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Abstract. The a priori boundedness principle is proved for the Dirichlet boundary value
problems for strongly singular higher-order nonlinear functional-differential equations. Sev-
eral sufficient conditions of solvability of the Dirichlet problem under consideration are
derived from the a priori boundedness principle. The proof of the a priori boundedness
principle is based on the Agarwal-Kiguradze type theorems, which guarantee the existence
of the Fredholm property for strongly singular higher-order linear differential equations with
argument deviations under the two-point conjugate and right-focal boundary conditions.
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1. Statement of the main results

1.1. Statement of the problem and a survey of the literature. Consider

the functional differential equation

(1.1) u(n)(t) = F (u)(t)

with the two-point boundary conditions

(1.2) u(i−1)(a) = 0 (i = 1, . . . ,m), u(i−1)(b) = 0 (i = 1, . . . , n−m).

This work is supported by the Academy of Sciences of the Czech Republic (Institutional
Research Plan # AV0Z10190503) and by the Shota Rustaveli National Science Founda-
tion (Project # GNSF/ST09 175 3-101).
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Here n > 2, m is the integer part of n/2, −∞ < a < b < +∞, and the operator F is
acting from the set of (m− 1)-th time continuously differentiable on ]a, b[ functions

to the set Lloc(]a, b[). By u
(j−1)(a) (u(j−1)(b)) we denote the right (the left) limit of

the function u(j−1) at the point a(b).

The problem is singular in the sense that for an arbitrary x the right-hand side of

equation (1.41) may have nonintegrable singularities at the points a and b.

Throughout the paper we use the following notation:

⊲ R
+ = [0,+∞[;

⊲ [x]+ the positive part of a number x, that is [x]+ = 1
2 (x + |x|);

⊲ Lloc(]a, b[)(Lloc(]a, b])) is the space of functions y : ]a, b[ → R, which are inte-

grable on [a+ ε, b− ε] for arbitrarily small ε > 0;

⊲ Lα,β(]a, b[)(L2
α,β(]a, b[)) is the space of integrable (square integrable) with the

weight (t− a)α(b− t)β functions y : ]a, b[ → R, with the norm

‖y‖Lα,β
=

∫ b

a

(s− a)α(b − s)β |y(s)| ds
(
‖y‖L2

α,β
=

( ∫ b

a

(s− a)α(b − s)βy2(s) ds

)1/2)
;

⊲ L([a, b]) = L0,0(]a, b[), L
2([a, b]) = L2

0,0(]a, b[);

⊲ M(]a, b[) is the set of measurable functions τ : ]a, b[ → ]a, b[;

⊲ L̃2
α,β(]a, b[)(L̃2

α(]a, b]) is the Banach space of y ∈ Lloc(]a, b[)(Lloc(]a, b])) func-

tions, with the norm

‖y‖L̃2

α,β

≡ max

{[ ∫ t

a

(s− a)α

( ∫ t

s

y(ξ) dξ

)2

ds

]1/2

: a 6 t 6
a+ b

2

}

+ max

{[∫ b

t

(b− s)β

( ∫ s

t

y(ξ) dξ

)2

ds

]1/2

:
a+ b

2
6 t 6 b

}
< +∞.

⊲ Ln(]a, b[) is the Banach space of y ∈ Lloc(]a, b[) functions, with the norm

‖y‖L̃2

α,β

= sup

{
[(s−a)(b− t)]m−1/2

∫ t

s

(ξ−a)n−2m|y(ξ)| dξ : a < s 6 t < b

}
< +∞.

⊲ Cn−1
loc (]a, b[), (C̃n−1

loc (]a, b[)) is the space of functions y : ]a, b[ → R which are

continuous (absolutely continuous) together with y′, y′′, . . . , y(n−1) on [a+ε, b−ε]
for arbitrarily small ε > 0.

⊲ C̃n−1,m(]a, b[) is the space of functions y ∈ C̃n−1
loc (]a, b[), such that

(1.3)

∫ b

a

|x(m)(s)|2 ds < +∞.
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⊲ Cm−1
1 (]a, b[) is the Banach space of functions y ∈ Cm−1

loc (]a, b[), such that

(1.4) lim sup
t→a

|x(i−1)(t)|
(t− a)m−i+1/2

< +∞ (i = 1, . . . ,m),

lim sup
t→b

|x(i−1)(t)|
(b − t)m−i+1/2

< +∞ (i = 1, . . . , n−m),

with the norm:

‖x‖Cm−1

1

=

m∑

i=1

sup
{ |x(i−1)(t)|

αi(t)
: a < t < b

}
,

where αi(t) = (t− a)m−i+1/2(b − t)m−i+1/2.

⊲ C̃m−1
1 (]a, b[) is the Banach space of functions y ∈ C̃m−1

loc (]a, b[), such that con-

ditions (1.3) and (1.4) hold, with the norm:

‖x‖C̃m−1

1

=

m∑

i=1

sup
{ |x(i−1)(t)|

αi(t)
: a < t < b

}
+

( ∫ b

a

|x(m)(s)|2 ds

)1/2

.

⊲ Dn(]a, b[ × R
+) is the set of such functions δ : ]a, b[ × R

+ → Ln(]a, b[) that

δ(t, ·) : R
+ → R

+ is nondecreasing for every t ∈ ]a, b[, and δ(·, ̺) ∈ Ln(]a, b[)

for any ̺ ∈ R
+.

⊲ D2n−2m−2,2m−2(]a, b[ × R
+) is the set of such functions δ : ]a, b[ × R

+ →
L̃2

2n−2m−2,2m−2(]a, b[) that δ(t, ·) : R
+ → R

+ is nondecreasing for every t ∈
]a, b[, and δ(·, ̺) ∈ L̃2

2n−2m−2,2m−2(]a, b[) for any ̺ ∈ R
+.

⊲ A solution of problem (1.1), (1.2) is sought in the space C̃n−1,m(]a, b[).

The singular ordinary differential and functional-differential equations have been

studied with sufficient completeness under different boundary conditions, see for

example [1], [3], [4], [5], [6], [7], [8], [9], [11], [12], [13], [14], [16], [21], [22], [23],

[24], [25] and the references cited therein. But the equation (1.1), even under the

boundary condition (1.2), have not been studied in the case when the operator F

has the form

(1.5) F (x)(t) =

m∑

j=1

pj(t)x
(j−1)(τj(t)) + f(x)(t),

where the singularity of the functions pj : Lloc([a, b]) is such that the inequalities

(1.6)

∫ b

a

(s− a)n−1(b− s)2m−1[(−1)n−mp1(s)]+ ds < +∞,

∫ b

a

(s− a)n−j(b − s)2m−j |pj(s)| ds < +∞ (j = 2, . . . ,m),
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are not fulfilled (in this case we say that the linear part of the operator F is

strongly singular), the operator f is continuously acting from Cm−1
1 (]a, b[) to

LL̃2

2n−2m−2,2m−2

(]a, b[), and the inclusion

(1.7) sup{f(x)(t) : ‖x‖Cm−1

1

6 ̺} ∈ L̃2
2n−2m−2,2m−2(]a, b[)

holds. The first step in studying the differential equations with strong singularities

was made by R.P.Agarwal and I.Kiguradze in the article [2], where the linear ordi-

nary differential equations under conditions (1.2), in the case when the functions pj

have strong singularities at the points a and b, are studied. Also the ordinary differ-

ential equations with strong singularities under two-point boundary conditions are

studied in the articles of I. Kiguradze [10], [19], and N.Partsvania [20]. In the papers

[18], [15] these results are generalized to linear differential equations with deviating

arguments, i.e., the Agarwal-Kiguradze type theorems, which guarantee Fredholm’s

property for linear differential equations with deviating arguments are proved.

In this paper, on the bases of articles [2] and [17] we prove the a priori boundedness

principle for the problem (1.1), (1.2) in the case when the operator has the form (1.5).

Now we introduce some results from the articles [18], [15], which we need for this

work. Consider the equation

(1.8) u(n)(t) =

m∑

j=1

pj(t)u
(j−1)(τj(t)) + q(t) for a < t < b.

For problem (1.8), (1.2) we assume, that when n = 2m, then the conditions

(1.9) pj ∈ Lloc(]a, b[) (j = 1, . . . ,m)

are fulfilled and when n = 2m+ 1, along with (1.9), the condition

(1.10) lim sup
t→b

∣∣∣∣(b − t)2m−1

∫ t

t1

p1(s) ds

∣∣∣∣ < +∞
(
t1 =

a+ b

2

)

holds.

By hj : ]a, b[ × ]a, b[ → R+ and fj : [a, b] ×M(]a, b[) → Cloc(]a, b[ × ]a, b[) (j =

1, . . . ,m) we denote the functions and operators, respectively, defined by the equal-

ities

(1.11) h1(t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2m[(−1)n−mp1(ξ)]+ dξ

∣∣∣∣,

hj(t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2mpj(ξ) dξ

∣∣∣∣ (j = 2, . . . ,m),
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and

(1.12) fj(c, τj)(t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2m|pj(ξ)|
∣∣∣∣
∫ τj(ξ)

ξ

(ξ1 − c)2(m−j) dξ1

∣∣∣∣
1/2

dξ

∣∣∣∣.

Let k = 2k1 + 1 (k1 ∈ N), then we denote

k!! =

{
1 for k 6 0,

1 · 3 · 5 · . . . · k for k > 1.

Now we can introduce the main theorem of the paper [18].

Theorem 1.1. Let there exist numbers t∗ ∈ ]a, b[, lkj > 0, l̄kj > 0, and γkj > 0

(k = 0, 1; j = 1, . . . ,m) such that along with

B0 ≡
m∑

j=1

( (2m− j)22m−j+1l0j

(2m− 1)!!(2m− 2j + 1)!!
+

22m−j−1(t∗ − a)γ0j l̄0j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ0j

)
(1.13)

<
1

2
,

B1 ≡
m∑

j=1

( (2m− j)22m−j+1l1j

(2m− 1)!!(2m− 2j + 1)!!
+

22m−j−1(b − t∗)γ0j l̄1j

(2m− 2j − 1)!!(2m− 3)!!
√

2γ1j

)
(1.14)

<
1

2
,

the conditions

(1.15) (t− a)2m−jhj(t, s) 6 l0j , (t− a)m−γ0j−1/2fj(a, τj)(t, s) 6 l̄0j

for a < t 6 s 6 t∗, and

(1.16) (b − t)2m−jhj(t, s) 6 l1j, (b − t)m−γ1j−1/2fj(b, τj)(t, s) 6 l̄1j

for t∗ 6 s 6 t < b hold. Then problem (1.8), (1.2) is uniquely solvable in the space

C̃n−1,m(]a, b[).

Also, in [15] the following theorem is proved:
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Theorem 1.2. Let all the conditions of Theorem 1.1 be satisfied. Then the

unique solution u of problem (1.8), (1.2) for every q ∈ L̃2
2n−2m−2,2m−2(]a, b[) admits

the estimate

(1.17) ‖u(m)‖L2 6 r‖q‖L̃2

2n−2m−2,2m−2

,

with

r =
2m(1 + b− a)(2n− 2m− 1)

(νn − 2 max{B0, B1})(2m− 1)!!
, ν2m = 1, ν2m+1 =

2m+ 1

2
,

and thus the constant r > 0 depends only on the numbers lkj , l̄kj , γkj (k = 1, 2;

j = 1, . . . ,m), and a, b, t∗, n.

Remark 1.1. Under the conditions of Theorem 1.2, for every

q ∈ L̃2
2n−2m−2,2m−2(]a, b[)

the unique solution u of problem (1.8), (1.2) admits the estimate

(1.18) ‖u(m)‖C̃m−1

1

6 rn‖q‖L̃2

2n−2m−2,2m−2

,

with

rn =

(
1 +

m∑

j=1

2m−j+1/2

(m− j)!(2m− 2j + 1)1/2(b − a)m−j+1/2

)

× 2m(1 + b− a)(2n− 2m− 1)

(νn − 2 max{B0, B1})(2m− 1)!!
.

1.2. Theorems on solvability of problem (1.1), (1.2).

Define an operator P : Cm−1
1 (]a, b[) × Cm−1

1 (]a, b[) → Lloc(]a, b[) by the equality

(1.19) P (x, y)(t) =

m∑

j=1

pj(x)(t)y
(j−1)(τj(t)) for a < t < b

where pj : Cm−1
1 (]a, b[) → Lloc(]a, b[), and τj ∈ M(]a, b[). Also, for any γ > 0 define

a set Aγ by the relation

(1.20) Aγ = {x ∈ C̃m−1
1 (]a, b[) : ‖x‖C̃m−1

1

6 γ}.

For formulating the a priori boundedness principle we have to introduce
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Definition 1.1. Let γ0 and γ be positive numbers. We say that the contin-

uous operator P : Cm−1
1 (]a, b[) × Cm−1

1 (]a, b[) → Ln(]a, b[) is γ0, γ consistent with

boundary condition (1.2) if:

(i) For any x ∈ Aγ0
and almost all t ∈ ]a, b[ the inequality

(1.21)
m∑

j=1

|pj(x)(t)x
(j−1)(τj(t))| 6 δ(t, ‖x‖C̃m−1

1

)‖x‖C̃m−1

1

holds, where δ ∈ Dn(]a, b[ × R
+).

(ii) For any x ∈ Aγ0
and q ∈ L̃2

2n−2m−2,2m−2(]a, b[) the equation

(1.22) y(n)(t) =
m∑

j=1

pj(x)(t)y
(j−1)(τj(t)) + q(t)

under boundary conditions (1.2) has a unique solution y in the space

C̃n−1,m(]a, b[) and

(1.23) ‖y‖C̃m−1

1

6 γ‖q‖L̃2

2n−2m−2,2m−2

.

Definition 1.2. We say that the operator P is γ consistent with boundary con-

dition (1.2), if the operator P is γ0, γ consistent with boundary condition (1.2) for

any γ0 > 0.

In the sequel it will always be assumed that the operator Fp defined by equality

Fp(x)(t) =

∣∣∣∣F (x)(t) −
m∑

j=1

pj(x)(t)x
(j−1)(τj(t))(t)

∣∣∣∣

is continuously acting from Cm−1
1 (]a, b[) to LL̃2

2n−2m−2,2m−2

(]a, b[), and

(1.24) F̃p(t, ̺) ≡ sup{Fp(x)(t) : ‖x‖Cm−1

1

6 ̺} ∈ L̃2
2n−2m−2,2m−2(]a, b[)

for each ̺ ∈ [0,+∞[.

Then the following theorem is valid

241



Theorem 1.3. Let the operator P be γ0, γ consistent with boundary condition

(1.2), and let there exist a positive number ̺0 6 γ0, such that

(1.25) ‖F̃p(·,min{2̺0, γ0})‖L̃2

2n−2m−2,2m−2

6
γ0

γ
.

Let, moreover, for any λ ∈]0, 1[ an arbitrary solution x ∈ Aγ0
of the equation

(1.26) x(n)(t) = (1 − λ)P (x, x)(t) + λF (x)(t)

under the conditions (1.2) admit the estimate

(1.27) ‖x‖C̃m−1

1

6 ̺0.

Then problem (1.1), (1.2) is solvable in the space C̃n−1,m(]a, b[).

Theorem 1.3 with ̺0 = γ0 immediately yields

Corollary 1.1. Let the operator P be γ0, γ consistent with boundary condition

(1.2), and

(1.28) |F (x)(t) −
m∑

j=1

pj(x)(t)x
(j−1)(τj(t))(t)| 6 η(t, ‖x‖C̃m−1

1

)

for x ∈ Aγ0
and almost all t ∈ ]a, b[, and

(1.29) ‖η(·, γ0)‖L̃2

2n−2m−2,2m−2

6
γ0

γ
,

where η ∈ D2n−2m−2,2m−2(]a, b[ × R
+). Then problem (1.1), (1.2) is solvable in the

space C̃n−1,m(]a, b[).

Corollary 1.2. Let the operator P be γ consistent with boundary condition (1.2),

let inequality (1.28) hold for x ∈ C̃m−1
1 (]a, b[) and almost all t ∈ ]a, b[, where η(·, ̺) ∈

L̃2
2n−2m−2,2m−2(]a, b[) for any ̺ ∈ R

+, and

(1.30) lim sup
̺→+∞

1

̺
‖η(·, ̺)‖L̃2

2n−2m−2,2m−2

<
1

γ
.

Then problem (1.1), (1.2) is solvable in the space C̃n−1,m(]a, b[).
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When we discuss problem (1.41), (1.2), and n = 2m + 1, we assume that the

continuous operator p1 : C̃m−1
1 (]a, b[) → Lloc(]a, b[) is such that

(1.31) lim sup
t→b

∣∣∣∣(b − t)2m−1

∫ t

t1

p1(x)(s) ds

∣∣∣∣ < +∞
(
t1 =

a+ b

2

)

for any x ∈ C̃m−1
1 (]a, b[).

Now define operators hj : Cm−1
1 (]a, b[) × ]a, b[ × ]a, b[ → R+, fj : Cm−1

1 (]a, b[) ×
[a, b] ×M(]a, b[) → Lloc(]a, b[ × ]a, b[) (j = 1, . . . ,m) by the equalities

(1.32) h1(x, t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2m[(−1)n−mp1(x)(ξ)]+ dξ

∣∣∣∣,

hj(x, t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2mpj(x)(ξ) dξ

∣∣∣∣ (j = 2, . . . ,m),

and

(1.33)

fj(x, c, τj)(t, s) =

∣∣∣∣
∫ t

s

(ξ − a)n−2m|pj(x)(ξ)|
∣∣∣∣
∫ τj(ξ)

ξ

(ξ1 − c)2(m−j) dξ1

∣∣∣∣
1/2

dξ

∣∣∣∣.

Theorem 1.4. Let the continuous operator P : Cm−1
1 (]a, b[) × Cm−1

1 (]a, b[) →
Ln(]a, b[) fulfil the condition (1.21) where δ ∈ Dn(]a, b[×R

+), τj ∈M(]a, b[) and the

numbers γ0, t
∗ ∈ ]a, b[, lkj > 0, l̄kj > 0, γkj > 0 (k = 0, 1; j = 1, . . . ,m), are such

that the inequalities

(1.34) (t− a)2m−jhj(x, t, s) 6 l0j , lim sup
t→a

(t− a)m−
1

2
−γ0jfj(x, a, τj)(t, s) 6 l̄0j

for a < t 6 s 6 t∗, ‖x‖C̃m−1

1

6 γ0,

(1.35) (b− t)2m−jhj(x, t, s) 6 l1j, lim sup
t→b

(b − t)m−
1

2
−γ1jfj(x, b, τj)(t, s) 6 l̄1j

for t∗ 6 s 6 t < b, ‖x‖C̃m−1

1

6 γ0, and conditions (1.13), (1.14) hold. Let moreover

the operator F and a function η ∈ D2n−2m−2,2m−2(]a, b[×R
+) be such that condition

(1.28) and inequality

(1.36) ‖η(·, γ0)‖L̃2

2n−2m−2,2m−2

<
γ0

rn
,

are fulfilled, where

rn =

(
1 +

m∑

j=1

2m−j+1/2

(m− j)!(2m− 2j + 1)1/2(b − a)m−j+1/2

)

× 2m(1 + b− a)(2n− 2m− 1)

(νn − 2 max{B0, B1})(2m− 1)!!
.

Then problem (1.1), (1.2) is solvable in the space C̃n−1,m(]a, b[).
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Theorem 1.5. Let the operator F and the function η be such that conditions

(1.28), (1.30) hold and the continuous operator P : Cm−1
1 (]a, b[) × Cm−1

1 (]a, b[) →
Ln(]a, b[) fulfils condition (1.21) where δ ∈ Dn(]a, b[×R

+). Let moreover measurable

functions τj ∈ M(]a, b[) and numbers t∗ ∈ ]a, b[, lkj > 0, l̄kj > 0, γkj > 0 (k =

0, 1; j = 1, . . . ,m) be such that the inequalities

(1.37) (t− a)2m−jhj(x, t, s) 6 l0j , lim sup
t→a

(t− a)m−
1

2
−γ0jfj(x, a, τj)(t, s) 6 l̄0j

for a < t 6 s 6 t∗, x ∈ C̃m−1
1 (]a, b[),

(1.38) (b− t)2m−jhj(x, t, s) 6 l1j, lim sup
t→b

(b − t)m−
1

2
−γ1jfj(x, b, τj)(t, s) 6 l̄1j

for t∗ 6 s 6 t < b, x ∈ C̃m−1
1 (]a, b[), and conditions (1.13), (1.14) hold. Then

problem (1.1), (1.2) is solvable in the space C̃n−1,m(]a, b[).

Remark 1.2. Let γ0 > 0, let the operators αj(t)pj(x)(t) (j = 1, . . . ,m) be

continuously acting from the space Cm−1
1 (]a, b[) to the space Ln(]a, b[), let there

exist functions δj ∈ Dn(]a, b[) such that for any x ∈ Aγ0

(1.39) |pj(x)(t)|αj(t) 6 δj(t, ‖x‖C̃m−1

1

) for a < t < b,

and constants κ > 0, ε > 0 such that

(1.40) |τj(t) − t| 6 κ(t− a) (j = 1, . . . ,m) for a < t < a+ ε,

|τj(t) − t| 6 κ(b− t) (j = 1, . . . ,m) for b− ε < t < b.

Then the operator P defined by equality (1.19), continuously acting from Aγ0
to

the space Ln(]a, b[), and there exists a function δ ∈ Dn(]a, b[) such that item (ii) of

Definition 1.1 holds.

Now consider the equation with deviating arguments

(1.41) u(n)(t) = f(t, u(τ1(t)), u
′(τ2(t)), . . . , u

(m−1)(τm(t))) for a < t < b,

where −∞ < a < b < +∞, f : ]a, b[ × R
m → R is a function satisfying the lo-

cal Caratheodory conditions and τj ∈ M(]a, b[) (j = 0, . . . , n − 1) are measurable

functions.
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Corollary 1.3. Let the functions τj ∈ M(]a, b[) and the numbers t∗ ∈ ]a, b[,

κ > 0, ε > 0, lkj > 0, lkj > 0, γkj > 0 (k = 1, 2; j = 1, . . . ,m) be such that

conditions (1.13), (1.14), (1.15), (1.16), (1.40) and the inclusions

(1.42) αjpj ∈ Ln(]a, b[) (j = 1, . . . ,m)

are fulfilled. Let moreover

∣∣∣∣f(t, x(τ1(t)), x
′(τ2(t)), . . . , x

(m−1)(τm(t))) −
m∑

j=1

pj(t)x
(j−1)(τj(t))(t)

∣∣∣∣(1.43)

6 η(t, ‖x‖C̃m−1

1

)

for x ∈ C̃m−1
1 (]a, b[) and almost all t ∈ ]a, b[, where η(·, ̺) ∈ L̃2

2n−2m−2,2m−2(]a, b[)

for any ̺ ∈ R
+, and let condition (1.30) hold. Then problem (1.41), (1.2) is solvable

in the space C̃n−1,m(]a, b[).

Remark 1.3. Conditions (1.42) do not imply conditions (1.6).

Now for illustration of our results consider on ]a, b[ the second order functional-

differential equations

u′′(t) = − λ|u(t)|k
[(t− a)(b − t)]2+k/2

u(τ(t)) + q(x)(t),(1.44)

u′′(t) = − λ|sinuk(t)|
[(t− a)(b − t)]2

u(τ(t)) + q(x)(t),(1.45)

where λ, k ∈ R
+, the function τ ∈ M(]a, b[), the operator q : Cm−1

1 (]a, b[) →
L̃2

0,0(]a, b[) is continuous and

η(t, ̺) ≡ sup{|q(x)(t)| : ‖x‖C̃m−1

1

6 ̺} ∈ L̃2
0,0(]a, b[).

Than Theorems 1.4 and 1.5 yield

Corollary 1.4. Let a continuous operator q : Cm−1
1 (]a, b[) → L̃2

0,0(]a, b[), a func-

tion τ ∈M(]a, b[), and numbers γ0 > 0, λ > 0, k > 0, be such that

|τ(t) − t| 6

{
(t− a)3/2 for a < t 6 (a+ b)/2,

(b − t)3/2 for (a+ b)/2 6 t < b,
(1.46)

‖η(t, γ0)‖L̃2

0,0
6

(
1 +

√
2

b− a

)
−1

(b − a)2 − 16λγk
0 (1 + [2(b− a)]1/4)

2(1 + b− a)(b − a)2
,(1.47)
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and

(1.48) λ <
(b− a)2

32γk
0 (1 + [2(b− a)]1/4)

.

Then problem (1.44), (1.2) is solvable.

Corollary 1.5. Let a continuous operator q : Cm−1
1 (]a, b[) → L̃2

0,0(]a, b[), a func-

tion τ ∈ M(]a, b[), and a number λ > 0 be such that inequalities (1.30) with n = 2,

(1.46) and

(1.49) λ <
(b− a)2

32(1 + [2(b− a)]1/4)
,

hold. Then problem (1.45), (1.2) is solvable.

2. Auxiliary propositions

2.1. Lemmas on some properties of the equation x(n)(t) = λ(t).

First, we introduce two lemmas without proofs. The first lemma is proved in [2].

Lemma 2.1. Let i ∈ 1, 2, x ∈ C̃m−1
loc (]t0, t1[) and

(2.1) x(j−1)(ti) = 0 (j = 1, . . . ,m),

∫ t1

t0

|x(m)(s)|2 ds < +∞.

Then

(2.2)

∣∣∣∣
∫ t

ti

(x(j−1)(s))2

(s− ti)2m−2j+2
ds

∣∣∣∣
1/2

6
2m−j+1

(2m− 2j + 1)!!

∣∣∣∣
∫ t

ti

|x(m)(s)|2 ds

∣∣∣∣
1/2

for t0 6 t 6 t1.

This second lemma is a particular case of Lemma 4.1 in [11].
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Lemma 2.2. If x ∈ Cn−1
loc (]a, a1]), then for any s, t ∈ ]a, a1] the equality

(−1)n−m

∫ t

s

(ξ − a)n−2mx(n)(ξ)x(ξ) dξ = wn(x)(t) − wn(x)(s) + νn

∫ t

s

|x(m)(ξ)|2 dξ

is valid, where ν2m = 1, ν2m+1 = 1
2 (2m+ 1),

w2m(x)(t) =

m∑

j=1

(−1)m+j−1x(2m−j)(t)x(t),

w2m+1(x)(t) =

m∑

j=1

(−1)m+j[(t− a)x(2m+1−j)(t) − jx(2m−j)(t)]x(j−1)(t)

− t− a

2
|x(m)(t)|2.

Lemma 2.3. Let numbers a1 ∈ ]a, b[, t0k ∈ ]a, a1[, and εik, εi, βk, β ∈ R
+, k ∈ N,

i = 1, . . . , n−m be such that

(2.3) lim
k→+∞

t0k = a, lim
k→+∞

βk = β, lim
k→+∞

εi,k = εi.

Let, moreover,

(2.4) λ ∈ L̃2
2n−2m−2,0(]a, a1])

be a nonnegative function, xk ∈ C̃n−1,m(]a, b[) a solution of the problem

x(n)(t) = βkλ(t),(2.5)

x(i−1)(t0k) = 0 (i = 1, . . . ,m), x(i−1)(a1) = εi,k (i = 1, . . . , n−m),(2.6)

and x ∈ C̃n−1,m(]a, b[) a solution of the problem

x(n)(t) = βλ(t),(2.7)

x(i−1)(a) = 0 (i = 1, . . . ,m), x(i−1)(a1) = εi (i = 1, . . . , n−m).(2.8)

Then

(2.9) lim
k→+∞

x
(j−1)
k (t) = x(j−1)(t) (j = 1, . . . , n) uniformly in ]a, a1].

P r o o f. First, let us prove our lemma under the assumption that there exists

a number r1 > 0 such that the estimates

(2.10)

∫ a1

t0k

|x(m)
k (s)|2 ds 6 r1, k ∈ N
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hold. Now, suppose that t1, . . . , tn are such numbers that t0k < t1 < . . . < tn <

a1 (k ∈ N), and gi(t) are polynomials of (n− 1)-th degree, satisfying the conditions

gj(tj) = 1, gj(ti) = 0 (i 6= j; i, j = 1, . . . , n). Then if xk is a solution of problem (2.5),

(2.6), and x is a solution of problem (2.7), (2.8). For the solution x − xk of the

equation dn(x(t) − xk(t))/dtn = (β − βk)λ(t), the representation

(2.11)

x(t) − xk(t) =

n∑

j=1

(
(x(tj) − xk(tj)) −

β − βk

(n− 1)!

∫ tj

t1

(tj − s)n−1λ(s) ds

)
gj(t)

+
β − βk

(n− 1)!

∫ t

t1

(t− s)n−1λ(s) ds k ∈ N for t0k 6 t 6 a1

is valid. On the other hand, in view of inequality (2.10), the identities

x
(i−1)
k (t) =

1

(m− i)!

∫ t

t0k

(t− s)m−ix
(m)
k (s) ds (i = 1, 2, k ∈ N)

by Schwartz inequality yield

(2.12) |x(i−1)
k (t)| 6 r2(t− a)m−i−1/2 for t0k 6 t 6 a1 (i = 1, 2, k ∈ N),

where r2 = r1/(m− i)!
√

2m− 2i+ 1. By virtue of the Arzela-Ascoli lemma and

(2.3), (2.12) the sequence {xk}+∞

k=1 contains a subsequence {xkl
}+∞

l=1 which is uni-

formly convergent in ]a, a1]. Suppose lim
l→+∞

xkl
(t) = x0(t). Thus (2.11) by (2.3)

yields the existence of such r3 > 0 that

|x(j−1)
kl

(t)| 6 r3 + |x(j−1)(t)| (j = 1, . . . , n) for t0kl
6 t 6 a1,

and then without loss of generality we can assume that

(2.13) lim
l→+∞

x
(j−1)
kl

(t) = x
(j−1)
0 (t) (j = 1, . . . , n) uniformly in ]a, a1].

Then in virtue of (2.3), (2.11), and (2.13) we have

x(t) − x0(t) =

n∑

j=1

((x(tj) − x0(tj)))gj(t) for a 6 t 6 a1.

From the last two relations by (2.10) it is clear that x(n) = x
(n)
0 and x0 ∈

C̃n−1,m(]a, b[). So, the function x0 ∈ C̃n−1,m(]a, b[) is a solution of problem (2.7),

(2.8). In view of (2.4) all the conditions of Theorem 1.1 are fulfilled, thus problem
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(2.7), (2.8) is uniquely solvable in the space C̃n−1,m(]a, b[) and x = x0. Therefore

(2.13) implies

(2.14) lim
l→+∞

x
(j−1)
kl

(t) = x(j−1)(t) (j = 1, . . . , n) uniformly in ]a, a1].

Now suppose that relations (2.9) are not fulfilled. Then there exist δ ∈ ]0, 1
2 (a1 − a)[,

ε > 0, and an increasing sequence of natural numbers {kl}+∞

l=1 such that

(2.15) max

{ n∑

j=1

|x(j−1)
kl

(t) − x(j−1)(t)| : a+ δ 6 t 6 a1

}
> ε (l ∈ N).

By virtue of the Arczela-Ascoli lemma and condition (2.10) the sequence {x(j−1)
kl

}+∞

l=1

(j = 1, . . . ,m), without loss of generality, can be assumed to be uniformly converging

in ]a + δ, a1]. Then, in view of what we have shown above, equality (2.14) holds.

But this contradicts condition (2.15). Thus (2.9) holds if the conditions (2.10) are

fulfilled.

Let now the conditions (2.10) be not fulfilled. Then there exists a subsequence

{t0kl
}+∞

l=1 of the sequence {t0k}+∞

k=1, such that

(2.16)

∫ a1

t0k

|x(m)
kl

(s)|2 ds > l (l ∈ N).

Suppose that βl =
( ∫ a1

t0k
|x(m)

kl
(s)|2 ds

)
−1
and vl(t) = ukl

(t)βl. Thus in view of (2.16)

and our notation

∫ a1

t0kl

|v(m)
kl

(s)|2 ds = 1 (l ∈ N), lim
l→+∞

βl = 0,(2.17)

v
(n)
l (t) = βlλ(t),(2.18)

v
(i−1)
l (t0kl

) = 0 (i = 1, . . . ,m),(2.19)

v
(i−1)
l (a1) = εi,kl

βl (i = 1, . . . , n−m, l ∈ N).

From the first part of our lemma it follows by (2.17) that the limit lim
l→+∞

vl(t) ≡
v0(t) exists, and v0 is a solution of the homogeneous problem corresponding to

(2.18), (2.19). Thus v0 ≡ 0. On the other hand, from (2.17) it is clear that∫ a1

t0kl

|v(m)
0 (s)|2 ds = 1, which contradicts v0 ≡ 0. Thus our assumption is invalid

and (2.10) holds. �

Analogously one can prove
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Lemma 2.4. Let numbers b1 ∈ ]a, b[, t0k ∈ ]b1, b[, and εik, εi, βk, β ∈ R
+, k ∈ N,

i = 1, . . . , n−m be such that

lim
k→+∞

t0k = b, lim
k→+∞

βk = β, lim
k→+∞

εi,k = εi.

Let, moreover, λ ∈ L̃2
0,2m−2(]b1, b]) be a nonnegative function, xk ∈ C̃n−1,m(]a, b[)

a solution of the problem (2.5) under the conditions

x(i−1)(b1) = εi,k (i = 1, . . . ,m), x(i−1)(t0k) = 0 (i = 1, . . . , n−m),

and x ∈ C̃n−1,m(]a, b[) a solution of the equation (2.7) under the conditions

(2.20) x(i−1)(b1) = εi (i = 1, . . . ,m), x(i−1)(b) = 0 (i = 1, . . . , n−m).

Then the equalities (2.9) hold.

Lemma 2.5. Let a < a1 < b1 < b, εi ∈ R
+ and let

λ ∈ L̃2
2n−2m−2,0(]a, a1]) (λ ∈ L̃2

0,2m−2(]b1, b]))

be a nonnegative function. Then for the solution x ∈ C̃n−1,m(]a, b[) of the problem

(2.7), (2.8) ((2.7), (2.20)) with β = 1, the estimate

(2.21)

∫ a1

a

|x(m)(s)|2 ds 6 Θ1(x, a1, λ)

(∫ b

b1

|x(m)(s)|2 ds 6 Θ2(x, b1, λ)

)
(k ∈ N)

is valid, where

(2.22) Θ1(x, a1, λ) = 2|wn(x)(a1)| + γ1‖λ‖2
L̃2

2n−2m−2,0
(]a,a1])

,

(Θ2(x, b1, λ) = 2|wn(x)(b1)| + γ2‖λ‖2
L̃2

0,2m−2
(]b1,b])

),

and

γ1 =
(2m−1(2m+ 1)

(2m− 1)!!

)2

, γ2 =
(2m−1(2m+ 1)(b − a+ 1)

(2m− 1)!!

)2

.

P r o o f. Suppose that xk is a solution of problem (2.5), (2.6) with βk = 1,

εik = εi. Then in view of Lemma 2.3, relations (2.9) hold. On the other hand, by

Lemma 2.2 we get

(2.23) νn

∫ a1

t0k

|x(m)
k (s)|2 ds 6 −wn(xk)(a1) +

∫ a1

t0k

(s− a)n−2mλ(s)|xk(s)| ds.
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Now, on the basis of Lemma 2.1, Schwartz’s and Young’s inequalities we get

∣∣∣∣
∫ a1

t0k

(s− a)n−2mλ(s)xk(s) ds

∣∣∣∣

=

∣∣∣∣
∫ a1

t0k

[(n− 2m)xk(s) + (s− a)n−2mx′k(s)]

( ∫ a1

s

λ(ξ) dξ

)
ds

∣∣∣∣

6

[
(n− 2m)

( ∫ a1

t0k

x2
k(s)

(s− a)2m
ds

)1/2

+

( ∫ a1

t0k

x′2k (s)

(s− a)2m−2
ds

)1/2]
‖λ‖L̃2n−2m−2,0(]a,a1])

6
2m−1(2m+ 1)

(2m− 1)!!

( ∫ a1

t0k

|x(m)
k (s)|2 ds

)1/2

‖λ‖L̃2n−2m−2,0(]a,a1])

6
1

2

∫ a1

t0k

|x(m)
k (s)|2 ds+

1

2

(2m−1(2m+ 1)

(2m− 1)!!

)2

‖λ‖2
L̃2n−2m−2,0(]a,a1])

.

Thus from (2.23) by the definition of the numbers νn we immediately obtain the

estimate

∫ a1

t0k

|x(m)
k (s)| ds 6 2|wn(xk)(a1)| +

(2m−1(2m+ 1)

(2m− 1)!!

)2

‖λ‖2
L̃2n−2m−2,0(]a,a1])

(k ∈ N).

By (2.9) from the last inequality (2.21) and (2.22) follow. Thus the lemma is proved

for problem (2.7), (2.8).

Analogously, by using Lemma 2.4 one can prove the case of problem (2.7), (2.20).

�

2.2. Lemmas on Banach space C̃m−1
1 (]a, b[).

Definition 2.1. Let ̺ ∈ R
+ and let the function η ∈ Lloc(]a, b[) be nonnegative.

Then S(̺, η) is a set of such y ∈ Cn−1
loc (]a, b[) that

∣∣∣y(i−1)
(a+ b

2

)∣∣∣ 6 ̺ (i = 1, . . . , n),(2.24)

|y(n−1)(t) − y(n−1)(s)| 6

∫ t

s

η(ξ) dξ for a < s 6 t < b,(2.25)

and

(2.26) y(i−1)(a) = 0 (i = 1, . . . ,m), y(i−1)(b) = 0 (i = 1, . . . , n−m).
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Lemma 2.6. Let for a function y ∈ C̃n−1,m(]a, b[), conditions (2.26) be satisfied.

Then y ∈ C̃m−1
1 (]a, b[) and the estimates

(2.27) |y(i−1)(t)| 6
|t− ck|m−i+1/2

(m− i)!(2m− 2i+ 1)1/2

∣∣∣∣
∫ t

ck

|y(m)(s)|2 ds

∣∣∣∣
1/2

for a < t < b,

i = 1, . . . ,m, hold for k = 1, 2, where c1 = a, c2 = b.

P r o o f. First note that in view of inclusion y ∈ C̃n−1,m(]a, b[), the equality

(2.28) y(i−1)(t) =

l∑

j=i

(t− c)j−i

(j − i)!
y(j−1)(c)

+
1

(l − i)!

∫ t

c

(t− s)l−iy(l)(s) ds for a < t < b

for i = 1, . . . , l, l = 1, . . . , n, holds, where

(1) c ∈ [a, b] if l 6 m;

(2) c ∈ ]a, b] if l = m+ 1 and n = 2m+ 1;

(3) c ∈ ]a, b[ if l > m,

and there exists r > 0 such that

(2.29)

∫ b

a

|y(m)(s)|2 ds 6 r.

Equality (2.28) with l = m, c = a and with l = m, c = b by conditions (2.26), (2.29)

and the Schwartz inequality yields (2.27). From (2.27) and (2.29) it is clear that

y ∈ C̃m
1 (]a, b[). �

Lemma 2.7. Let ̺ ∈ R
+, and let η ∈ L̃2

2n−2m−2,2m−2(]a, b[) be a nonnegative

function. Then S(̺, η) is a compact subset of the space C̃m−1
1 (]a, b[).

P r o o f. Condition (2.25) yields the inequality |y(n)(t)| 6 η(t). Thus there exists

such a function η1 ∈ L̃2
2n−2m−2,2m−2(]a, b[) that

y(n)(t) = η1(t), for a < t < b,(2.30)

|η1(t)| 6 η(t) for a < t < b.(2.31)

From Theorem 1.1 it follows that problem (2.30), (2.26) has a unique solution y ∈
Cn−1,m(]a, b[), i.e. there exists r > 0 such that the inequality (2.29) holds.

For any y ∈ S(̺, η), from equality (2.28) with l = n, by (2.24), (2.30) and (2.31)

we get

(2.32) |y(i−1)(t)| 6 γi(t) for a < t < b (i = 1, . . . , n),
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where

γi(t) = ̺i +
1

(n− i)!

∣∣∣∣
∫ t

c

(t− s)n−iη(s) ds

∣∣∣∣ (i = 1, . . . , n).

Let now yk ∈ S(̺, η) (k ∈ N). By virtue of the Arzela-Ascoli lemma and condi-

tions (2.25), (2.32) the sequence {yk}+∞

k=1 contains a subsequence {ykl
}+∞

l=1 such that

{y(i−1)
kl

}+∞

l=1 (i = 1, . . . , n) are uniformly convergent on ]a, b[. Thus without loss of

generality we can assume that {y(i−1)
k }+∞

k=1 (i = 1, . . . , n−1) are uniformly convergent

on ]a, b[. Let lim
k→+∞

yk(t) = y0(t), then y0 ∈ C̃n−1
loc (]a, b[) and

(2.33) lim
k→+∞

y
(i−1)
k (t) = y

(i−1)
0 (t) (i = 1, . . . , n) uniformly on ]a, b[.

From (2.33) in view of the inclusions yk ∈ S(̺, η) it immediately follows that

∣∣∣y(i−1)
0

(a+ b

2

)∣∣∣ 6 ̺ (i = 1, . . . , n),(2.34)

y
(i−1)
0 (a) = 0 (j = 1, . . . ,m), y

(i−1)
0 (b) = 0 (j = 1, . . . , n−m),(2.35)

and

(2.36) |y(n−1)
0 (t) − y

(n−1)
0 (s)| 6

∫ t

s

η(ξ) dξ for a < s 6 t < b.

From (2.34), (2.35), (2.36) it is clear that y0 ∈ S(̺, η). To complete the proof we

must show that

(2.37) lim
k→+∞

‖yk(t) − y0(t)‖C̃m−1

1

= 0

and

(2.38) S(̺, η) ⊂ C̃m−1
1 (]a, b[).

Let, xk = y0 − yk and a1 ∈ ]a, b[, b1 ∈ ]a1, b[. Then it is clear that xk ∈ S(̺′, η′)

where ̺′ = 2̺, η′ = 2η. Thus for any xk there exists ηk ∈ L̃2
2n−2m−2,2m−2(]a, b[) such

that

x
(n)
k (t) = ηk(t),(2.39)

x
(i−1)
k (a) = 0 (i = 1, . . . , n), x

(i−1)
k (b) = 0 (i = 1, . . . , n−m)(2.40)

where

(2.41) |ηk(t)| 6 2η(t) for a < t < b (k ∈ N).
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On the other hand, from (2.27) with y = xk, in view of (2.40) we get

(2.42) |x(i−1)
k (t)| 6

( ∫ t

a

|x(m)
k (s)|2 ds

)1/2

(t− a)m−i+1/2 for a < t < a1,

|x(i−1)
k (t)| 6

( ∫ b

t

|x(m)
k (s)|2 ds

)1/2

(b − t)m−i+1/2 for b1 < t < b,

for i = 1, . . . ,m.

Let now wn be the operator defined in Lemma 2.2 and Θ1,Θ2 the functions defined

by (2.22) with λ = ηk. Then conditions (2.33) yield

(2.43) lim
k→+∞

wn(xk)(a1) = 0, lim
k→+∞

wn(xk)(b1) = 0 (k ∈ N),

and from the definition of the norm ‖ · ‖L̃2

α,β

, (2.41) and (2.43) it follows that for any

ε > 0 we can choose a1 ∈ ]a,min{a+ 1, b}[, b1 ∈ ]max{b− 1, b}, a1[ and k0 ∈ N such

that

(2.44) Θ1(xk, a1, 2η) 6
ε

6
(b− b1)

m−1/2 (k > k0),

Θ2(xk, b1, 2η) 6
ε

6
(a1 − a)m−1/2 (k > k0).

By using Lemma 2.5 for xk, in view of (2.42) and (2.44) we get

∫ a1

a

|x(m)
k (s)|2 ds 6

ε

6
,

∫ b

b1

|x(m)
k (s)|2 ds 6

ε

6
(k > k0),(2.45)

|x(i−1)
k (t)|
αi(t)

6
ε

2m
for t ∈ ]a, a1] ∪ [b1, b[ (1 6 i 6 m, k > k0).(2.46)

Also, in view of (2.33) without loss of generality we can assume that

(2.47)
|x(i−1)

k (t)|
αi(t)

6
ε

2m
for a1 6 t 6 b1 (1 6 i 6 m, k > k0),

and

(2.48)

∫ b1

a1

|x(m)
k (s)|2 ds 6

ε

6
(k > k0).

From (2.45), (2.46), (2.47), (2.48), equality (2.37) immediately follows.

Let now y ∈ S(̺, η) and yk = δky, where lim
k→+∞

δk = 0. Then by (2.33) it is

clear that y0 ≡ 0 and then (2.37) implies y ∈ C̃m−1
1 (]a, b[), i.e. the inclusion (2.38)

holds. �
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Lemma 2.8. Let τj ∈ M(]a, b[), α > 0, β > 0 and let there exist δ ∈ ]0, b − a[

such that

(2.49) |τj(t) − t| 6 k1(t− a)β for a < t 6 a+ δ.

Then

∣∣∣∣
∫ τ(t)

t

(s− a)α ds

∣∣∣∣ 6

{
k1[1 + k1δ

β−1]α(t− a)α+β for β > 1,

k1[δ
1−β + k1]

α(t− a)αβ+β for 0 6 β < 1

for a < t 6 a+ δ.

P r o o f. First note that

∣∣∣∣
∫ τ(t)

t

(s− a)α ds

∣∣∣∣ 6 (max{τ(t), t} − a)α|τ(t) − t| for a 6 t 6 a+ δ,

and max{τ(t), t} 6 t+ |τ(t) − t| for a 6 t 6 a+ δ. Then in view of condition (2.49)

we get

∣∣∣∣
∫ τ(t)

t

(s− a)α ds

∣∣∣∣ 6 k1[(t− a) + k1(t− a)β ]α(t− a)β for a 6 t 6 a+ δ.

The last inequality yields the validity of our lemma. �

Analogously one can prove

Lemma 2.9. Let τj ∈ M(]a, b[), α > 0, β > 0 and let there exist δ ∈ ]0, b − a[

such that

(2.50) |τj(t) − t| 6 k1(b − t)β for b− δ 6 t < b.

Then

∣∣∣∣
∫ τ(t)

t

(b − t)α ds

∣∣∣∣ 6

{
k1[1 + k1δ

β−1]α(b − t)α+β for β > 1,

k1[δ
1−β + k1]

α(b− t)αβ+β for 0 6 β < 1

for b− δ 6 t < b.

2.3. Lemmas on the solutions of auxiliary problems.

Throughout this section we assume that the operator

P : Cm−1
1 (]a, b[) × Cm−1

1 (]a, b[) → Ln(]a, b[)
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is γ0, γ consistent with boundary condition (1.2), and the operator q : Cm−1
1 (]a, b[) →

L̃2
2n−2m−2,2m−2(]a, b[) is continuous.

Consider for any x ∈ C̃m−1
1 (]a, b[) ⊂ Cm−1

1 (]a, b[) the nonhomogeneous equation

(2.51) y(n)(t) =

m∑

i=1

pi(x)(t)y
(i−1)(τi(t)) + q(x)(t),

and the corresponding homogeneous equation

(2.52) y(n)(t) =

m∑

i=1

pi(x)(t)y
(i−1)(τi(t)),

and let En be the set of solutions of problem (2.51), (2.26).

From inequality (1.23) of item (ii) of Definition 1.1 it follows that the boundary

problem (2.51), (2.26) has a unique solution y in the space C̃n−1,m(]a, b[). But in

view of Lemma 2.6 it is clear that y ∈ C̃m−1
1 (]a, b[). Thus En ∩ C̃m−1

1 (]a, b[) 6= ∅,
and there exists the operator U : C̃m−1

1 (]a, b[) → En ∩ C̃m−1
1 (]a, b[) defined by the

equality

U(x)(t) = y(t).

Lemma 2.10. U : C̃m−1
1 (]a, b[) → En ∩ C̃m−1

1 (]a, b[) is a continuous operator.

P r o o f. Let xk ∈ C̃m−1
1 (]a, b[) and yk(t) = U(xk)(t) (k = 1, 2), y = y2 − y1, and

let the operator P be defined by (1.19). Then

y(n)(t) = P (x2, y)(t) + q0(x1, x2)(t)

where q0(x1, x2)(t) = P (x2, y1)(t)−P (x1, y1)(t)+q(x2)(t)−q(x1)(t). Hence, by item

(ii) of Definition 1.1 we have

‖U(x2) − U(x1)‖C̃m−1

1

6 γ‖q0(x1, x2)‖L̃2

2n−2m−2,2m−2

.

Since the operators P and q are continuous, this estimate implies the continuity of

the operator U . �

256



3. Proofs

P r o o f of Remark 1.1. Let x be a solution of problem (1.8), (1.2), then inequal-

ities (2.27) imply the estimate

(3.1) |x(i−1)(t)| 6
[(b − t)(t− a)]m−i+1/2

(m− i)!(2m− 2i+ 1)1/2

( 2

b− a

)m−i+1/2

‖x(m)‖L2

for a 6 t 6 b. This estimate, by the definition of the norm in the space C̃m−1(]a, b[)

and estimate (1.17) immediately yields (1.18). �

P r o o f of Theorem 1.3. Let δ and λ be the functions and numbers appearing in

Definition 1.1. We set

η(t) = δ(t, γ0)γ0 + F̃p(t,min{2̺0, γ0}),(3.2)

χ(s) =





1 for 0 6 s 6 ̺0,

2 − s/̺0 for ̺0 < s < 2̺0,

0 for s > 2̺0,

(3.3)

q(x)(t) = χ(‖x‖C̃m−1

1

)Fp(x)(t).(3.4)

From (1.24) it is clear that the nonnegative functions F̃p, η, admit the inclusion

(3.5) F̃p(·,min{2̺0, γ0}), η ∈ L̃2
2n−2m−2,2m−2(]a, b[),

and for every x ∈ Aγ0
⊂ C̃m−1

1 (]a, b[) and almost all t ∈ ]a, b[ the inequality

(3.6) |q(x)(t)| 6 F̃p(t,min{2̺0, γ0}) for a < t < b

holds.

Let U : Aγ0
→ En ∩ C̃m−1

1 (]a, b[) be the operator appearing in Lemma 2.10, from

which it follows that U is a continuous operator. On the other hand, from items

(i) and (ii) of Definition 1.1, (1.25) and (3.6) it is clear that for each x ∈ Aγ0
, the

conditions

‖y‖C̃m−1

1

6 γ0, |y(n−1)(t) − y(n−1)(s)| 6

∫ t

s

η(ξ) dξ for a < t < b

hold. Thus in view of Definition 2.1 the operator U maps the ball Aγ0
into its own

subset S(̺1, η). From Lemma 2.2 it follows that S(̺1, η) is a compact subset of the

ball Aγ0
⊂ C̃m−1

1 (]a, b[), i.e. the operator u maps the ball Aγ0
into its own compact
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subset. Therefore, owing to Schauders’s principle, there exists x ∈ S(̺1, η) ⊂ Aγ0

such that

x(t) = U(x)(t) for a < t < b.

Thus by (2.51) and notation (3.4), the function x (x ∈ Aγ0
) is a solution of problem

(1.26), (1.2), where

(3.7) λ = χ(‖x‖C̃m−1

1

).

If γ0 = ̺0 then in view of condition x ∈ Aγ0
, by (3.3) we have that λ = 1, and then

in view of (2.51) and (3.4) the function x is a solution of problem (1.1), (1.2) which

admits the estimate (1.27).

Let us show now that x admits estimate (1.27) in the case when ̺0 < γ0. Assume

the contrary. Then either

(3.8) ̺0 < ‖x‖C̃m−1

1

< 2̺0,

or

(3.9) ‖x‖C̃m−1

1

> 2̺0.

If condition (3.8) holds, then by virtue of (3.3) and (3.7) we have that λ ∈ ]0, 1[,

which by the conditions of our theorem guarantees the validity of estimate (1.27).

But this contradicts (3.8).

Assume now that (3.9) is fulfilled. Then by virtue of (3.3) and (3.7) we have that

λ = 0. Therefore x ∈ Aγ0
is a solution of problem (2.52), (1.2). Thus from item

(ii) of Definition 1.1 it is obvious that x ≡ 0, because problem (2.52), (1.2) has only

the trivial solution. But this contradicts condition (3.9), i.e. estimate (1.27) is valid.

From estimate (1.27) and (3.3) we have that λ = 1, and then in view of (2.51) and

(3.4) the function x is a solution of problem (1.1), (1.2) which admits the estimate

(1.27). �

P r o o f of Corollary 1.2. First note that in view of condition (1.30) there exists

such γ0 > 2̺0 that condition (1.25) holds, and in view of Definition 1.2 the operator

P is γ0, γ consistent.

On the other hand, (1.30) implies the existence of a number ̺0 such that

(3.10) γ‖η(·, ̺)‖L̃2

2n−2m−2,2m−2

< ̺ for ̺ > ̺0.

Let x be a solution of problem (1.26), (1.2) for some λ ∈ ]0, 1[. Then y = x is also

a solution of problem (1.22), (1.2) where q(t) = λ(F (x)(t) − P (x, x)(t)). Let now
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̺ = ‖x‖C̃m−1

1

and assume that

(3.11) ̺ > ̺0

holds. Then in view of the γ-consistency of the operator p with boundary conditions

(1.2), inequality (1.23) holds and thus by condition (1.28) we have

̺ = ‖x‖C̃m−1

1

6 γ‖q(x)‖L̃2

2n−2m−2,2m−2

6 γ‖η(·, ̺)‖L̃2

2n−2m−2,2m−2

.

But the last inequality contradicts (3.10). Thus assumption (3.11) is not valid and

̺ 6 ̺0. Therefore for any λ ∈ ]0, 1[ an arbitrary solution of problem (1.26), (1.2)

admits the estimate (1.27). Therefore all the conditions of Theorem 1.3 are fulfilled,

from which the solvability of problem (1.1), (1.2) follows. �

P r o o f of Theorem 1.4. Let rn be the constant defined in Remark 1.1. First

we prove that the operator P is γ0, rn consistent with boundary conditions (1.2).

From the conditions of our theorem it is obvious that the item (i) of Definition 1.1

is satisfied. Let now x be an arbitrary fixed function from the set Aγ0
and let

pj(t) ≡ pj(x)(t). Thus in view of (1.34), (1.35) all the assumptions of Theorem 1.1

are satisfied, and then for any q ∈ L̃2
2n−2m−2,2m−2(]a, b[) problem (1.22), (1.2) has

a unique solution y. Also in view of Remark 1.1 there exists a constant rn > 0 (which

depends only on the numbers lkj , l̄kj , γkj (k = 0, 1; j = 1, . . . ,m) and a, b, t∗, n)

such that estimate (1.23) holds with γ = rn. So, the operator P is γ0, rn consistent

with boundary conditions (1.2). Therefore all the assumptions of Corollary 1.1 are

fulfilled, from which the solvability of problem (1.1), (1.2) follows. �

P r o o f of Theorem 1.5. Let rn be the constant defined in Remark 1.1. First we

prove that the operator P is rn consistent with boundary conditions (1.2). From the

conditions of our theorem it is obvious that the item (i) of Definition 1.1 is satis-

fied. Let now γ0 be an arbitrary nonnegative number, x an arbitrary fixed function

from the space Aγ0
and let pj(t) ≡ pj(x)(t). Then in view of (1.37), (1.38) all the

assumptions of Theorem 1.1 are satisfied and then for any q ∈ L̃2
2n−2m−2,2m−2(]a, b[)

problem (1.22), (1.2) has a unique solution y. Also in view of Remark 1.1 there

exists a constant rn > 0 (which depends only on the numbers lkj , l̄kj , γkj (k = 0, 1;

j = 1, . . . ,m) and a, b, t∗, n,) such that estimate (1.23) holds with γ = rn. So, the

operator P is γ0, rn consistent with boundary conditions (1.2) for arbitrary γ0 > 0.

Thus by Definition 1.1, the operator P is rn consistent with boundary conditions

(1.2). Therefore all the assumptions of Corollary 1.2 are fulfilled, from which the

solvability of problem (1.1), (1.2) follows. �
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P r o o f of Remark 1.2. By Schwartz’s inequality, the definition of the norm

‖y‖C̃m−1

1

and inequalities (1.39), (2.2) for any x, y ∈ Aγ0
and z = y − x we have

(3.12) |pj(y)(t)z
(j−1)(τj(t))| = |pj(y)(t)z

(j−1)(t)| + |pj(y)(t)|
∣∣∣∣
∫ τj(t)

t

z(j)(ψ) dψ

∣∣∣∣

6 ‖z‖C̃m−1

1

|pj(y)(t)|αj(t)

(
1 +

1

αj(t)

( ∫ τj(t)

t

(ψ − a)2m−2j dψ

)1/2)

for a < t < b. On the other hand, from the conditions (1.40) by Lemmas 2.8 and 2.9

it is cleat that

α−1
j (s)

( ∫ τj(s)

s

(ξ − a)2m−2j dξ

)1/2

6

√
κ(1 + κ)

εm−j+1/2
for s ∈ ]a, a+ ε] ∪ [b− ε, b[,

α−1
j (s)

( ∫ τj(s)

s

(ξ − a)2m−2j dξ

)1/2

6 ε−2m+2j−1

( ∫ b

a

(ξ − a)2m−2j dξ

)1/2

=
(b − a)m−j+1/2

√
2m− 2j + 1 ε2m−2j+1

for s ∈ ]a+ ε, b− ε[.

Then if we put

(3.13) κ0 = max
16j6m

{√
κ(1 + κ)

εm−j+1/2
,

(b− a)m−j+1/2

√
2m− 2j + 1 ε2m−2j+1

}
,

from (3.12) by the last estimates we get the inequality

(3.14) |pj(y)(t)z
(j−1)(τj(t))| 6 ‖z‖C̃m−1

1

(1 + κ0)|pj(y)(t)|αj(t)

6 ‖z‖C̃m−1

1

(1 + κ0)δj(t, ‖y‖C̃m−1

1

)

for a < t < b. Analogously we get that

|(pj(y)(t) − pj(x)(t))x
(j−1)(τj(t))| 6 ‖x‖C̃m−1

1

(1 + κ0)|pj(y)(t) − pj(x)(t)|αj(t)

for a < t < b. From (3.14) and the last inequality it is obvious that the operator

P defined by equality (1.19) is continuously acting from Aγ0
to the space Ln(]a, b[),

and the item (ii) of Definition 1.1 holds with δ(t, ̺) = (1 + κ0)
m∑

j=1

δj(t, ̺). �

P r o o f of Corollary 1.3. From conditions (1.42) and (1.40) by Remark 1.2 we

obtain that the operator P defined by equality (1.19) with pj(x)(t) = pj(t) is contin-

uously acting from Aγ0
to the space Ln(]a, b[) for any γ0 > 0, i.e., it is continuously

acting from C̃m−1
1 (]a, b[) to the space Ln(]a, b[).
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Therefore it is clear that all the conditions of Theorem 1.5 are satisfied with

F (x)(t) = f(t, x(τ1(t)), x
′(τ2(t)), . . . , x

(m−1)(τm(t))), δ(t, ̺) = (1 + κ0)

m∑

j=1

|pj(t)|,

where the constant κ0 is defined by equality (3.13). Thus problem (1.41), (1.2) is

solvable. �

P r o o f of Corollary 1.4. Let the operators F, p1 : Cm−1(]a, b[) → Lloc(]a, b[),

and the function η : ]a, b[ × R
+ → R

+ be defined by equalities

F (x)(t) = − λ|x(t)|k
[(t− a)(b− t)]2+k/2

x(τ(t))+q(x)(t), p1(x)(t) = − λ|x(t)|k
[(t− a)(b − t)]2+k/2

.

Then it is easy to verify that in view of (1.46), (1.47), (1.48), conditions (1.13), (1.14),

(1.28), (1.34), (1.35), (1.36), (1.37), (1.38), (1.39), (1.40), (1.41), (1.42), (1.43) are

satisfied with

δ(t, ̺) =
̺kλ

[(t− a)(b − t)]2
, l01 = l11 =

4γk
0λ

(b− a)2
, l̄01 = l̄11 =

16γk
0λ

(b− a)2
,(3.15)

r2 =

(
1 +

√
2

b− a

)
2(1 + b− a)(b − a)2

(b − a)2 − 16λγk
0 (1 + [2(b− a)]1/4)

,

B0 = B1 =
16λγk

0

(b− a)2
(1 + [2(b− a)]1/4), t∗ =

a+ b

2
, γ01 = γ11 =

1

4
.

Thus all the condition of Theorem 1.4 are satisfied, from which solvability of

problem (1.44), (1.2) follows. �

P r o o f of Corollary 1.5. Let the operators F, p1 : Cm−1(]a, b[) → Lloc(]a, b[),

and the function η : ]a, b[ × R
+ → R

+ be defined by equalities

F (x)(t) = − λ| sin xk(t)|
[(t− a)(b − t)]2

x(τ(t)) + q(x)(t), p1(x)(t) = − λ| sin xk(t)|
[(t− a)(b − t)]2

.

Then it is easy to verify that in view of (1.30), (1.46), and (1.49), all the conditions

of Theorem 1.5 are fulfilled, where δ, l01, l01, r2, B0, B1, t
∗, γ01, γ11, are defined by

(3.15) with ̺ = 1, γ0 = 1, which implies solvability of problem (1.44), (1.2). �
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