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KYB ERNET IK A — VO LUME 4 9 ( 2 0 1 3 ) , NUMBER 1 , PAGES 1 8 8 – 1 9 8

AUGMENTED LAGRANGIAN METHOD FOR RECOURSE
PROBLEM OF TWO-STAGE STOCHASTIC LINEAR
PROGRAMMING

Saeed Ketabchi and Malihe Behboodi-Kahoo

In this paper, the augmented Lagrangian method is investigated for solving recourse prob-
lems and obtaining their normal solution in solving two-stage stochastic linear programming
problems. The objective function of stochastic linear programming problem is piecewise lin-
ear and non-differentiable. Therefore, to use a smooth optimization methods, the objective
function is approximated by a differentiable and piecewise quadratic function. Using quadratic
approximation, it is required to obtain the least 2-norm solution for many linear programming
problems in each iteration. To obtain the least 2-norm solution for inner problems based on
the augmented Lagrangian method, the generalized Newton method is applied.

Keywords: two-stage stochastic linear programming, recourse problem, normal solution,
augmented Lagrangian method

Classification: 90C15, 90C05, 90C20

1. INTRODUCTION

In mathematical linear programming, the elements of the vectors and matrices are as-
sumed to have exact values. However, in practical problems, the data are not definite
because of several uncertainties such as measurement errors, incomplete information
about the future and events that have not yet occurred. In stochastic programming,
some data are random variables with a specific probability distribution. This concept
was first introduced in [12] by Georg Dantzig, the designer of linear programming. After
that, many scholars such as Van Slyke and Wets [28], Higle and Sen [16], Infanger [18],
Dantzig and Wolfe and Glynn [13, 14], Prekopa [25] and Branda [5] presented different
methods for modelling and solving problems with uncertainties. A thorough introduc-
tion to this type of problem was presented in [4, 20]. Recently, a method based on the
approximation of inner problems by quadratic problems, has been proposed by Chen et
al. [3, 6, 7, 8, 9, 10, 11]. These authors present all needed solution methods as well as
their parallelization.

Consider the following stochastic linear programming problem

min
x∈X

cT x + Eω(Q(x, ω)), X = {x ∈ Rn : Ax = b, x ≥ 0}, (1)
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where E is the expectation of function Q(x, ω) depending on the random variable ω,
and the function Q is defined as follows:

Q(x, ω) = min
y∈Rn2

{qT (ω)y | WT (ω)y ≥ h(ω)− T (ω)x}, (2)

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm. Also, in problem (2), the vector of coefficients
q(.) ∈ Rn2 , matrix of coefficients WT (.) ∈ Rm2×n2 , demand vector h(.) ∈ Rm2 and
matrix T (.) ∈ Rm2×n depend on the random variable ω with support space Ω. Problem
(2) is called the recourse problem of stochastic programming.

If in the second stage, the vector q(ω) and the matrix W (ω) do not depend on the
random variable ω, or, in other words, they are held constant q(ω) = q and W (ω) = W ,
the problem (1) turns to a stochastic linear programming problem with a fixed recourse

Q(x, ω) = min
y∈Rn2

{qT y | WT y ≥ h(ω)− T (ω)x}. (3)

In addition, assume that the problem (3) has an optimal solution i. e. Q(x, ω) ∈ R for
each x ∈ X and ω ∈ Ω.

In this paper, the random variable is assumed to be discrete. If the random variable
is continuous, the expectation of function Q(x, ω) can be approximated as the sum of
N functions using the Monte Carlo method and other numerical integration methods
[18, 19]

φ(x) = E(Q(x, ω)) =
N∑

i=1

Q(x, ωi)ρ(ωi),

where ρ(.) is a probability density function that satisfies the following conditions

ρ(ωi) ≥ 0,

N∑
i=1

ρ(ωi) = 1.

Therefore, the objective function of the problem (1) can be rewritten as follows:

f(x) = cT x + φ(x). (4)

This function is piecewise linear [20, 27].
Problem (1) contains two types of variables: present variable x and future variable

y that belong to different categories in the following sense. x is a deterministic variable
and an optimum x is optimal for all scenarios ω ∈ Ω while y(ω) is a random variable and
an optimum y(ω) is optimal for a single scenario ω. The decomposition methods exploit
the nature of random variables and the structure of problem (1). All decomposition
algorithms such as L-shaped [28] are based on the Benders decomposition [2] whose
original goal was to solve mixed integer programming problems.

The decomposition methods split the original problem into a master problem (1) and
a series of independent subproblems (2) for each ω ∈ Ω.

In general, the objective function (4) is nonlinear and non-smooth, and hence, pre-
vents the use of a smooth optimization algorithm. In this paper, we propose a method
based on a decomposition method that uses the quadratic approach to smooth the ob-
jective function (4). This method paves the way for an optimization method such as
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sequential linear programming that solves the master problem (1). We note that it is
very expensive to evaluate the objective function (4) or the gradient of a smooth func-
tion due to the need to solve N linear programs (3). For this reason, we focus on the
augmented Lagrangian method for solving the subproblem (3).

This paper is organized as follows. In the next section, some properties of recourse
problems are mentioned in brief; accordingly, there is an attempt to find a solution based
on eliminating their undesirable properties. This attempt leads to the presentation of
the concept of normal solutions for linear problems (Section 3). For convenience, in
this paper Euclidean least 2-norm solution of linear programming problem is named
normal solution [23]. To find normal solutions of recourse problems, the augmented
Lagrangian method is used (Section 4). In Section (5), the generalized Newton algorithm
is applied for solving the obtained unconstrained problem and the numerical results are
also presented. Also, concluding remarks are given in Section 6.

We now describe our notation. Let a = [ai] be a vector in Rn. By a+ we mean a
vector in Rn whose ith entry is 0 if ai < 0 and equals ai if ai ≥ 0. By AT we mean
the transpose of matrix A, and ∇f(x0) is the gradient of f at x0. For x ∈ Rn, ‖x‖ and
‖x‖∞ denote 2−norm and infinity norm respectively. Also, for convenience the index i
of ωi is omitted.

2. PROPERTIES OF RECOURSE PROBLEM

In this section, the properties of function Q(x, ω) are investigated which include con-
vexity and piecewise linearity. Furthermore, considering that the function is non-
differentiable, there is an attempt to approximate it to a differentiable function based
on the following Theorem; and using the approximated function, optimization methods
are presented for solving the problem (1). This discussion starts with the convexity
property of Q(x, ω).

Theorem 2.1. For every ω given, the function Q(x, ω) defined in (3) is a convex func-
tion on x ∈ Rn.

P r o o f . To prove see subsection (2.2) in [28]. �

Considering the convexity of function Q(x, ω) , it can be easily concluded that φ(x)
is also a convex function and, as a result, the objective function of the problem (1); that
is, f(x) is a convex function.

Using dual the problem (3), function Q(x, ω) can be written as follows:

Q(x, ω) = max
z∈Rm2

(h(ω)− T (ω)x)T z

s.t. Wz = q, z ≥ 0. (5)

One of difficulties in solving the problem (1) is that the objective function is non-
differentiable at some points because we can rewrite recourse function as Q(x, ω) =
maxj∈{1,2,...,J} (h(ω)− T (ω)x)T zj where J is number of extreme points of the problem
(5) [27]. Hence, the function Q(x, ω) is piecewise linear of x for each realization ω. As
follows, an example is presented in order to show the piecewise, linearity property of
function Q(x, ω) depend on vector x.
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Example 2.2. Consider function Q(x, ω) as follows

Q(x, ω) = max
z1,z2

(x + ω)z1 + (2x + 3ω)z2

s.t. z1 + z2 = 2,

z1, z2 ≥ 0.

The dual of above problem is:

Q(x, ω) = min
y

2y

s.t. y ≥ (x + ω),
y ≥ (2x + 3ω).

If x + 2ω ≥ 0 , the solution of this problem is 2x + 3ω ; otherwise, x + ω . Therefore,
function Q is obtained in the following way:

Q(x, ω) =
{

2(2x + 3ω), x ≥ −2ω,
2(x + ω), x ≤ −2ω.

It is obvious that this function is continuously convex and piecewise linear which is
non-differentiable in −2ω.

3. THE NORMAL SOLUTION

As mentioned in the previous section, the function Q(x, ω) is piecewise linear; therefore,
if at any point there are more than one sub-gradients, then there will be infinite. It
can be easily shown that vectors −TT (ω)z∗(x, ω) are the sub-gradients of this function
in which z∗(x, ω) is a solution for the problem (5). In this section, the sub-gradient
−TT (ω)z∗(x, ω) are investigated in which z∗(x, ω) is the normal solution for the problem
(5). To this end, function Qε(x, ω) can be defined as follows:

Qε(x, ω) = max
z∈Rm2

(h(ω)− T (ω)x)T z − ε

2
‖z‖2

s.t. Wz = q, z ≥ 0. (6)

The following theorem shows that, for the sufficiently small ε > 0 , the solution of this
problem is the normal solution of the problem (5).

Theorem 3.1. For functions Q(x, ω) and Qε(x, ω) introduced in (5) and (6), the fol-
lowing can be presented:

1. ∃ ε̄ > 0 such that, for each ε ∈ (0, ε̄] , the solution for the problem (6) is the normal
solution for the problem (5).

2. For each ε > 0 , function Qε(x, ω) is differentiable depend on x.

3. The gradient of function Qε(x, ω) at point x is ∇Qε(x, ω) = −TT (ω)z∗ε (x, ω) in
which z∗ε (x, ω) is the solution for problem (6).
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P r o o f . To prove 1 see Theorem 2.1 in [21].
Also, 2 and 3 can be easily proved considering that function Qε(x, ω) is the conjugate

function of

p(z) =
{

ε
2‖z‖

2, z ∈ Z,
∞, z 6∈ Z,

where Z = {z ∈ Rm2 : Wz = q, z ≥ 0} (see Theorems 23.5 and 26.3 in [26]). �

In optimization methods for solving the problem (1), the gradient of objective function
is required but it is not differentiable. Therefore, the objective function of the problem
(1) is substituted by fε(x) =

∑N
i=1 Qε(x, ωi)ρ(ωi). According to the previous theorem, it

can be found that for obtaining the gradient of function fε(x) in each iteration, we need
the normal solution of N linear programming problem (5). In this paper, the augmented
Lagrangian method [15] is used for this purpose.

4. AUGMENTED LAGRANGIAN METHOD

In order to find the normal solution, dual penalty problem can be used [24]. The
objective function of dual penalty problem is piecewise quadratic, convex and once-
differentiable. Moreover, since the objective function gradient of dual penalty problem
satisfies the Lipschitz conditions, generalized Hessian of this function exists everywhere
[17, 22]. Utilizing these properties, Mangasarian used generalized Newton method for
solving convex, piecewise quadratic and unconstrained minimization problems [24].

In the augmented Lagrangian method, the unconstrained maximization problem is
solved which gives the projection of a point on the solution set of the problem (5).

Assume that ẑ is an arbitrary vector. Consider the problem of finding the least
2-norm projection ẑ∗ of ẑ on the solution set Z∗ of the problem (5)

1
2
‖ẑ∗ − ẑ‖2 = min

z∈Z∗

1
2
‖z − ẑ‖2, (7)

Z∗ = {z ∈ Rm2 : Wz = q, ξT z = Q(x, ω), z ≥ 0}.

In this problem, vector x and random variable ω are constants; therefore, for simplicity,
this is assumed ξ = h(ω) − T (ω)x and function Q̂(ξ) is defined in a way that Q̂(ξ) =
Q(x, ω).

Considering that the objective function of the problem (7) is strictly convex; therefore,
its solution is unique. The Lagrange function of the problem (7) is as follows:

L(z, p, β, ẑ, ξ) =
1
2
‖z − ẑ‖2 + pT (Wz − q) + β(ξT z − Q̂(ξ)),

where p ∈ Rn2 and β ∈ R are Lagrange multipliers and ξ, ẑ are constant values. The
dual problem of (7) has the form:

max
β∈R

max
p∈Rn2

min
z∈Rm2

+

L(z, p, β, ẑ, ξ). (8)

We note that the solution of the inner minimization problem in (8) is (see [22, 24])

z = (ẑ + WT p + βξ)+. (9)
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By substituting (9) into L(z, p, β, ẑ, ξ), we have

L̂(p, β, ẑ, ξ) := min
z∈Rm2

+

L(z, p, β, ẑ, ξ) = qT p− 1
2
‖(ẑ + WT p + βξ)+‖2 + βQ̂(ξ) +

1
2
‖ẑ‖2.

Therefore, the dual problem of (7) is given by the following formula

max
β∈R

max
p∈Rn2

L̂(p, β, ẑ, ξ). (10)

The following theorem states that if β is sufficiently large, solving the inner maximization
problem in (10) gives the unique solution of the problem (7).

Theorem 4.1. Consider the following maximization problem

max
p∈Rn2

S(p, β, ẑ, ξ) (11)

in which β, ẑ, ξ are constants and function S(p, β, ẑ, ξ) is introduced as follows:

S(p, β, ẑ, ξ) = qT p− 1
2
‖(ẑ + WT p + βξ)+‖2. (12)

Also, assume that the set Z∗ is non-empty and the rank of sub-matrix Wl of W corre-
sponding to nonzero components of ẑ∗ is n2. In such a case, there is β∗ which for all
β ≥ β∗, ẑ∗ = (ẑ + WT p(β) + βξ)+ is the unique and exact solution for the problem (7)
where p(β) is the point obtained from solving the problem (11).

P r o o f . See Theorem 2.1 in ref. [15]. �

Also, in special conditions, the solution for the problem (3) can be also obtained and
the following theorem expresses this issue.

Theorem 4.2. Assume that the solution set Z∗ is non-empty. For each β > 0 and
ẑ ∈ Z∗, y∗ = p(β)

β is one exact solution for the linear programming problem (3) where
p(β) is the solution for the problem (11).

P r o o f . See Theorem 3.1 in ref. [15]. �

According to the theorems mentioned above, augmented Lagrangian method presents
the following iteration process for solving the problem (7):

pk+1 ∈ arg max
p∈Rn2

{qT p− 1
2
‖(zk + WT p + βξ)+‖2, (13)

zk+1 = (zk + WT pk+1 + βξ)+.

Where z0 is an arbitrary vector and here we can use of zero vector as initial vector
for obtaining normal solution of the problem (5).

For arbitrary z0 and β > 0 , this process converges to solution z∗ ∈ Z∗ in finite
number of step M . Also, pM+1

β gives the exact solution for the problem (3) [15].
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If β is sufficiently large, i. e. β ≥ β∗, and other conditions of Theorem 4.1 are
established as well, this process presents the normal solution for the problem (5). To
this end, the smallest β∗ which has the conditions of Theorem (4.1) can be obtained.
Assume that ẑ∗ is considered as follows:

ẑ∗ =
[

ẑl
∗

ẑd
∗

]
,

where ẑl
∗ is a strictly positive sub-vector and ẑd

∗ is the zero sub-vector of ẑ∗. Now,
corresponding with sub-vectors ẑl

∗ and ẑd
∗ , matrix W and vectors ξ and ẑ can be shown

in the following way:

ẑ =
[

ẑl

ẑd

]
, ξ =

[
ξl

ξd

]
, W =

[
W l W d

]
.

Also, if v∗ =
[

vl
∗

vd
∗

]
is the vector solution slack of the problem (3) and there is the index

set σ = {i : 1 ≤ i ≤ d, (vd
∗)

i > 0}, then the value of β∗ can be determined using the
following relation [15]:

β∗ =

{
max
i∈σ

ẑd
i +W T

i (WlW
T
l )−1Wl(ẑ

l
∗−ẑl)

(vd
∗)i

, σ 6= ∅,
α > −∞, σ = ∅,

where α is an arbitrary number.

5. NUMERICAL RESULTS AND ALGORITHM

In each iteration of the process (13), one concave, piecewise quadratic, unconstrained
maximization problem is solved. For solving it, the generalized Newton method can be
used. As is known, the objective function of the above problem is only once-differentiable
and the concept of generalized Hessian is used for this problem. It is known that the
objective function’s gradient of the problem (12) is

∇pS(p, β, ẑ, ξ) = q −W (ẑ + WT p + βξ)+,

and also
‖∇pS(p, β, ẑ, ξ)−∇pS(p̄, β, ẑ, ξ)‖
= ‖q −W (ẑ + WT p + βξ)+ − (q −W (ẑ + WT p̄ + βξ)+)‖
≤ ‖W‖‖(ẑ + WT p̄ + βξ)+ − (ẑ + WT p + βξ)+)‖
≤ ‖W‖‖WT ‖‖p− p̄‖.

This means that the gradient function satisfies the Lipschitz condition with the constant
k = ‖W‖‖WT ‖ . Therefore, generalized Hessian exists everywhere [17, 22] and is the
symmetric matrix n2 × n2 [15] as follows:

∂2
pS(p, β, ẑ, ξ) = −WD(κ)WT ,

where D(κ) is the diagonal matrix where the ith-diagonal element κ equals to 1, if
ẑ + WT p + βξ > 0 and equals to 0, if ẑ + WT p + βξ ≤ 0.
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In the algorithm, the generalized Hessian may be singular, thus we used a modified
Newton. The direction in each iteration for solving (11) is obtained through the following
relation:

ds = −(∂2
pS(p, β, ẑ, ξ)− δIn2)

−1(∇pS(p, β, ẑ, ξ)), (14)
ps+1 = ps + λsds,

where δ is a small positive number and In2 is the identity matrix of order n2, λs is the
suitable step length that Armijo algorithm [1, 24] is used for determining it.

As mentioned in Section 1, because of the large number of recourse problems, the
speed of algorithm for solving these problems and obtaining the gradients of smooth
approximated recourse functions is of fundamental importance; and as mentioned in
Section 3, its gradient depends on its normal solution. In this work, augmented La-
grangian method is used for solving the recourse problems and obtaining their normal
solutions. The advantage of this method is solving an unconstrained problem, which
accelerates obtaining the normal solution for the recourse problems.

The proposed algorithm was applied to solve some recourse problems. Table 1 com-
pares this algorithm with CPLEX v. 12.1 solver for quadratic convex programming
problems (6). As is evident from Table (1), most of recourse problems could be solved
more successful by the algorithm is based on augmented Lagrangian method and gen-
eralized Newton method (ALGN) than CPLEX package. This algorithm give us high
accuracy and the solution with minimum norm in minimum time. Also we can find
that CPLEX is better than the algorithm proposed for some recourse problems that the
matrix are approximately square (Ex. line 4–8).

The test generator generates recourse problems. These problems are generated using
the following MATLAB code:
———————————————————————————————-
%Sgen: Generate random solvable recourse problems:
%Input: m,n,d(ensity); Output: W,q,ξ;
m=input(’Enter n2:’)
n=input(’Enter m2:’)
d=input(’Enter d:’)
pl=inline(’(abs(x)+x)/2’)
W=sprand(n2,m2,d);W=100*(W-0.5*spones(W));
z=sparse(10*pl(rand(m2,1)));
q=W*z;
y=spdiags((sign(pl(rand(n2,1)-rand(n2,1)))),0,n2,n2)
*5*((rand(n2,1)-rand(n2,1)));
ξ=W’*y-10*spdiags((ones(m2,1)-sign(z)),0,m2,m2)*ones(m2,1));
format short e; nnz(W)/prod(size(W))
—————————————————————————————————
The algorithm considered for solving several recourse problems was run on a computer
with 2.5 dual-core CPU and 4 GB memory in MATLAB 7.8 programming environment.
Also, in the generated problems, recourse matrix W is the Sparse matrix (n2×m2) with
the density d. The constants β and δ in the above algorithm in (14) were selected 1 and
10−8, respectively.
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recourse problem
solver ‖Wz− q‖∞ |Q̂(ξ)− ξTz| ‖z‖ time

n2 ×m2 × d

100× 500× 0.1 ALGN 8.3230e-011 5.8208e-011 6.5162e+001 1.9374e-002
CPLEX 9.1927e-010 1.0801e-008 6.5162e+001 1.5094e-001

100× 1000× 0.01 ALGN 1.2629e-011 7.6398e-011 6.7950e+001 1.1986e-002
CPLEX 1.0232e-012 9.0949e-013 6.7950e+001 1.6749e-001

400× 1400× 0.1 ALGN 7.3631e-010 2.6193e-010 1.3352e+002 1.1299e+001
CPLEX 3.1957e-009 8.0618e-008 1.3352e+002 2.7906e-001

900× 1000× 0.1 ALGN 1.1282e-008 4.9477e-010 8.8432e+001 6.7239e+000
CPLEX 8.0490e-011 7.1850e-011 8.8429e+001 5.9187e-001

1000× 3000× 0.06 ALGN 2.6132e-009 1.0128e-008 2.0147e+002 3.0346e+000
CPLEX 1.0914e-011 3.7835e-010 2.0147e+002 9.6612e-001

2000× 3000× 0.08 ALGN 6.9426e-007 3.9482e-006 2.6776e+002 4.4673e+001
CPLEX 9.8368e-011 6.4028e-010 2.6764e+002 4.9726e+000

2000× 2800× 0.008 ALGN 3.9826e-010 1.4552e-011 1.3296e+002 3.0546e+001
CPLEX 6.8212e-013 2.7285e-012 1.3292e+002 3.4133e+000

2500× 3200× 0.08 ALGN 5.6676e-008 3.5730e-008 1.4959e+002 7.3602e+001
CPLEX 8.1855e-012 7.2760e-012 1.4958e+002 8.6231e+000

10× 1e4× 0.01 ALGN 1.1928e-011 9.5497e-012 9.2708e+000 2.5644e-002
CPLEX 3.4106e-013 4.5475e-013 9.2747e+000 1.8510e-001

10× 1e5× 0.01 ALGN 7.2608e-011 4.6384e-011 1.2633e+001 2.6799e-001
CPLEX 2.7875e-003 9.1892e-004 1.2633e+001 3.2820e-001

10× 1e6× 0.01 ALGN 2.3571e-010 5.9117e-011 1.2860e+001 3.9303e+000
CPLEX 1.8526e-002 1.2776e-003 1.2995e+001 2.4763e+000

1000× 10000× 0.03 ALGN 1.9374e-009 2.2555e-009 8.5676e+001 2.4149e+000
CPLEX 4.0927e-012 1.4552e-011 8.5677e+001 1.3033e+000

2000× 8000× 0.01 ALGN 5.3298e-009 1.8084e-008 1.1423e+002 1.3925e+001
CPLEX 9.0949e-013 6.5484e-011 1.1423e+002 4.4492e+000

1000× 2e5× 0.01 ALGN 1.0538e-008 2.0198e-008 9.8036e+001 6.3172e+000
CPLEX 2.4921e-004 1.0984e-003 9.8051e+001 6.5342e+000

100× 1e5× 0.002 ALGN 6.6768e-010 2.9468e-010 3.6251e+001 2.3436e-001
CPLEX 5.7040e-004 1.5700e-003 3.6252e+001 3.8267e-001

100× 1e5× 0.0005 ALGN 1.2057e-011 9.5497e-012 3.0085e+001 3.3800e-001
CPLEX 1.7345e-004 1.8042e-004 3.0085e+001 3.3691e-001

1e3× 1e5× 0.0002 ALGN 3.1754e-008 2.7171e-010 1.0944e+002 3.6869e-001
CPLEX 7.4164e-005 1.3418e-004 1.0944e+002 5.0654e-001

1e3× 2e3× 0.0001 ALGN 5.0690e-013 5.6843e-014 3.7841e+001 8.1997e-002
CPLEX 5.6843e-014 1.4211e-014 3.7841e+001 1.3760e-001

1e3× 1.5e3× 0.00006 ALGN 4 8.4058e-014 3.5527e-015 8.3717e+000 6.9437e-003
CPLEX 0 3.5527e-015 8.3717e+000 1.3759e-001

1000× 1100× 0.00002 ALGN 5.5655e-013 1.7053e-013 3.8148e+001 2.2785e-002
CPLEX 1.1369e-013 1.1369e-013 3.8148e+001 1.4130e-001

1e3× 1e5× 0.1 ALGN 3.3084e-008 2.9919e-007 4.6576e+000 4.9411e+001
CPLEX 4.9943e-006 4.6461e-006 4.6579e+000 4.2090e+001

1e3× 1e6× 0.001 ALGN 2.9583e-010 1.5280e-010 1.2741e+002 4.9994e+000
CPLEX 4.9070e-005 2.5601e-006 1.2763e+002 8.2551e+000

1e3× 1e6× 0.005 ALGN 1.4971e-008 9.1677e-010 1.2700e+002 1.5840e+001
CPLEX 5.8208e-011 5.4206e-010 1.2777e+002 1.9866e+001

1e3× 1e6× 0.00008 ALGN 2.5196e-010 3.6925e-010 1.1885e+002 2.8980e+000
CPLEX 1.2800e-005 3.4102e-006 1.1904e+002 2.6511e+000

1e3× 1e6× 0.000006 ALGN 2.8258e-011 2.3192e-011 1.0308e+002 3.3927e+000
CPLEX 3.4106e-009 8.1586e-009 1.0313e+002 2.1842e+000

Tab. 1. Comparative between augmented Lagranigian method

(ALGN) and CPLEX solver.
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In the following table, the first column indicates the size and density of matrix W ,
the third column indicates the feasibility of the primal problem (5) and the last column
demonstrates time duration for solving this problem.1

6. CONCLUSION

The stochastic linear programming problems include many linear sub-problems. There-
fore, the speed of solving inner sub-problems and obtaining their normal solution is
of prime importance. In this paper, generalized Newton method based on augmented
Lagrangian algorithm was proposed and used for solving linear sub-problems. As the
numerical results show, this algorithm has appropriate speed in most of the problems
and, specifically this can be observed in recourse problems with a rectangular matrix
of coefficients (WT ) in which the number of constraints (m2) is noticeably more than
the number of variables (n2). The more challenging is solving the problems which their
coefficient matrix is square (the numbers of constraints and variables get closer to each
other) and more time is needed by the algorithm for solving the problem. In some large
square problems, the volume of calculation becomes more than the memory (the last row
of the table); this issue and the high number of recourse problems in stochastic linear
programming justify the requirement of an attempt for parallelizing the algorithm and
its parallel application on the computers.

(Received November 30, 2011)
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