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DISTRIBUTIONAL CHAOS FOR FLOWS

Yunhua Zhou, Chongqing

(Received February 16, 2012)

Abstract. Schweizer and Smítal introduced the distributional chaos for continuous maps
of the interval in B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition
of dynamical systems on the interval. Trans. Amer. Math. Soc. 344 (1994), 737–854. In this
paper, we discuss the distributional chaos DC1–DC3 for flows on compact metric spaces.
We prove that both the distributional chaos DC1 and DC2 of a flow are equivalent to the
time-1 maps and so some properties of DC1 and DC2 for discrete systems also hold for flows.
However, we prove that DC2 and DC3 are not invariants of equivalent flows although DC2
is a topological conjugacy invariant in discrete case.

Keywords: distributional chaos, flow, invariant

MSC 2010 : 37B99, 37B05, 37E25

1. Introduction

Let (M,d) be a compact metric space and ϕt : (M,d) → (M,d) (t ∈ R) a continu-

ous flow. {ϕt}t∈R is also called a continuous dynamical system and is denoted briefly

by ϕ. For any two points x, y ∈M and T ∈ R, we define the distribution function

ΦT
xy : R

+ ∪ {0} → [0, 1],

ε 7→
1

T
· (m{t ∈ [0, T ] : d(ϕt(x), ϕt(y)) < ε}),

where m is the Lebesgue measure on R. We also set

Φxy(ε) = lim inf
T→∞

ΦT
xy(ε) and Φ∗

xy(ε) = lim sup
T→∞

ΦT
xy(ε).
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It is obvious that

(1.1) 0 6 Φxy(ε) 6 Φ∗

xy(ε) 6 1, ∀ε > 0.

Now we give the definitions of distributional chaos for the flow ϕt.

Definition 1.1. Let ϕt : (M,d) → (M,d) (t ∈ R) be a continuous flow of com-

pact metric space. Then

(1) ϕ exhibits distributional chaos of type 1, briefly denoted by DC1, if there are

two points x, y ∈ M such that Φ∗

xy(ε) = 1, ∀ε > 0 and Φxy(ε0) = 0 for some

ε0 > 0;

(2) ϕ exhibits distributional chaos of type 2, briefly denoted by DC2, if there are

two points x, y ∈ M such that Φ∗

xy(ε) = 1, ∀ε > 0 and Φxy(ε0) < Φ∗

xy(ε0) for

some ε0 > 0;

(3) ϕ exhibits distributional chaos of type 3, briefly denoted by DC3, if there are

two points x, y ∈M such that Φxy(ε) < Φ∗

xy(ε) for all ε in an interval.

From the definitions, it is obvious that DC1 ⇒ DC2 ⇒ DC3.

The definitions of distributional chaos of flow follow some basic ideas of discrete

systems (e.g. see [1], [4], [5]). In fact, we will prove, in Section 2 that both the

distributional chaos DC1 and DC2 of a flow are equivalent to the time-1 maps and

so some properties of DC1 and DC2 for discrete systems also hold for flows.

For the discrete dynamical systems, both DC1 and DC2 are topological conjugacy

invariants [5], but DC3 is not an invariant [1]. However, we will show that neither

DC2 nor DC3 is an invariant for equivalent flows in Section 3.

2. DC1 and DC2 of a flow are equivalent to the time-1 maps

Given a continuous flow ϕt : (M,d) → (M,d) (t ∈ R), it is well known that the

time-1 map ϕ1 is a homeomorphism of M and ϕ
i
1 = ϕi for all integer i.

Theorem 2.1. For i = 1, 2, ϕ is DCi if and only if ϕ1 is DCi.

P r o o f. We only prove the case i = 1; the other case (i = 2) can be proved

similarly.

For the discrete system ϕ1, let the distributional function be

Ψn
xy(ε) =

#{0 6 i 6 n− 1: d(ϕi
1(x), ϕ

i
1(y)) < ε}

n
,

where n ∈ Z, ε > 0 and x, y ∈M .
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We denote

Ψxy(ε) = lim inf
n→∞

Ψn
xy(ε) and Ψ∗

xy(ε) = lim sup
n→∞

Ψn
xy(ε).

Recall that (e.g. see [1]) ϕ1 is DC1 if and only if there are two points x, y ∈ M

such that Ψ∗

xy(ε) = 1, ∀ε > 0 and Ψxy(ε0) = 0 for some ε0 > 0.

We first prove that for any ε > 0 there is a positive number ε1 such that

(2.1) Ψn
xy(ε1) 6 Φn

xy(ε),Φ
n
xy(ε1) 6

n+ 1

n
Ψn+1

xy (ε), ∀x, y ∈M and ∀n ∈ N.

In fact, for given ε > 0, we select ε1 satisfying that, for any u, v ∈M ,

d(u, v) < ε1 ⇒ d(ϕt(u), ϕt(v)) < ε, ∀t ∈ [0, 1].

For x, y ∈M and i ∈ N we denote

Ai(ε) = {0 6 j 6 i− 1: d(ϕj
1(x), ϕ

j
1(y)) < ε}

and

ai(ε) = m({t ∈ [i, i+ 1]: d(ϕt(x), ϕt(y)) < ε}).

Then

Φn
xy(ε) =

1

n

n−1
∑

i=0

ai(ε), Ψn
xy(ε) =

#An(ε)

n
.

If there is an i ∈ An(ε1), then d(ϕ
i
1(x), ϕ

i
1(y)) < ε1. By the selection of ε1, we have

d(ϕi+t(x), ϕi+t(y)) < ε, ∀t ∈ [0, 1].

This implies that ai(ε) = 1. That is to say, #An(ε1) 6
n−1
∑

i=0

ai(ε) and hence

Ψn
xy(ε1) 6 Φn

xy(ε).

On the other hand, if there is an i ∈ {0, 1, . . . , n − 1} such that ai(ε1) > 0, then

there must be a t ∈ [i, i + 1] satisfying that d(ϕt(x), ϕt(y)) < ε1. By the selection

of ε1 again, we can conclude i+ 1 ∈ An+1(ε). That is to say,
n−1
∑

i=0

ai(ε1) 6 #An+1(ε)

and hence

Φn
xy(ε1) 6

n+ 1

n
Ψn+1

xy (ε).

So we proved (2.1).
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Now we prove that ϕ is DC1 if and only if ϕ1 is DC1. We only prove that the

DC1 of ϕ implies that ϕ1 is DC1. The other implication can be proved similarly and

we omit its proof.

Supposing that ϕ is DC1, by definition there are two points x, y ∈ M such that

Φ∗

xy(ε) = 1, ∀ε > 0 and Φxy(ε0) = 0 for some ε0 > 0. For any ε′ > 0, by (2.1) there

is ε1 such that Φn
xy(ε1) 6 (n+ 1)n−1Ψn+1

xy (ε′). Noting (1.1) and (2.1), we have

(2.2) 1 = Φ∗

xy(ε1) 6 Ψ∗

xy(ε′) 6 1, ∀ε′ > 0.

On the other hand, for the given ε0 there is another ε1 such that Ψn
xy(ε1) 6

Φn
xy(ε0), ∀n ∈ N. Taking the inferior limit as n tends to infinity and noting the

inequalities (1.1) we get

(2.3) Ψxy(ε1) = 0.

By (2.2) and (2.3), one can conclude that ϕ1 is DC1. Then we complete the proof.

�

For a flow ϕ, the topological entropy h(ϕ) of ϕ is the topological entropy of the

time-1 map of ϕ. That is to say, h(ϕ) = h(ϕ1). As a corollary of Theorem 2.1, we

can extend the main result (Theorem 1.1) of [3] to the flow case.

Corollary 2.1. If a flow ϕ has positive topological entropy, then ϕ is DC2.

3. DC2 and DC3 are not invariants of equivalent flows

Two flows ϕt : M → M and ψt : N → N defined on metric spaces are equivalent

if there exists a homeomorphism π : M → N that sends each orbit of ϕ onto an orbit

of ψ while preserving the time orientation. In this section, we will prove that DC2

and DC3 are not invariants for two equivalent flows.

Theorem 3.1. There exist two equivalent flows ψ and ϕ on a compact space M

such that ψ is DC2 (and hence is DC3) but ϕ is not DC3 (and hence is not DC2).

P r o o f. We will construct two equivalent flows ψ and ϕ satisfying the theorem.

The essential construction is included in [6] and we mainly prove that this is suitable

for our goal.

By [6], there are two (smooth) flows ψ and ϕ on a compact space M (in fact,

M is a smooth manifold) such that ψ is a time-changed flow of ϕ (and hence ψ is

equivalent to ϕ) and both flows have only the same singular point p. Furthermore,
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h(ψ) > 0 and the Dirac measure µp is the only invariant measure of ϕ. Then, by

Corollary 2.1, ψ is DC2 since h(ψ) > 0.

Let us note that if

(3.1) Φxy(ε) = 1, ∀x, y ∈M and ∀ε > 0,

then there are no x, y ∈M and ε0 > 0 such that Φxy(ε0) < Φ∗

xy(ε0). So, to prove ϕ

is not DC3, we only need to prove that (3.1) holds.

For proving (3.1), we need the following lemma.

Lemma 3.1. Let ζ be a continuous function on M and λ ∈ R. If
∫

M
ζ(x) dµ > λ

for every ϕ-invariant measure µ, then for any x ∈M there is L(x) such that

1

T

∫ T

0

ζ(ϕt(x)) dt > λ, ∀T > L(x).

This lemma is essentially the flow version of Lemma 2 of [2] and we omit its easy

proof.

Given ε > 0, we define a continuous function ξ : M → [0, 1] such that ξ(v) = 1 if

d(v, p) 6 1

4
ε and ξ(v) = 0 if d(v, p) > 1

2
ε.

Since the Dirac measure µp is the unique ϕ-invariant measure and
∫

M
ξ(x) dµp = 1,

by Lemma 3.1, for any x ∈M and any δ > 0 small enough, there is L(x) such that

1

T

∫ T

0

ξ(ϕt(x)) dt > 1 − δ, ∀T > L(x).

Then we have

1

T
m

({

t ∈ [0, T ] : d(ϕt(x), p) <
ε

2

})

>
1

T

∫ T

0

ξ(ϕt(x)) dt > 1 − δ, ∀T > L(x).

Similarly, for any y ∈M , there is L(y) such that

1

T
m

({

t ∈ [0, T ] : d(ϕt(y), p) <
ε

2

})

> 1 − δ, ∀T > L(y).

So, for Lxy = max{L(x), L(y)} and any T > Lxy, we have

m
({

t ∈ [0, T ] : d(ϕt(x), p) <
ε

2

}

∩
{

t ∈ [0, T ] : d(ϕt(y), p) <
ε

2

})

> (1 − 2δ)T.

Noting that d(ϕt(x), ϕt(y)) 6 d(ϕt(x), p)+d(ϕt(y), p) and using the above inequality,

one can conclude

m({t ∈ [0, T ] : d(ϕt(x), ϕt(y)) < ε}) > (1 − 2δ)T, ∀T > Lxy.
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So,

Φxy(ε) = lim inf
T→∞

1

T
m({t ∈ [0, T ] : d(ϕt(x), ϕt(y)) < ε}) > 1 − 2δ.

By the arbitrariness of δ and (1.1), we have

Φxy(ε) = 1.

This is exactly (3.1) and we have completed the proof. �
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