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ONE-POINT SOLUTIONS
OBTAINED FROM BEST APPROXIMATION PROBLEMS
FOR COOPERATIVE GAMES

Tetsuzo Tanino

In this paper we focus on one-point (point-valued) solutions for transferable utility games
(TU-games). Since each allocated profit vector is identified with an additive game, a solution
can be regarded as a mapping which associates an additive game with each TU-game. Recently
Kultti and Salonen proposed a minimum norm problem to find the best approximation in the
set of efficient additive games for a given TU-game. They proved some interesting properties
of the obtained solution. However, they did not show how to choose the inner product defining
the norm to obtain a special class of solutions such as the Shapley value and more general
random order values. In this paper, noting that there is a one-to-one correspondence between
a game and a Harsanyi dividend vector, we propose a minimum norm problem in the dividend
space, not in the game space. Since the dividends for any set with more than one elements
are all zero for an additive game, our approach enables us to deal with simpler problems. We
will make clear how to choose an inner product, i. e., a positive definite symmetric matrix, to
obtain a Harsanyi payoff vector, a random order value and the Shapley value.
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1. INTRODUCTION

In this paper we deal with cooperative games with transferable utility, i. e., so-called
TU-games. A main topic in the cooperative game theory is to provide a reasonable
allocation scheme of profits obtained by the grand coalition among the players. Usually
this scheme is called a solution of the game. A number of solutions have been proposed
and they can be divided into two categories. One is the class of set-valued solutions: each
solution associates a set of profit vectors with each cooperative game. Typical examples
of solutions in this class are the core, the stable set, the kernel, and the Weber set.
The other class consists of one-point (point-valued) solutions: each solution associates a
profit vector with each game. Typical examples in this class are the Shapley value, the
nucleolus and the random order value.

In this paper we focus on the second class, i. e., one-point solutions. Each solution
provides an n dimensional vector for each TU-game, where n is the number of players.
Here we should note that an additive game is also specified by n worths for individual
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players. Thus we may regard a one-point solution as a mapping from the set of all
TU-games to the set of all additive games (see e. g. Monderer and Samet [6]). Studies of
one-point solutions in the settings of best approximation problems have been made by
several authors (Charnes et al. [1], Ruiz et al. [7, 8], Kultti and Salonen [5]). Kultti and
Salonen formulated a minimum norm problem to find the best approximation in the set
of efficient additive games for a given cooperative game, introduced norms from inner
products in the space of cooperative games, and proved that any efficient linear solution
that has the inessential game property can be obtained as a solution to the minimum
norm problem with an appropriate inner product. However, they did not provide any
information on how to choose the inner product to obtain a special class of solutions
such as random order values and, in particular, the Shapley value.

In this paper we pay attention to the fact that each cooperative game can be com-
pletely characterized by its (Harsanyi) dividends (Harsanyi [4]), and formulate best
approximation problems in the dividend space. Since all the dividends of coalitions with
more than one players are zero for any additive game, this approach enables us to deal
with simpler problems. A norm in the dividend space is derived from an inner product
and we make clear how to choose the inner product to obtain a Harsanyi payoff vector,
a random order value and in particular the Shapley value.

The paper is organized in the following way. In Section 2 we review cooperative games
and their dividends. Section 3 is devoted to concise introduction of one-point solutions
for games. In Section 4 we review one-point solutions as minimum norm solutions. In
Section 5 we formulate minimum norm problems in the dividend space and show how
to choose the inner product to obtain a Harsanyi payoff vector, a random order value
and in particular the Shapley value. The last section concludes the paper.

2. COOPERATIVE GAMES AND HARSANYI DIVIDENDS

Let N = {1, 2, . . . , n} be a finite set of players. A subset S ⊆ N is called a coalition.
A cooperative game (transferable utility game, TU-game for short) on N is defined by
a characteristic function v : 2N → R with v(∅) = 0. The value v(S) is called the worth
of coalition S. We denote by G the set of all cooperative games on N , which is fixed
throughout this paper. We use abbreviated notations such as

v(i) = v({i}), S ∪ i = S ∪ {i}, S \ i = S \ {i},

and so on. We distinguish between two inclusive relations S ⊂ T and S ⊆ T . The
former means a proper inclusive relation.

The sum of two games v, w ∈ G is defined as

(v + w)(S) = v(S) + w(S), ∀S ⊆ N

and the scalar multiplication of v ∈ G by a scalar α ∈ R is defined as

(αv)(S) = αv(S), ∀S ⊆ N.

Thus the space G of all games on N is a vector space and its dimension is clearly 2n− 1,
since each game is specified by the worths v(S) for all S ⊆ N with S 6= ∅.
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As a basis in G we generally consider unanimity games uT for any T ⊆ N with T 6= ∅
defined by

uT (S) =
{

1 if S ⊇ T
0 otherwise.

Each game v ∈ G is a linear combination of unanimity games,

v =
∑

T⊆N,T 6=∅

dv(T )uT .

The coefficient dv(T ) is called (Harsanyi) dividend (or Möbius transform) of T for the
game v. Due to the Möbius inversion lemma, we have

dv(T ) =
∑
S⊆T

(−1)|T |−|S|v(S).

If we put dv(∅) = 0, v =
∑

T⊆N dv(T )uT and the dividends can be obtained by the
following recursive formula:

dv(T ) =

 0, if T = ∅
v(T )−

∑
S⊂T

dv(S), if T 6= ∅.

The dividends satisfy the following relations.

dv+w(T ) = dv(T ) + dw(T ), dαv(T ) = αdv(T ), ∀T ⊆ N,

v(S) =
∑
T⊆S

dv(T ), ∀S ⊆ N.

If we regard both v and dv as 2n − 1 dimensional vector such as (v(1), . . . , v(n),
v(1, 2), . . . , v(N))> and (dv(1), . . . , dv(n), dv(1, 2), . . . , dv(N))> respectively, they are re-
lated in terms of a matrix D as v = Ddv. Here the (S, T ) element of D is 1 if S ⊇ T
and 0 otherwise.

Now we define a fundamental class of TU-games.

Definition 2.1. A game v ∈ G is said to be additive if v(S) + v(T ) = v(S ∪ T ) for
all S, T ⊆ N , such that S ∩ T = ∅. The set of all additive cooperative games on N is
denoted by A.

An additive game is completely specified by n worths v(1), v(2), . . . , and v(n), and
therefore the set A of all additive games is a subspace of G and dim A = n.

The following result can be proved easily, and the concept of additive games was
extended to k-order additive games by Grabisch ([3]) in terms of the dividends.

Proposition 2.2. A cooperative game v ∈ G is additive if and only if

dv(T ) =
{

v(i) if T = {i}, i ∈ N,
0 otherwise.
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3. ONE-POINT SOLUTIONS FOR COOPERATIVE GAMES

In a game v ∈ G, the main issue is the distribution of the worth v(N) among the players.
A one-point solution, which is often called a value, of a game is a function φ : G → Rn,
i. e., φ(v) = (φ1(v), φ2(v), . . . , φn(v)) for each v ∈ G. A function φ is usually assumed
to be linear with respect to v. Hence the value is a linear combination of the values for
unanimity games, i. e.,

φ(v) = φ(
∑

T⊆N

dv(T )uT ) =
∑

T⊆N

dv(T )φ(uT ).

Typical examples of values is the Shapley value ϕ given by

ϕi(uT ) =


1
|T |

, if i ∈ T

0, otherwise.

As is known well, by using the dividends, the Shapley value can be rewritten as follows

ϕi(v) =
∑

T⊆N,T3i

dv(T )
|T |

.

More general value can be introduced by considering a sharing system

p = (pT
i )T⊆N,i∈T satisfying pT

i ≥ 0,
∑
i∈T

pT
i = 1,∀T ⊆ N,T 6= ∅.

The set of all sharing systems is denoted by P .

Definition 3.1. (Derks, van der Laan and Vasil’ev [2]) Given a sharing system p ∈ P ,
the Harsanyi payoff vector for a game v ∈ G is defined by

φp
i (v) =

∑
T⊆N,T3i

pT
i dv(T ), i ∈ N.

We should note that the Harsanyi payoff vector is efficient, i. e.,
∑

i∈N φp
i (v) = v(N).

The Shapley value is the Harsanyi payoff vector with pT
i = 1

|T | for all i ∈ T .
Now we introduce another type of one-point solutions. Let π be a permutation on

N , which assigns rank number π(i) ∈ N to player i ∈ N . Let

πi = {j ∈ N | π(j) ≤ π(i)}.

Definition 3.2. The marginal contribution vector mπ(v) ∈ Rn of v and π is given by

mπ
i (v) = v(πi)− v(πi \ i), i ∈ N.

The Weber set W (v) is the convex hull of all marginal contribution vectors mπ(v). Each
element of W (v) is called a random order value.
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It is clear that the marginal contribution vector satisfies the efficiency and therefore
so does any random order value.

Proposition 3.3. (Derks et al. [2]) If we define the sharing system pπ for a permutation
π on N by

(pπ)T
i =

{
1 if i ∈ T and T ⊆ πi,
0 otherwise,

then φpπ

(v) = mπ(v).

Proposition 3.4. (Derks et al. [2]) A Harsanyi payoff vector φp is a random order
value if and only if the sharing system p belongs to the following set P ∗, i. e.,

p ∈ P ∗ = {p ∈ P |
∑
S⊇T

(−1)|S|−|T |pS
i ≥ 0, ∀T ⊆ N, T 3 i}.

4. ONE-POINT SOLUTIONS AS MINIMUM NORM SOLUTIONS

In this section we consider the minimum norm problem introduced by Kultti and Salo-
nen [5].

We may identify a value which is an n dimensional vector with an additive game (see
e. g. Monderer and Samet [6]). In other words, the value φ : G → Rn is identified with
the function f : G → A with φi(v) = f(v)(i). Hence it is quite natural to consider the
best approximation of a given game v ∈ G by an additive game.

Kultti and Salonen [5] proposed the approach by efficient minimum norm solutions,
which is a generalization of the results by Ruiz et al. [7, 8]. They defined an optimization
problem (minimum norm problem) for each cooperative game v̄ ∈ G

minimize 〈v − v̄, v − v̄〉
subject to v ∈ A, v(N) = v̄(N). (1)

Here 〈·, ·〉 is an inner product on G, i. e., the 2n − 1 dimensional real space. In this case
a one-point solution f is a function f : v̄ 7→ v∗, where v∗ is the unique optimal solution
to the above problem, i. e., the minimum norm solution.

They proved some interesting properties of minimum norm solutions.

• Efficiency. f(v)(N) = v(N) ∀v ∈ G.

• Linearity. f(αv + βw) = αf(v) + βf(w), ∀α, β ∈ R, v, w ∈ G.

• Inessential game property. If v ∈ A, then f(v) = v.

Theorem 4.1. (Kultti and Salonen [5]) For each v̄ ∈ G, the solution f(v̄) to the above
minimum norm problem exists uniquely. The function f : G → A is efficient, linear and
has the inessential game property.

Theorem 4.2. (Kultti and Salonen [5]) Let f : G → A be any efficient linear solution
that has the inessential game property. Then there is an inner product such that f(v̄)
solves the above minimum norm problem for all v̄ ∈ G.

However there remains an open problem: How to choose the inner product?
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5. MINIMUM NORM SOLUTIONS IN THE DIVIDEND SPACE

We consider a minimum norm problem by Kultti and Salonen again.

minimize 〈v − v̄, v − v̄〉
subject to v ∈ A, v(N) = v̄(N).

We may eliminate the variables v(S) with |S| > 1 by the equality constraints v(S) =∑
i∈S v(i) for any S ⊆ N , |S| > 1 for v ∈ A. Then the remaining essential variables

are only v(1), v(2), . . ., and v(n). However the objective function, i. e.,the inner product
(norm) of the deviation vector v − v̄, of the above problem is represented by these
variables in a rather complicated manner. It causes a difficulty in choosing an inner
product.

Since we can obtain the dividends {dv(S)|S ⊆ N,S 6= ∅} of v by the linear transfor-
mation from the worths {v(S)|S ⊆ N,S 6= ∅} and vice versa, the above problem can be
rewritten as the optimization problem with respect to the dividends as in the following.

minimize 〈d− d̄, d− d̄〉
subject to d(S) = 0 if |S| > 1,

∑
i∈N

d(i) = v̄(N) =
∑
S⊆N

d̄(S). (2)

Here d̄ = dv̄ is the 2n − 1 dimensional dividend vector of v̄, and 〈·, ·〉 is an appropriate
inner product in the dividend space.

The essential variables in the above optimization problem are d(1), d(2), . . ., d(n).
The objective function is explicitly written by these variables and the constraint is only
one:

∑
i∈N d(i) =

∑
S⊆N d̄(S). Hence the problem is quite simple. If we denote the

optimal solution of the above problem by d∗, then for each game v̄ ∈ G, the solution
f(v̄) ∈ A can be obtained by f(v̄)(i) = d∗(i) for all i ∈ N .

We may describe an inner product 〈·, ·〉 in terms of (2n−1)×(2n−1) positive definite
symmetric matrix Q whose (S, T ) element is qST . Thus

〈d, d′〉 =
∑

S,T⊆N,S,T 6=∅

qST d(S)d′(T ).

Since v = Ddv, the minimum norm problem (2) in the dividend space with the in-
ner product specified by the positive definite matrix Q is obviously equivalent to the
minimum norm problem (1) in the game space with the inner product specified by the
positive definite matrix D>QD. However the number of constraints is actually only one
in the problem (2) and selection of the matrix is much easier as is shown below.

Noting that d(S) = 0 for |S| > 1, but that d̄(S) 6= 0 generally, the above optimization
problem can be essentially rewritten (by deleting the constant term) as

minimize
∑
i∈N

∑
j∈N

qijd(i)d(j)− 2
∑
i∈N

∑
S⊆N,S 6=∅

qiSd(i)d̄(S)

subject to
∑
i∈N

d(i) =
∑
S⊆N

d̄(S),
(3)

where qij = q{i}{j} and qiS = q{i}S .

The theorems by Kultti and Salonen are obviously valid in this case.



Best approximation problems for cooperative games 401

Theorem 5.1. For each v̄ ∈ G, the solution f(v̄) obtained through the above minimum
norm problem exists uniquely. The function f : G → A is efficient, linear and has the
inessential game property.

Theorem 5.2. Let f : G → A be any efficient linear solution that has the inessential
game property. Then there is an inner product such that f(v̄) can be obtained by the
solution to the above minimum norm problem with d̄ = dv̄ for all v̄ ∈ G.

Now we consider special cases of the inner products.

Lemma 5.3. Given a sharing system p = (pT
i )T⊆N,i∈T ∈ P , let

qiS =
{

pS
i if i ∈ S,

0 if i 6∈ S,

and, when |S| > 1 and |T | > 1,

qST =
{

sufficiently large if S = T,
0 otherwise.

Then the matrix Q is positive definite.

P r o o f . We decompose the matrix Q as in the following:

Q =
(

I R>

R D

)
where I is the n × n identity matrix, R is a (2n − n − 1) × n matrix whose elements
are qSi and D is a diagonal matrix with sufficiently large elements. We also decompose

a 2n − 1 dimensional vector x as
(

y
z

)
with y ∈ Rn. We prove that x>Qx = y>y +

2z>Ry + z>Dz > 0 for all x 6= 0. If y = 0, then x>Qx = z>Dz > 0 for any z 6= 0
because D is a diagonal matrix with positive elements. Hence we suppose that y 6= 0.
It is sufficient to prove the case where maxi=1,...,n yi = 1, since x>Qx = α2

(
x
α

)>
Q

(
x
α

)
if maxi=1,...,n yi = α > 0. We should note that the row corresponding to S in R consists
of the elements pS

i (i ∈ S) and 0 (i 6∈ S) whose sum is equal to 1. Hence

x>Qx ≥ y>y − 2z>1 + z>Dz

where 1 is the 2n−n−1 dimensional vector whose components are all 1. The minimum
of y>y under the condition maxi=1,...,n yi = 1 is equal to 1. On the other hand the
minimum of −2z>1 + z>Dz is −1>D−11 and this value can be made larger than −1
by taking the diagonal elements of D−1 sufficiently small, i. e., by taking the diagonal
elements of D sufficiently large. Therefore x>Qx > 0 for any x 6= 0. �
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As an example, in the case of n = 3 we may take the following matrix:

Q =



1 0 0 p
{1,2}
1 p

{1,3}
1 0 p

{1,2,3}
1

0 1 0 p
{1,2}
2 0 p

{2,3}
2 p

{1,2,3}
2

0 0 1 0 p
{1,3}
3 p

{2,3}
3 p

{1,2,3}
3

p
{1,2}
1 p

{1,2}
2 0 3 0 0 0

p
{1,3}
1 0 p

{1,3}
3 0 3 0 0

0 p
{2,3}
2 p

{2,3}
3 0 0 3 0

p
{1,2,3}
1 p

{1,2,3}
2 p

{1,2,3}
3 0 0 0 5


.

Theorem 5.4. Given a game v̄ ∈ G, the solution f(v̄) obtained from the minimum
norm problem in the dividend space with the inner product specified by the matrix Q
defined in the above lemma coincides with the Harsanyi payoff vector φp(v̄).

P r o o f . Let us consider the unanimity game uT for each nonempty T ⊆ N . Then
duT (T ) = 1 and duT (S) = 0 for S 6= T . The necessary and sufficient optimality con-
ditions for the minimum norm problem with uT and the inner product by the matrix
induced from the sharing system p are the following:

2d(i)− 2pT
i + λ = 0 if i ∈ T

2d(i) + λ = 0 if i 6∈ T∑
i∈N

d(i) = 1,

where λ is the Lagrange multiplier for the constraint
∑

i∈N d(i) = 1. Therefore the
optimal solution is exactly d∗(i) = pT

i for i ∈ T and d∗(i) = 0 for i 6∈ T . Thus

f(v̄)(i) =
∑

T⊆N

dv̄(T )f(uT )(i) =
∑

T⊆N,T3i

pT
i dv̄(T )

and therefore we obtain the Harsanyi payoff vector φp(v̄). �

Corollary 5.5. If the sharing system p is in P ∗, then the solution f(v̄) is a random
order value, i. e., f(v̄) ∈ W (v̄).

Corollary 5.6. If the sharing system is given by p = pπ for a permutation π on N ,
then the solution obtained by the minimum norm solution in the dividend space is the
marginal contribution vector mπ(v̄).

Corollary 5.7. If the sharing system is given by pT
i = 1

|T | for all i ∈ T , the solution
obtained by the minimum norm solution in the dividend space coincides with the Shapley
value ϕ(v̄).
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6. CONCLUSION

Each one-point solution for a cooperative game can be regarded as the minimum norm
solution and hence we have considered the best approximation of a cooperative game
to an additive game as in Kultti and Salonen. However, the difference is that we have
defined approximation problems in the dividend space. It has enabled us to deal with
simpler problems. Therefore it has been made clear how to choose the inner product in
terms of sharing systems to obtain a Harsanyi payoff vector, a random order value, and
the Shapley value.
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