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Abstract. The k-convex functions are the viscosity subsolutions to the fully nonlinear
elliptic equations Fk[u] = 0, where Fk[u] is the elementary symmetric function of order k,
1 6 k 6 n, of the eigenvalues of the Hessian matrixD

2
u. For example, F1[u] is the Laplacian

∆u and Fn[u] is the real Monge-Ampère operator detD
2
u, while 1-convex functions and

n-convex functions are subharmonic and convex in the classical sense, respectively. In this
paper, we establish an approximation theorem for negative k-convex functions, and give
several estimates for the mixed k-Hessian operator. Applications of these estimates to the
k-Green functions are also established.
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1. Introduction

The k-Hessian operator Fk and the k-Hessian measure µk were introduced by

N. S. Trudinger and X. J.Wang for k-convex functions. In [9], they proved the weak

continuity of the associated k-Hessian measure µk with respect to the convergence

in L1, which is generalized in [10] to the weak continuity of the mixed k-Hessian

measure µ̃k associated with k-tuples of k-convex functions. And they gave some ap-

plications to the corresponding capacity, quasicontinuity and the Dirichlet problem.

On the other hand, the pluripotential theory in several complex variables, especially

the complex Monge-Ampère operator, has attracted considerable studies. There are

many applications to complex analysis, complex differential geometry and number

theory (cf. [3], [6] and references therein). It is interesting to use tools and ideas

This research was supported by National Nature Science Foundation of China (grant no.
11171298).
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from the theory of the complex Monge-Ampère operator to study the real k-Hessian

operator. In [8], [9], [10] N. S. Trudinger, X. J.Wang and D. Labutin have given some

corresponding results in pluripotential theory.

The weak continuity of the k-Hessian measure with respect to the convergence

in L1 is not valid for the complex Monge-Ampère measure in the plurisubharmonic

case. With help of this stronger result for the k-Hessian operator, it is natural to

ask whether we can prove some new results for k-convex functions. The purpose

of this paper is to establish a global approximation theorem for negative k-convex

functions, and give several estimates for the mixed k-Hessian operator. Moreover,

we show how these estimates are applied to the convergence of the k-Green func-

tion.

We shall adopt definitions and notation from [9] and [10]. Let Ω be an open

set in the n-dimensional Euclidean space R
n. For k = 1, . . . , n and u ∈ C2(Ω),

let λ = (λ1, . . . , λn) denote the eigenvalues of the Hessian matrix of the second

derivatives D2u and let Sk be the kth elementary symmetric function on R
n, given

by

(1.1) Sk(λ) =
∑

i1<...<ik

λi1 . . . λik
.

The k-Hessian operator Fk is defined by Fk[u] = Sk(λ(D2u)).We may write Fk[u] =

[D2u]k, where for any n × n matrix A, [A]k denotes the sum of its k × k principal

minors. F1[u] = ∆u is the Laplace operator and Fn[u] = detD2u is the real Monge-

Ampère operator.

In the viscosity sense, an upper semi-continuous function, u : Ω → [−∞,∞) is

called k-convex in Ω if Fk[q] > 0 for all quadratic polynomials q for which the

difference u− q has a finite local maximum in Ω. In particular, a function u ∈ C2(Ω)

is k-convex in Ω if and only if Fj [u] > 0 in Ω, j = 1, . . . , k. A k-convex function is

called proper if it does not assume the value −∞ identically on any component of Ω.

We denote by Φk(Ω) the class of proper k-convex functions in Ω. The definition of

a 1-convex function is equivalent to the usual definition of a subharmonic function.

For j 6 k, Φk(Ω) ⊆ Φj(Ω). And a function u ∈ Φn(Ω) if and only if it is convex on

each component of Ω. A k-convex function is therefore subharmonic, in particular,

it is locally integrable. Corresponding to the k-Hessian operator Fk, there exists

a mixed k-Hessian operator F̃k in [10], determined by the polarized form S̃k of the k-

homogeneous polynomial Sk. For u1, . . . , uk ∈ C2(Ω), the mixed k-Hessian operator

is defined by

(1.2) F̃k[u1, . . . , uk] = S̃k(λ(D2u1), . . . , λ(D2uk)).
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The k-Hessian measure associated with a function u ∈ Φk(Ω) is a non-negative

Borel measure defined by

(1.3)

∫

Ω

η dµk[u] = lim
h→0

∫

Ω

ηFk[uh]

for any η ∈ C∞

0 (Ω), where uh is the smooth regularization of u. The mixed k-Hessian

measure associated with u1, . . . , uk ∈ Φk(Ω) is defined by

(1.4)

∫

Ω

η dµ̃k[u1, . . . , uk] = lim
h→0

∫

Ω

ηF̃k[u1
h, . . . , uk

h]

for any η ∈ C∞

0 (Ω), where ui
h is the smooth regularization of u

i, i = 1, . . . , k. The

measure is independent of the choice of the smooth regularization ui
h of u

i by virtue

of the approximation theorem (cf. Theorem 2.4 in [10]).

We say a bounded domain Ω ⊆ R
n is k-hyperconvex if it is connected and there is

a continuous k-convex function ̺ : Ω → [−∞, 0) such that the set {x ∈ Ω: ̺(x) < c}

is a relatively compact subset of Ω, for each c ∈ (−∞, 0). A function ̺ is called an

exhaustion function of Ω. It follows that ̺(x) → 0 as x → ∂Ω. Note that ̺ may

assume −∞ as a value. In this paper, Ω will always denote a k-hyperconvex domain.

We establish a global approximation of negative k-convex functions by decreasing

sequences of negative k-convex functions which are continuous on Ω̄, equal to zero

on ∂Ω and have bounded k-Hessian mass. These functions serve as test functions.

Theorem 1.1. For any negative k-convex function u, there is a decreasing se-

quence of functions uj ∈ Φk(Ω)∩C(Ω̄) with uj |∂Ω = 0, j ∈ N, µk[uj](Ω) < +∞, and

lim
j→+∞

uj(x) = u(x) for x ∈ Ω.

We remark here that the same approximation of negative plurisubharmonic func-

tions was given by U.Cegrell in [3]. And F.Wikström showed in [13] that upper

bounded plurisubharmonic functions can be approximated from above by plurisub-

harmonic functions continuous up to the boundary on B-regular domains.

The following estimates were established for the complex Monge-Ampère operator

by Z.Blocki [1], U. Cegrell [3], and U.Cegrell, L. Persson [4], respectively. Here we

give these estimates for the mixed k-Hessian operator. They are a different type of

relationship between the k-Hessian operator and the mixed k-Hessian operator.

Theorem 1.2. Suppose that u, h are k-convex functions satisfying u 6 h in Ω,

and lim
x→∂Ω

(h(x) − u(x)) = 0, v1, . . . , vk are nonpositive bounded k-convex functions

in Ω. Then we have

(1.5)

∫

Ω

(h − u)k dµ̃k[v1, . . . , vk] 6 k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω

|vk| dµk[u].
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Theorem 1.3. Suppose that h, u1, u2, v1, . . . , vk−p−q are nonpositive k-convex

functions of x in Ω, 1 6 p, q 6 k, p + q 6 k, each function converges to zero as x

tends to ∂Ω and µk[ui](Ω) < +∞, i = 1, 2, µk[vj ](Ω) < +∞, j = 1, . . . , k − p − q.

Then

(1.6)

∫

(−h) dµ̃k[u1, . . . , u1
︸ ︷︷ ︸

p

, u2, . . . , u2
︸ ︷︷ ︸

q

, v1, . . . , vk−p−q]

6

( ∫

(−h) dµ̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q

, v1, . . . , vk−p−q]

)p/(p+q)

×

( ∫

(−h) dµ̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q

, v1, . . . , vk−p−q ]

)q/(p+q)

.

Corollary 1.1. Let h, u1, . . . , uk be nonpositive k-convex functions of x in Ω

satisfying µk[ui](Ω) < +∞, i = 1, . . . , k. Suppose that each function converges to

zero as x tends to ∂Ω. Then

(1.7)

∫

(−h) dµ̃k[u1, . . . , uk] 6

( ∫

(−h) dµk[u1]

)1/k

. . .

( ∫

(−h) dµk[uk]

)1/k

.

Theorem 1.4. Suppose that u, v are bounded k-convex functions satisfying

lim
x→a∈∂Ω

u(x) = lim
x→a∈∂Ω

v(x) = 0. Then for p > 1, 0 6 j 6 k,

(1.8)

∫

(−u)p dµ̃k[u, . . . , u
︸ ︷︷ ︸

j

, v, . . . , v]

6 Cp,j

( ∫

(−u)p dµk[u]

)(p+j)/(k+p)( ∫

(−v)p dµk[v]

)(k−j)/(k+p)

where Cp,j = p(p+j)(k−j)/(p−1) for p > 1 and C1,j = exp[(1 + j)(k − j)].

For a ∈ Ω, k < n/2, the k-Green function with a pole at a is defined as gΩ(x, a) =

sup{u(x) : u ∈ Φk(Ω, [−∞, 0)); u has a pole at a of order (2−n/k)}. Here we say a k-

convex function u has a pole at a of order (2−n/k), if u satisfies u(x)+‖x−a‖2−n/k 6

O(1) as x → a. For k = n/2, the k-Green function with a pole at a is defined as

gΩ(x, a) = sup{u(x) : u ∈ Φk(Ω, [−∞, 0)); u(x) − log ‖x − a‖ 6 O(1) as x → a}.

There is no k-Green function defined in the case of k > n/2, since the fundamental

solution to the k-Hessian operator Fk in this case is given by ‖x − a‖2−n/k which

is bounded (cf. [9]). See [12, Appendix A] for more information about k-Green

functions.
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We proved in [12] that gΩ(x, a) → 0 as x → ∂Ω. We now consider the following

question: given a point y ∈ Ω and a point x0 ∈ ∂Ω, is it true that lim
n→∞

gΩ(y, xn) = 0

for every sequence {xn} tending to x0? The corresponding question for the classical

Green function G is of no interest, since G is symmetrical, that is, G(x, y) = G(y, x)

for every x and y. However, it is unknown whether the k-Green function is symmet-

rical or not. We can, however, prove the following weaker results.

The k-Hessian capacity of the Borel set E ⋐ Ω in R
n is defined by

(1.9) Capk(E) = Capk(E, Ω) = sup{µk[u](E) : u ∈ Φk(Ω), −1 6 u 6 0}

(cf. [10]). For uj, u ∈ Φk(Ω), we say that a sequence {uj} converges to u in capacity

if for any ε > 0 and relatively compact subset K ⋐ Ω,

(1.10) lim
j→∞

Capk(K ∩ {|uj − u| > ε}) = 0.

Proposition 1.1. Let k < n/2 and let {xj} be a sequence of points in Ω tending

to ∂Ω as j → ∞. Then gΩ(·, xj) converges to zero in capacity as j → ∞.

Proposition 1.2. Suppose that k < n/2, and {xn} is a sequence of points in Ω

tending to x0 ∈ ∂Ω as n → ∞. Then there exists a k-polar set E ⊆ Ω (depending

on the sequence) such that

lim
n→∞

gΩ(w, xn) = 0 for every w ∈ Ω \ E.

The above two propositions for the complex Monge-Ampère operator were proved

by R.Czyż [5], M.Carlehed, U.Cegrell and F.Wikström [2], respectively. Although

we use methods from pluripotential theory, our results are completely new for the k-

Hessian operator and some of them are even stronger. The complex Monge-Ampère

operator can be written as (ddcu)n in terms of the operators d and dc. This is very

important in establishing the properties of the complex Monge-Ampère operator

since it allows us to integrate by parts. Although we cannot write the k-Hessian

operator in the form of exterior differentials, the k-Hessian operator is an operator

of divergence form, and so we can also integrate by parts. This is an essential reason

why we can prove some k-Hessian versions of results in the complex pluripotential

theory.

The paper is organized as follows. In Section 2, we establish the approximation

theorem. The relative extremal function plays a crucial role in our proof. The results

about the k-Hessian operator and the mixed k-Hessian operator we need are collected

in Section 3, and Theorems 1.2, 1.3, 1.4 and Corollary 1.1 are proved in Section 3. In
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the last Section, our estimates are applied to the k-Green function. Proposition 1.1

and 1.2 are proved.

2. Approximation of k-convex functions

The purpose of this section is to prove Theorem 1.1. The construction of the

approximation sequence follows the process in [3]. The main difference between our

proof and the proof in the plurisubharmonic case in [3] lies in the difficulty of finding

a continuous k-convex function which vanishes on ∂Ω and has bounded k-Hessian

mass. In the case of plurisubharmonic functions, this is a classical result due to

J. B.Walsh [11].

Analogously to the potential theory for subharmonic functions, D. Labutin in-

troduced the regularized relative extremal function for a k-convex function in [8].

For a relatively compact set E in Ω, we denote by h∗

E,Ω its regularized relative ex-

tremal function, which was defined as the upper semi-continuous regularization of

the relative extremal function hE,Ω:

(2.1) hE,Ω(x) = sup{u(x) : u ∈ Φk(Ω), u 6 0, u|E 6 −1}, x ∈ Ω.

If E1 ⊆ E2 ⊆ Ω1 ⊆ Ω2, then

(2.2) hE1,Ω1
> hE2,Ω1

> hE2,Ω2
.

The following lemmas concern some properties of k-convex functions, which are

used throughout the paper (cf. [12] for the proof).

Lemma 2.1. (1) Suppose {uα}α∈A is a sequence of k-convex functions in Ω such

that its upper envelope u = sup
α∈A

uα is locally bounded from above. Then the upper

semi-continuous regularization u∗ is k-convex in Ω.

(2) If u, v are k-convex in Ω, then max{u, v} is also k-convex.

(3) Suppose that Ω is an open set in Rn and Ω̃ is a non-empty proper open subset

of Ω. If u ∈ Φk(Ω), v ∈ Φk(Ω̃), and lim sup
x→y

v(x) 6 u(y) for y ∈ ∂Ω̃ ∩ Ω, then

ω =

{

max{u, v}, on Ω̃,

u, on Ω \ Ω̃,

is a k-convex function in Ω.

Lemma 2.2. Suppose that K ⊆ Ω is a compact set such that h∗

K,Ω ≡ −1 on K.

Then hK,Ω is continuous in Ω.
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P r o o f. Denote h = hK,Ω. Assume that ̺ is an exhaustion function of Ω such

that ̺ < −1 on K, then ̺ 6 h in Ω. For each ε ∈ (0, 1), there exists η > 0 such that

h − ε/2 6 −ε/2 < ̺ in Ω \ Ωη and K ⊆ Ωη, where Ωη = {x ∈ Ω: dist(x, ∂Ω) > η}.

By Lemma 2.1 (1), h∗ is k-convex, thus it is upper semi-continuous. Denote by hδ

the smooth regularization of h, defined on Ωδ, then (h∗)δ decreasingly converges to

h∗ as δ → 0. Note that h∗ = h a.e. in Ω, hence we have (h∗)δ = hδ. By Dini’s

theorem, hδ converges to h∗ uniformly on any compact set. Therefore we can find

a uniform δ > 0 such that hδ − ε < h∗ − ε/2 < ̺ on ∂Ωη and hδ − ε < −1 on K.

Define

gε =

{

̺, in Ω \ Ωη,

max{hδ − ε, ̺}, in Ωη.

Then gε ∈ Φk ∩ C(Ω) by Lemma 2.1 (3) and gε < −1 on K. Thus gε 6 h in Ω. On

the other hand, h − ε 6 max{hδ − ε, ̺} 6 gε at each point in Ω. It follows that h is

continuous in Ω. �

Corollary 2.1. Suppose that K ⊆ Ω is compact and it is the union of a family

of closed balls. Then hK,Ω = h∗

K,Ω is continuous in Ω.

P r o o f. By Lemma 2.2, it suffices to prove that hK,Ω is continuous at ∂K. By

hypothesis, let b ∈ ∂K and choose a ∈ K and R > r > 0 such that b ∈ B(a, r) ⊆ K

and B(a, R) ⊆ Ω. Then by (2.2) we have hK,Ω(x) 6 hB(a,r),Ω(x) 6 hB(a,r),B(a,R)(x)

for x ∈ B(a, R). It follows from the fact shown in [8],

hB(a,r),B(a,R)(x) =







max
{

− 1,
R2−n/k − ‖x − a‖2−n/k

r2−n/k − R2−n/k

}

, for 1 6 k < n/2,

max
{

− 1,
log(‖x − a‖/R)

log(R/r)

}

, for k = n/2,

that lim
x→b

hK,Ω(x) = −1. �

P r o o f of Theorem 1.1. If E = B is a ball, we have µk[hB,Ω] = 0 in Ω \ B,

thus suppµk[hB,Ω] ⋐ B (cf. [8]). By Corollary 2.1, hB,Ω is continuous in Ω. Let ̺

be an exhaustion function of Ω such that C̺ 6 −1 in B. Then C̺ 6 hB,Ω 6 0.

Thus hB,Ω(x) → 0 as x → ∂Ω. Therefore, there exists a function v ∈ Φk(Ω) ∩ C(Ω̄)

with µk[v](Ω) < +∞ and v|∂Ω = 0. Then follow the process in [3] to construct the

approximation sequence. �
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3. Main estimates for k-Hessian operator

Before proving our main estimates, we present some properties of the k-Hessian

operator (see [10] for details).

The mixed k-Hessian operator F̃k defined by (1.2) is linear in each us ∈ C2(Ω),

s = 1, . . . , k, invariant under permutations and F̃k[u, . . . , u] = Fk[u] for any u ∈

C2(Ω). Moreover, we have the explicit representation

(3.1) F̃k[u1, . . . , uk] =
1

k!

∑

δi1...ik

j1...jk
u1

i1j1 . . . uk
ikjk

,

where us
ij = Diju

s, i, j = 1, . . . , n, s = 1, . . . , k, the summation takes over all

multiindexes {i1 . . . ik} and {j1 . . . jk} and δi1...ik

j1...jk
denotes the generalized Kronecker

delta, which vanishes if {i1, . . . , ik} 6= {j1, . . . , jk} and otherwise it is the sign of the

permutation from (i1, . . . , ik) to (j1, . . . , jk). An inequality of G̊arding [7],

(3.2) F̃k[u1, . . . , uk] >

k∏

s=1

(Fk[us])1/k

for u1, . . . , uk ∈ Φk(Ω), guarantees F̃k > 0 on (Φk)k. Let

(3.3) F̃ ij
k [u1, . . . , uk−1] =

∂

∂uk
ij

S̃k(λ(D2u1), . . . , λ(D2uk))

be the coefficient of uk
ij in (3.1). Then we have

(3.4) DiF̃
ij
k [u1, . . . , uk−1] = 0, j = 1, . . . , n,

and

(3.5) F̃ ij
k [u, . . . , u] =

1

k
F ij

k [u], where F ij
k [u] =

∂

∂uij
Sk[λ(D2u].

The matrix [F̃ ij
k ]n×n is positive definite. We can write F̃k in the divergence form

(3.6) F̃k[u1, . . . , uk] =
∑

uk
ijF̃

ij
k [u1, . . . , uk−1] =

∑

Di{F̃
ij
k [u1, . . . , uk−1]Dju

k}.

Now we are ready to prove Theorem 1.2. Here we use ideas from Z.Blocki [1].

P r o o f of Theorem 1.2. Let h̃ = max{u, h− ε}. Then h̃ = u in a neighborhood

of ∂Ω and h̃ − u converges to h − u as ε → 0. We can therefore assume that h = u
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in a neighborhood of ∂Ω. First assume that h, u and vi are smooth. By hypothesis,

we can let ‖vi‖Ω = 1. We want to show that for p = 2, . . . , k,

(3.7)

∫

Ω

(h − u)pF̃k[u, . . . , u, vk−p+1, . . . , vk]

6 p

∫

Ω

(h − u)p−1F̃k[u, . . . , u, vk−p+2, . . . , vk].

By (3.6) and Stokes’ theorem, the left-hand side of (3.7) is equal to

∫

Ω

(h − u)pF̃ ij
k [u, . . . , u, vk−p+2, . . . , vk]Dijvk−p+1

= −

∫

Ω

Di[(h − u)p]F̃ ij
k [u, . . . , u, vk−p+2, . . . , vk]Djvk−p+1

=

∫

Ω

vk−p+1F̃
ij
k [u, . . . , u, vk−p+2, . . . , vk]Dij [(h − u)p]

=

∫

Ω

vk−p+1F̃k[u, . . . , u, (h − u)p, vk−p+2, . . . , vk].

And it follows from −vk−p+1 = ‖vk−p+1‖ 6 1 that the right-hand side of (3.7) is

greater than or equal to p
∫

Ω
(−vk−p+1)(h − u)p−1F̃k[u, . . . , u, vk−p+2, . . . , vk]. For

p = 2, . . . , k, by (3.6) we have

F̃k[u, . . . , u, (h − u)p, vk−p+2, . . . , vk]

= F̃ ij
k [u, . . . , u, vk−p+2, . . . , vk]Dij [(h − u)p]

= F̃ ij
k [u, . . . , u, vk−p+2, . . . , vk]p(p − 1)(h − u)p−2Di(h − u)Dj(h − u)

+ F̃ ij
k [u, . . . , u, vk−p+2, . . . , vk]p(h − u)p−1Dij(h − u)

> p(h − u)p−1(F̃k[u, . . . , u, vk−p+2, . . . , vk, h] − F̃k[u, . . . , u, vk−p+2, . . . , vk, u])

> − p(h − u)p−1F̃k[u, . . . , u, vk−p+2, . . . , vk],

where the first inequality follows from the positivity of the Hessian matrix [F ij
k ]n×n

and the last inequality follows from (3.2). Then we get (3.7). Now by (3.2), (3.7)

and Stokes’ theorem,

∫

Ω

(h − u)kF̃k[v1, . . . , vk] 6 k!

∫

Ω

(h − u)F̃k[u, . . . , u, vk]

= k!

∫

Ω

(−vk)F̃k[u, . . . , u, u − h]

6 k!

∫

Ω

|vk|F̃k[u, . . . , u] = k!

∫

Ω

|vk|Fk[u].
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Now assume u and h are arbitrary and vi still smooth. Let uε and hε be the smooth

regularizations of u, h respectively, such that uε and hε decreasingly converge to u

and h respectively as ε tends to 0. Then uε 6 hε. If we shrink Ω a little, then

uε = hε in a neighborhood of ∂Ω. So by the proof above, we have

(3.8)

∫

Ω

(hε − uε)
kF̃k[v1, . . . , vk] 6 k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω

|vk|Fk[uε].

By Lebesgue’s dominated convergence theorem, the left-hand side of (3.8) tends

to
∫

Ω
(h − u)F̃k[v1, . . . , vk], and by (1.3) the right-hand side of (3.8) tends to

k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω |vk| dµk[u].

Finally, let v1, . . . , vk be arbitrary. Denote by (vi)ε the smooth regularization of

vi, then (vi)ε decreasingly converges to vi as ε tends to 0. Note that

∫

Ω

(h − u)kF̃k[(v1)ε, . . . , (vk)ε] 6 k!‖(v1)ε‖Ω . . . ‖(vk−1)ε‖Ω

∫

Ω

|(vk)ε| dµk[u]

6 k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω

|vk| dµk[u],

so that we have

∫

Ω

(h − u)k dµ̃k[v1, . . . , vk] 6 lim inf
ε→0

∫

Ω

(h − u)kF̃k[(v1)ε, . . . , (vk)ε]

6 k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω

|vk| dµk[u].

�

Let h = 0 in Theorem 1.2. Then we have the following result.

Corollary 3.1. Suppose that u is a nonpositive k-convex function satisfying

lim
x→∂Ω

u(x) = 0, and v1, . . . , vk are nonpositive bounded k-convex functions in Ω.

Then
∫

Ω

|u|k dµ̃k[v1, . . . , vk] 6 k!‖v1‖Ω . . . ‖vk−1‖Ω

∫

Ω

|vk| dµk[u].

Now we use the induction method in [3] to prove Theorem 1.3.

556



P r o o f of Theorem 1.3. First assume that all the functions are smooth. Let us

prove the statement for p = q = 1. By Stokes’ theorem,

∫

(−h)F̃k[u1, u2, v1, . . . , vk−2] =

∫

(−h)F̃ ij
k [u2, v1, . . . , vk−2]Diju1

=

∫

DihDju1F̃
ij
k [u2, v1, . . . , vk−2] =

∫

(−u1)F̃
ij
k [u2, v1, . . . , vk−2]Dijh

=

∫

(−u1)F̃k[h, u2, v1, . . . , vk−2] =

∫

Diu1Dju2F̃
ij
k [h, v1, . . . , vk−2]

6

( ∫

Diu1Dju1F̃
ij
k [h, v1, . . . , vk−2]

)1/2( ∫

Diu2Dju2F̃
ij
k [h, v1, . . . , vk−2]

)1/2

=

( ∫

(−u1)F̃
ij
k [h, v1, . . . , vk−2]Diju1

)1/2( ∫

(−u2)F̃
ij
k [h, v1, . . . , vk−2]Diju2

)1/2

=

( ∫

(−u1)F̃k[h, u1, v1, . . . , vk−2]

)1/2( ∫

(−u2)F̃k[h, u2, v1, . . . , vk−2]

)1/2

=

( ∫

(−h)F̃k[u1, u1, v1, . . . , vk−2]

)1/2( ∫

(−h)F̃k[u2, u2, v1, . . . , vk−2]

)1/2

.

Assume that the theorem is proved for p+q 6 m. We now prove it for p+q 6 m+1.

We first show that the following inequality holds:

(3.9)

∫

(−h)F̃k[u1, u2, . . . , u2
︸ ︷︷ ︸

p+q

, v1, . . . , vk−p−q−1]

6

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)1/(p+q+1)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)(p+q)/(p+q+1)

.

By the assumption above,

∫

(−h)F̃k[u1, u2, . . . , u2
︸ ︷︷ ︸

p+q

, v1, . . . , vk−p−q−1]

6

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q

, u2, v1, . . . , vk−p−q−1]

)1/(p+q)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q

, u2, v1, . . . , vk−p−q−1]

)(p+q−1)/(p+q)
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=

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q−1

, u2, u1, v1, . . . , vk−p−q−1]

)1/(p+q)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)(p+q−1)/(p+q)

6

[( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q

, u1, v1, . . . , vk−p−q−1]

)(p+q−1)/(p+q)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q

, u1, v1, . . . , vk−p−q−1]

)1/(p+q)]1/(p+q)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)(p+q−1)/(p+q)

.

Therefore (3.9) follows. Using (3.9) to complete our induction we arrive at

∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+1

, u2, . . . , u2
︸ ︷︷ ︸

q

, v1, . . . , vk−p−q−1]

6

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q

, u1, v1, . . . , vk−p−q−1]

)p/(p+q)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q

, u1, v1, . . . , vk−p−q−1]

)q/(p+q)

6

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)p/(p+q)

×

[( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)(p+q)/(p+q+1)

×

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)1/(p+q+1)]q/(p+q)

=

( ∫

(−h)F̃k[u1, . . . , u1
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)(p+1)/(p+q+1)

×

( ∫

(−h)F̃k[u2, . . . , u2
︸ ︷︷ ︸

p+q+1

, v1, . . . , vk−p−q−1]

)q/(p+q+1)

.
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Let h̃ = max{h,−ε}, then h̃ = h in a neighborhood of ∂Ω and h̃ − h converges

to −h as ε → 0. We can therefore assume that h vanishes in a neighborhood of ∂Ω.

For arbitrary h, denote by hε the smooth regularization of h such that hε decreasingly

converges to h as ε tends to 0. By shrinking Ω a little, hε vanishes in a neighborhood

of ∂Ω. So the inequality (1.6) with h replaced by hε holds. And by the monotone

convergence theorem, each integral
∫
−hεF̃k converges to

∫
−hF̃k. Thus we get (1.6)

for nonsmooth h. For the same reason, the formula (1.6) with ui, vj replaced by

(ui)ε, (vj)ε respectively holds. By Theorem 2.4 in [10] and Theorem 1.1,

∫

(−h) dµ̃k[(u1)ε, . . . , (u1)ε
︸ ︷︷ ︸

p

, (u2)ε, . . . , (u2)ε
︸ ︷︷ ︸

q

, (v1)ε, . . . , (vk−p−q)ε]

−→

∫

(−h) dµ̃k[u1, . . . , u1
︸ ︷︷ ︸

p

, u2, . . . , u2
︸ ︷︷ ︸

q

, v1, . . . , vk−p−q ], as ε → 0.

The theorem is finally proved. �

P r o o f of Corollary 1.1. It follows from Theorem 1.3 that

∫

(−h) dµ̃k[u1, u2, . . . , u2
︸ ︷︷ ︸

k−1

]

6

( ∫

(−h) dµ̃k[u1, . . . , u1]

)1/k( ∫

(−h) dµ̃k[u2, . . . , u2]

)(k−1)/k

=

( ∫

(−h) dµk[u1]

)1/k( ∫

(−h) dµk[u2]

)(k−1)/k

.

This is the case of Corollary 1.1 for u2 = . . . = uk = u. Suppose that the corollary

is proved for up+1 = . . . = uk = u. We now prove it for up+2 = . . . = uk = u. By

Theorem 1.3,

∫

(−h) dµ̃k[u1, . . . , up, up+1, u, . . . , u]

6

( ∫

(−h) dµ̃k[u1, . . . , up, up+1, . . . , up+1]

)1/(k−p)

×

( ∫

(−h) dµ̃k[u1, . . . , up, u, . . . , u]

)(k−p−1)/(k−p)
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6

[( ∫

(−h) dµk[u1]

)1/k

. . .

( ∫

(−h) dµk[up]

)1/k

×

( ∫

(−h) dµk[up+1]

)(k−p)/k]1/(k−p)

×

[( ∫

(−h) dµk[u1]

)1/k

. . .

( ∫

(−h) dµk[up]

)1/k

×

( ∫

(−h) dµk[u]

)(k−p)/k](k−p−1)/(k−p)

=

( ∫

(−h) dµk[u1]

)1/k

. . .

( ∫

(−h) dµk[up+1]

)1/k( ∫

(−h) dµk[u]

)(k−p−1)/k

.

�

Corollary 3.2. Let u1, . . . , uk be nonpositive k-convex functions of x in Ω satis-

fying µk[ui](Ω) < +∞, i = 1, . . . , k. Suppose that each function converges to zero as

x tends to ∂Ω, then

µ̃k[u1, . . . , uk](Ω) 6 (µk[u1](Ω))1/k . . . (µk[uk](Ω))1/k.

P r o o f of Theorem 1.4. First we assume that both u, v are smooth. By Hölder’s

inequality and using Stokes’ theorem twice we get

(3.10)
∫

(−u)p dµ̃k[u, . . . , u
︸ ︷︷ ︸

j

, v, . . . , v] =

∫

(−u)pF̃ ij
k [u, . . . , u

︸ ︷︷ ︸

j

, v, . . . , v]Dijv

= −

∫

Di[(−u)p]F̃ ij
k [u, . . . , u

︸ ︷︷ ︸

j

, v, . . . , v]Djv =

∫

vF̃ ij
k [u, . . . , u

︸ ︷︷ ︸

j

, v, . . . , v]Dij(−u)p

= p(p − 1)

∫

v(−u)p−2DiuDjuF̃ ij
k [u, . . . , u

︸ ︷︷ ︸

j

, v, . . . , v]

+ p

∫

(−v)(−u)p−1F̃k[u, . . . , u
︸ ︷︷ ︸

j+1

, v, . . . , v]

6 p

∫

(−v)(−u)p−1F̃k[u, . . . , u
︸ ︷︷ ︸

j+1

, v, . . . , v]

6

(

p

∫

(−v)pF̃k[u, . . . , u
︸ ︷︷ ︸

j+1

, v, . . . , v]

)1/p

×

(

p

∫

(−u)pF̃k[u, . . . , u
︸ ︷︷ ︸

j+1

, v, . . . , v]

)(p−1)/p

,

where the first inequality follows from the positivity of the Hessian matrix [F ij
k ]n×n.
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Let

xj = log

∫

(−u)pF̃k[u, . . . , u
︸ ︷︷ ︸

j

, v, . . . , v], yj = log

∫

(−v)pF̃k[v, . . . , v, u, . . . , u
︸ ︷︷ ︸

k−j

].

By using the method in [4, p. 97–99], we then get the conclusion when u, v ∈ C∞.

Let ũ = max{u,−ε}, then ũ = u in a neighborhood of ∂Ω and ũ − u converges

to −u as ε → 0. We can therefore assume that u and v vanish in a neighborhood

of ∂Ω. For nonsmooth u and v, denote by uε and vε the smooth regularizations of

u and v respectively. By shrinking Ω a little, uε and vε vanish in a neighborhood

of ∂Ω. So the inequality (1.8) with u, v replaced by uε, vε respectively is valid. By

the approximation theorem in [10, Theorem 2.6], as ε → 0, we have

∫

(−uε)
p dµ̃k[uε, . . . , uε

︸ ︷︷ ︸

j

, vε, . . . , vε] −→

∫

(−u)p dµ̃k[u, . . . , u
︸ ︷︷ ︸

j

, v, . . . , v],

∫

(−uε)
p dµk[uε] −→

∫

(−u)p dµk[u] and

∫

(−vε)
p dµk[vε] −→

∫

(−v)p dµk[v].

�

4. Applications to k-Green functions

For k < n/2, a ∈ Ω, we proved in [12] that u(x) = gΩ(x, a) is the unique solution

to the Dirichlet problem

(4.1)







u ∈ Φk(Ω) ∩ C(Ω \ {a}),

µk[u] = Cn,kδa, on Ω,

u(x) + ‖x − a‖2−n/k = O(1), as x → a,

u(x) → 0, as x → ∂Ω,

where Cn,k = ωn

(
n
k

)
(n/k − 2)k.

P r o o f of Proposition 1.1. With help of (4.1), Lemma 2.1 and Corollary 3.1, we

can get the conclusion by repeating the process in [5, Theorem 1]. �

D.Labutin defined two types of exceptional sets in [8]. A set E ⊆ R
n is said to

be k-polar if for each point a ∈ E there are a neighborhood B(a, r) and a function

u ∈ Φk(B(a, r)) such that u|E∩B(a,r) = −∞. Let U ⊆ Φk(Ω) be a family of functions

which are locally bounded from above. Define U(x) = sup{u(x) : u ∈ U } for x ∈ Ω.

Denote by U∗ the upper semicontinuous regularization of U . A set N is called k-

negligible if N ⊆ {x ∈ Ω: U(x) < U∗(x)} for some family U as above. D. Labutin
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proved in [8, Theorem 4.2] that the following three statements are equivalent for a set

E ⋐ BR: (1) E is k-polar; (2) E is k-negligible; (3) Capk(E, BR) = 0. D. Labutin also

proved that compact sets with finite (n− 2k)-Hausdorff measure have zero capacity,

thus being k-polar sets (see [8, Section 5] for details).

Now we proceed with the proof of Proposition 1.2. Our method is due to

M.Carlehed, U.Cegrell and F.Wikström [2]. We need the following lemma. Denote

by Φk
0(Ω) the convex cone of proper k-convex functions ϕ with lim

x→∂Ω
ϕ(x) = 0 and

µk[ϕ](Ω) < +∞.

Lemma 4.1. C∞

0 (Ω) ⊆ Φk
0 ∩ C(Ω̄) − Φk

0 ∩ C(Ω̄).

P r o o f. Let χ ∈ C∞

0 (Ω). Then χ + m‖x‖2 is positive and k-convex if the

constant m > 0 is sufficiently large. Let a < inf χ < sup
Ω

(χ + m‖x‖2) < b. Choose

a negative function f ∈ Φk
0 ∩ C(Ω̄). Define g1 = max(χ + m‖x‖2 − b, Cf), where C

is sufficiently large such that Cf < a − b on the support of χ. Then by Lemma 2.1

(2), g1 ∈ Φk
0 ∩ C(Ω̄) and so g2 = max(m‖x‖2 − b, Cf). Then χ = g1 − g2 ∈

Φk
0 ∩ C(Ω̄) − Φk

0 ∩ C(Ω̄). �

P r o o f of Proposition 1.2. Define uj(w) := sup
n>j

gΩ(w, xn). By Lemma 2.1 (1),

u∗

j is a bounded k-convex function and converges to 0 as w tends to ∂Ω. Let h be

a function in Φk
0 ∩ C(Ω̄) and h(xn) → 0 as n → ∞. Denote by (u∗

j )ε the smooth

regularization of u∗

j . By (1.3), (3.6) and Stokes’ theorem, we have

0 6

∫

Ω

(−h) dµk[u∗

j ] = lim
ε→0

∫

Ω

(−h)Fk[(u∗

j )ε]

= lim
ε→0

∫

Ω

(−h)F̃ ij
k [(u∗

j )ε, . . . , (u
∗

j )ε]Dij(u
∗

j )ε

= lim
ε→0

∫

Ω

DihF̃ ij
k [(u∗

j )ε, . . . , (u
∗

j )ε]Dj(u
∗

j )ε

= lim
ε→0

∫

Ω

−(u∗

j )εF̃
ij
k [(u∗

j )ε, . . . , (u
∗

j)ε]Dijh

6 lim
ε→0

∫

Ω

−(gΩ(·, xn))εF̃
ij
k [(u∗

j )ε, . . . , (u
∗

j )ε]Dijh

= lim
ε→0

∫

Ω

(−h)F̃ ij
k [(u∗

j )ε, . . . , (u
∗

j )ε]Dij(gΩ(·, xn))ε

= lim
ε→0

∫

Ω

(−h)F̃k[(u∗

j )ε, . . . , (u
∗

j )ε, (gΩ(·, xn))ε] 6 . . .

6 lim
ε→0

∫

Ω

(−h)F̃k[(gΩ(·, xn))ε, . . . , (gΩ(·, xn))ε] = lim
ε→0

∫

Ω

(−h)Fk[(gΩ(·, xn))ε]

=

∫

Ω

(−h) dµk[(gΩ(·, xn))] = −Cn,kh(xn) → 0
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as n → ∞, where the last identity follows from (4.1). It follows from Lemma 4.1

that the measures µk[u∗

j ] converge weakly to 0. By the continuity of the k-Hessian

operator on the sequence {u∗

j} ⊆ Φk(Ω) (cf. [9, Theorem 1.1]), the limit function

u := lim
j

u∗

j satisfies µk[u] = 0. Thus u is k-maximal (cf. [12, Theorem A.1]) and

equals 0 on ∂Ω. It follows that u ≡ 0. Since {u∗

j} is a decreasing sequence, each u∗

j

must vanish identically in Ω. For each j, there is a k-polar set Ej such that uj ≡ 0 on

Ω\Ej . Let E = E1. Since {uj} is decreasing, the k-polar sets Ej form an increasing

sequence. On the other hand, if w ∈ Ej \E, then gΩ(w, xl) = 0 for some l, 1 6 l 6 j,

which is impossible. So we have Ej = E for all j. Thus uj ≡ 0 on Ω \ E. �

The exceptional set may depend on the sequence {xn}. We can get a weaker result

which is independent of the sequence. Let S denote the set of all sequences in Ω

tending to x0. Take Ẽ =
⋂

s∈S

Es, where Es denotes the exceptional set corresponding

to the sequence s, then we get the following corollary.

Corollary 4.1. Let x0 ∈ ∂Ω, k < n/2. Then there exists a k-polar set Ẽ ⊆ Ω

such that

lim
x→x0

gΩ(w, x) = 0 for every w ∈ Ω \ Ẽ.
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