

p
ijk.

Lemma 1. The only subalgebra A ⊂ D
3

m satisfying π
3
2(A) = D

2

m is D
3

m.

P r o o f. We prove that the kernel of the induced map N
3

m → N
2

m is
3

⊗R
m∗.

Indeed, we deduce directly by (24) that the coordinate expression of the product in

D
3

m of x, y ∈ N
3

m, z = xy, is

(25) zi = 0, zij = xiyj + xjyi,

zijk = xijyk + xikyj + xiyjk + xjkyi + xjyik + xkyij .

Hence the tensor Zijk with zijk = 1 and all other coordinates equal to zero is obtained

by multiplyingXij ∈ N
3

m and Yk ∈ N
3

m, where the first and second order components

of Xij are xij = 1 and zero otherwise and the first and second order components of

Yk are yk = 1 and zero otherwise. �

172



In [4] we studied the bundles

J
r,r−1

(M,N) = {X ∈ J
r
(M,N), πr

r−1(X) ∈ Jr−1(M,N)}

of semiholonomic r-jets that are holonomic up to the order r − 1. Already in [2] we

deduced that for every X ∈ J
r,r−1

x (M,N)y there exists a unique σ(X) ∈ Jr
x(M,N)y

satisfying

σ(X) ◦ U = X ◦ U ∈ (T r
1N)y for all U ∈ (T r

1M)x.

The difference X − σ(X) is a well defined element of TyN ⊗
r
⊗T ∗

xM . This identifies

J
r,r−1

(M,N) with the fiber product over M ×N

Jr(M,N) ×M×N TN ⊗ (
r
⊗T ∗M/SrT ∗M).

In the case D
r,r−1

m = J
r,r−1

0 (Rm,R), we obtain

(26) D
r,r−1

m = D
r
m × V, V :=

r
⊗R

m∗/Sr
R

m∗.

The action of Gr
m on D

r,r−1

m is

(27) X ◦ g = (σ(X) ◦ g, l(g1)(X − σ(X))),

where l(g1) denotes the standard action of g1 = πr
1(g) ∈ GL(m,R) on V . This

implies easily the following assertion from [4].

Lemma 2. The Gr
m-invariant Weil algebras D

r
m ⊂ A ⊂ D

r,r−1

m are of the form

A = D
r
m × L, where L is a GL(m,R)-invariant linear subspace of

r
⊗R

m∗ containing

Sr
R

m∗.

Further, using the formulae from [4], one deduces directly the following assertion.

Lemma 3. Let A′ = D
r
m × L′ be another such algebra. Then the Gr

m-invariant

algebra homomorphisms A→ A′ are in bijection with the GL(m,R)-invariant linear

maps L→ L′.

Going back to the case r = 3, Lemma 1 implies that we can restrict ourselves to the

bundles J
3,2

(M,N). In [10], G.Vosmanská deduced that all natural transformations

J
3,2

→ J
3,2
over the identity of J2 form a 5-parameter family Ψ. Its coordinate

expression is

(28) āp
i = ap

i , āp
ij = ap

ij with ap
ij = ap

ji,

āp
ijk = ap

ijk + c1(a
p
ikj − ap

ijk) + c2(a
p
jik − ap

ijk)

+ c3(a
p
jki − ap

ijk) + c4(a
p
kij − ap

ijk) + c5(a
p
kji − ap

ijk).
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We introduce J
2,3

h Y = J1
h(J2

hY ) ∩ J
3

hY and J
2,3

(M,N) = J
2,3

h (M × N → M). In

coordinates, J
2,3

(M,N) is characterized by

(29) ap
ij = ap

ji, ap
ijk = ap

jik,

so that J
2,3

(M,N) ⊂ J
3,2

(M,N). By (24), J
2,3
is a semiholonomic 3-jet category.

Further, for every ψ ∈ Ψ, (ψ ◦ J
2,3

)(M,N) ⊂ J
3,2

(M,N) is a fibered submanifold

and (24) implies that every ψ ◦ J
2,3
is a semiholonomic 3-jet category.

If we consider an invariant tensor of degree 3 interpreted as a linear map

ι :
3

⊗R
m∗ →

3

⊗R
m∗ and assume it vanishes on S3

R
m∗, then the kernel of ι deter-

mines an invariant subspace of V =
3

⊗R
m∗/S3

R
m∗. By the Invariant tensor theorem,

[8], all invariant tensors of degree 3 form a 6-parameter family

(30) d1xijk + d2xikj + d3xjik + d4xjki + d5xkij + d6xkji

and vanishing on S3
R

m∗ means

d1 + d2 + d3 + d4 + d5 + d6 = 0.

Hence (30) and (31) determine a 5-parameter family of invariant subspaces of V .

According to the representation theory, every invariant subspace L satisfying S3
R

∗ ⊂

L ⊂
3

⊗R
m∗ is one of this family.

Hence we can formulate our classification result as follows.

Proposition 4. All semiholonomic 3-jet categories are J
3
, J

3,2
, J3 and ψ ◦ J

2,3

for all ψ ∈ Ψ.

Example 3. There is an interesting problem to geometrize the semiholonomic

3-jet categories of the form ψ ◦ J
2,3
, ψ ∈ Ψ. The simpliest case is xijk = xikj . This

corresponds to the functor J2
h(J1

hY )∩J
3

hY restricted to the product fibered manifolds

M ×N →M .
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