
Kybernetika

Ladislav Lukšan; Jan Vlček
Recursive form of general limited memory variable metric methods

Kybernetika, Vol. 49 (2013), No. 2, 224–235

Persistent URL: http://dml.cz/dmlcz/143365

Terms of use:
© Institute of Information Theory and Automation AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/143365
http://dml.cz

KYB ERNET IK A — VO LUME 4 9 (2 0 1 3) , NUMBER 2 , PAGES 2 2 4 – 2 3 5

RECURSIVE FORM OF GENERAL LIMITED MEMORY
VARIABLE METRIC METHODS

Ladislav Lukšan and Jan Vlček

In this report we propose a new recursive matrix formulation of limited memory variable
metric methods. This approach can be used for an arbitrary update from the Broyden class
(and some other updates) and also for the approximation of both the Hessian matrix and
its inverse. The new recursive formulation requires approximately 4mn multiplications and
additions per iteration, so it is comparable with other efficient limited memory variable metric
methods. Numerical experiments concerning Algorithm 1, proposed in this report, confirm its
practical efficiency.

Keywords: unconstrained optimization, large scale optimization, limited memory meth-
ods, variable metric updates, recursive matrix formulation, algorithms

Classification: 49K35, 90C06, 90C47, 90C51

1. INTRODUCTION

Limited memory variable metric methods, introduced in [11], are intended for solving
large scale unconstrained optimization problems, where the objective function F : Rn →
R is continuously differentiable, bounded from below and has unknown or dense Hessian
matrix. They are usually realized in a line search framework, so their iteration step has
the form

xi+1 = xi + tisi (1)

for i ∈ N (N is the set of positive integers), where si = −Higi is the direction vector
(gi = g(xi) is the gradient of the objective function at the point xi and Hi is a positive
definite approximation of the inverse Hessian matrix in the ith iteration) and ti > 0 is
the step-length, which is taken to satisfy the weak Wolfe conditions

Fi+1 − Fi ≤ ε1tis
T
i gi, (2)

sT
i gi+1 ≥ ε2s

T
i gi, (3)

with 0 < ε1 < 1/2 and ε1 < ε2 < 1 (where Fi = F (xi), gi = g(xi) and Fi+1 = F (xi+1),
gi+1 = g(xi+1)). We concentrate our attention to the limited memory variable metric
methods from the Broyden class [9], but in the Section 2 we show that our recursive
algorithm can be also applied to methods from the Davidon class [3].

Recursive form of LM-VM methods 225

Let 0 < m̄ < n, i ∈ N and m = min(m̄, i). Limited memory variable metric methods
from the Broyden class use direction vectors s1 = −g1 and si+1 = −Hi+1gi+1, i ∈ N ,
where matrix Hi+1

∆= Hi
i+1 is obtained from a sparse positive definite (usually scaled

unit) matrix Hi
i−m+1 by means of m updates

Hi
j+1 = Hi

j + U i
jM

i
j(U

i
j)

T , (4)

i −m + 1 ≤ j ≤ i, where matrices U i
j = [dj ,H

i
jyj] and M i

j are chosen to satisfy quasi-
Newton conditions Hi

j+1yj = dj , where yj = gj+1−gj , dj = xj+1−xj , i−m+1 ≤ j ≤ i
(we use upper index i, to signify the relation to the ith iteration). Formula (4) can be
written in the form

Hi
j+1 = Hi

j +
1
bj

djd
T
j −

1
ai

j

Hi
jyj(Hi

jyj)T +
ηi

j

ai
j

(
ai

j

bj
dj −Hi

jyj

)(
ai

j

bj
dj −Hi

jyj

)T

, (5)

where ai
j = yT

j Hi
jyj , bj = yT

j dj and ηi
j is a free parameter. Setting ηi

j = 0, ηi
j = 1 and

ηi
j = bj/(bj − ai

j), we obtain the DFP, the BFGS and the Rank-1 updates, respectively.
Note that the BFGS update is the most efficient one from these basic updates.

An advantage of limited memory variable metric methods described in this paper is
the fact that they can be realized in the way which requires (for n large) approximately
4mn multiplications and additions for the direction determination. Phrase approx-
imately 4mn means that this number significantly dominates over additional required
operations. For example, if n = 1000 and m = 5, then 4mn = 20000, whereas m3 = 125.
There are two commonly used basic approaches: the recursive vector formulation based
on the Strang recurrences [10] and the explicit matrix formulation proposed in [2]. To
simplify the notation in the subsequent considerations, we will assume without the loss
of generality that i ≤ m̄. Then matrices (4) and (5) do not depend on the upper index,
which can be omitted.

The first approach is applicable only in case all matrices Hj , 1 ≤ j ≤ i, are obtained
by the BFGS update (in fact there exists other possible updates realizable in this way,
see [12], but they do not belong to the Broyden class). The recursive vector formulation
of the limited memory BFGS method is based on the pseudo-product form: if ηj = 1,
formula (5) can be written in the form

Hj+1 = V T
j HjVj +

1
bj

djd
T
j , Vj = I − 1

bj
yjd

T
j . (6)

Using this formula recursively, we obtain

Hi+1 =

 i∏
j=1

Vj

T

H1

 i∏
j=1

Vj

+
i∑

k=1

1
bk

 i∏
j=k+1

Vj

T

dkdT
k

 i∏
j=k+1

Vj

 .

Note that matrix Hi+1 need not be stored, since vector si+1 = −Hi+1gi+1 can be
obtained by two (Strang) recurrences. First we set ui+1 = −gi+1 and compute numbers
σj and vectors uj , i ≥ j ≥ 1, by the backward recurrence

σj =
dT

j uj+1

bj
, uj = uj+1 − σjyj . (7)

226 L. LUKŠAN AND J. VLČEK

Then we set v1 = H1u1 and compute vectors vj+1, 1 ≤ j ≤ i, by the forward recurrence

vj+1 = vj +

(
σj −

yT
j vj

bj

)
dj . (8)

Finally we set si+1 = vi+1.
The use of the Strang recurrences (7)–(8) is the oldest (and simplest) possibility for

implementing the limited memory BFGS method. As it was already mentioned, this
approach is applicable only if all matrices Hj , 1 ≤ j ≤ i, are obtained by the BFGS
update. This disadvantage reveals when we need to update matrix Bi+1 = H−1

i+1. It
follows from the duality (see [9]) that the Strang recurrences can be used only in case
all matrices Bj , 1 ≤ j ≤ i, are obtained by the DFP update. But the limited memory
DFP method is much worse than the limited memory BFGS method, so this way is
unsuitable.

The second approach is based on the fact that matrix Hi+1, obtained by recursive
application of i updates of the form (4) to matrix H1, can be written in the form

Hi+1 = H1 + ŨiM̃iŨ
T
i , (9)

where Ũi = [d1 − H1y1, . . . , di − H1yi] and M̃i is a square matrix of order m for the
Rank-1 update or Ũi = [d1, . . . , di,H1y1, . . . H1yi] and M̃i is a square matrix of order
2m otherwise. For the basic updates (DFP, BFGS and Rank-1), the matrix M̃i can be
expressed in the explicit form. Especially matrix Hi+1, obtained by recursive application
of i BFGS updates to matrix H1, can be written in the form

Hi+1 = H1 + [Di,H1Yi]

[
(R−1

i)T (Ci + Y T
i H1Yi)R−1

i , −(R−1
i)T

−R−1
i , 0

]
[Di,H1Yi]

T
, (10)

where Di = [d1, . . . , di], Yi = [y1, . . . , yi], Ri is the i-dimensional upper triangular matrix
such that (Ri)kl = dT

k yl, k ≤ l, (Ri)kl = 0, k > l, and Ci is the i-dimensional diagonal
matrix such that (Ci)kk = dT

k yk (see [2]). There exists a similar formula for matrix
Hi+1, obtained by recursive application of i DFP updates to matrix H1 (see [2]). Using
the duality relation between the DFP and the BFGS updates, we can determine the
matrix Bi+1 obtained by recursive application of i BFGS updates to matrix B1. The
resulting matrix can be written in the form

Bi+1 = B1 − [Yi, B1Di]
[
−Ci, (Li − Ci)T

Li − Ci, DT
i B1Di

]−1

[Yi, B1Di]
T

, (11)

where Li is the i-dimensional lower triangular matrix such that (Li)kl = dT
k yl, k ≥ l,

(Li)kl = 0, k < l. The fact that we can use the inverse BFGS updates is very ad-
vantageous, since it allows us to implement variable metric trust region methods and
methods for constrained optimization, which apply variable metric updates to the part
of the KKT matrix.

In this paper, we investigate a modification of the second approach. In Section 2, we
propose a new recursive matrix formulation of limited memory variable metric methods.

Recursive form of LM-VM methods 227

This approach can be used for both matrices Hi+1 and Bi+1 and for an arbitrary update
from the Broyden class. Our recursive formulation requires approximately 4mn multi-
plications and additions for the direction determination, so it is comparable with the
other approaches mentioned in this paper. At the end of Section 2, we demonstrate that
the recursive matrix formulation can be used for some other variable metric updates.
As an example, we have chosen the Davidon class of variable metric updates proposed
in [3] and reformulated in [6]. Section 3 contains results of numerical experiments which
indicates that our approach is competitive with known limited memory variable metric
methods.

2. THE RECURSIVE MATRIX FORMULATION

Let us assume that matrix Hi+1 is obtained from matrix H1 = λiI by i updates of the
form

Hj+1 = Hj + UjMjU
T
j , 1 ≤ j ≤ i (12)

(see (4)), where Uj = [dj ,Hjyj] and

Mj =
[

αj , βj

βj , γj

]
.

We seek the expression
Hi+1 = H1 + ŪiM̄iŪ

T
i , (13)

where Ūi = [d1,H1y1, . . . , di,H1yi] and M̄i is a square matrix of order 2m. This formula
is very similar to (9). For rank two updates, matrices Ūi and Ũi differ only by orders of
its columns. Note that the choice H1 = λiI (where usually λi = dT

i yi/yT
i yi) is essential

for our considerations leading to the algorithm described below. This choice is used in
the rest of this paper.

Theorem 2.1. Let matrix Hi+1 be obtained from matrix H1 by i updates of the form
(12). Then (13) holds with matrix M̄i obtained recursively in such a way that M̄1 = M1

and

M̄j =

 M̄j−1 + γj zj−1z
T
j−1, βj zj−1, γj zj−1

βj zT
j−1, αj , βj

γj zT
j−1, βj , γj

 , 2 ≤ j ≤ i, (14)

where
zj−1 = M̄j−1r̄j−1, r̄j−1 = ŪT

j−1yj . (15)

P r o o f . We prove this theorem by induction. Assume that

Hj = H1 + Ūj−1M̄j−1Ū
T
j−1 (16)

for some index 2 ≤ j < i. Relation (16) holds for j = 2 by (12) since Ū1 = U1 and
M̄1 = M1. Substituting (16) into (12) and using the fact that

Uj = [dj ,Hjyj] =
[
dj , H1yj + Ūj−1M̄j−1Ū

T
j−1yj

]
=
[
dj , H1yj + Ūj−1zj−1

]

228 L. LUKŠAN AND J. VLČEK

by (15) and (16), we can write

Hj+1 = H1 + Ūj−1M̄j−1Ū
T
j−1 +

[
dj , H1yj + Ūj−1zj−1

]
Mj

[
dj , H1yj + Ūj−1zj−1

]T
= H1 + Ūj−1 M̄j−1 ŪT

j−1 + αj djd
T
j

+ βj

(
dj(H1yj)T + H1yjd

T
j

)
+ βj

(
dj (Ūj−1zj−1)T + Ūj−1zj−1 dT

j

)
+ γj H1yj(H1yj)T + γj

(
H1yj (Ūj−1zj−1)T + Ūj−1zj−1 (H1yj)T

)
+ γj Ūj−1zj−1z

T
j−1Ū

T
j−1

= H1 +
[
Ūj−1, dj , H1yj

] M̄j−1 + γj zj−1z
T
j−1, βj zj−1, γj zj−1

βj zT
j−1, αj , βj

γj zT
j−1, βj , γj

[
Ūj−1, dj , H1yj

]T = H1 + ŪjM̄jŪ
T
j ,

so the induction step is proved. �

Comparing (12) with (5), we can see that

αj =
1
bj

(
ηj

aj

bj
+ 1
)

, βj = −ηj

bj
, γj =

ηj − 1
aj

, (17)

where aj = yT
j Hjyj and bj = yT

j dj . Using (15) and (16), we obtain

aj = yT
j Hjyj = yT

j (H1yj + Ūj−1M̄j−1Ū
T
j−1yj) = yT

j H1yj + r̄T
j−1zj−1,

so value aj (required for the computation of αj and γj by (17)) can be obtained by using
known vectors r̄j−1 and zj−1.

So far we have assumed that 1 ≤ i ≤ m̄. Now we describe the construction of
matrix Hi+1 = λiI + ŪiM̄iŪ

T
i in the general case. Let m = min(m̄, i) and Si =

diag(1, λi, . . . , 1, λi) (where λi > 0) be a 2m-dimensional diagonal scaling matrix. De-
note

Ǔi−1 = [di−m+1, yi−m+1, . . . , di−1, yi−1] ,

Ři−1 =

dT

i−m+1yi−m+1, . . . dT
i−m+1yi−1

yT
i−m+1yi−m+1, . . . yT

i−m+1yi−1

. .
0, . . . dT

i−1yi−1

0, . . . yT
i−1yi−1

(these matrices are empty for i = 1) and

Ûi = [Ǔi−1, di, yi], R̂i =

 Ři−1, ǓT
i−1yi

0, dT
i yi

0, yT
i yi

 . (18)

Recursive form of LM-VM methods 229

Matrices Ři−1 and R̂i are upper block triangular, where every block contains two rows
and one column. Then Ūi = SiÛi and matrix M̄i

∆= M̂ i
i is obtained recursively in such

a way that we set

M̂ i
i−m+1 =

[
αi

i−m+1, βi
i−m+1

βi
i−m+1, γi

i−m+1

]
(19)

and for i−m + 1 ≤ j ≤ i− 1 compute vector zi
j = M̂ i

jS
i
j ř

i
j , where Si

j is the 2(j − i + m)
dimensional leading submatrix of Si and ři

j is the 2(j − i + m) dimensional vector
containing first 2(j − i + m) elements of the (j − i + m)th column of matrix Ři−1, and
set

M̂ i
j+1 =

 M̂ i
j + γi

j+1 zi
j(z

i
j)

T , βi
j+1 zi

j , γi
j+1 zi

j

βi
j+1 (zi

j)
T , αi

j+1, βi
j+1

γi
j+1 (zi

j)
T , βi

j+1, γi
j+1

 . (20)

Using matrices obtained by the described way, direction vector si+1 can be determined
by the formula

si+1 = −Hi+1gi+1 = −λigi+1 − ŪiM̄iŪ
T
i gi+1 = −λigi+1 − ÛiSiM̂

i
i SiÛ

T
i gi+1. (21)

In this case, approximately 6mn multiplications and additions are consumed for the
direction determination (2mn for the determination of the last column of matrix R̂i and
4mn for the computation of vector si+1 by (21)) and approximately 2mn values are
stored when n is large. Matrices Ǔi and Ři used in the next iteration are easily obtained
from Ûi and R̂i. If i < m̄, then Ǔi = Ûi and Ři = R̂i. If i ≥ m̄, then Ǔi and Ři arise
from Ûi and R̂i after the deletion of the columns and rows depending on vectors with
index i−m + 1. Thus

[di−m+1, yi−m+1, Ǔi] = Ûi, (22) dT
i−m+1yi−m+1, [dT

i−m+1yi−m+2, . . . , d
T
i−m+1yi]

yT
i−m+1yi−m+1, [yT

i−m+1yi−m+2, . . . , y
T
i−m+1yi]

0, Ři

 = R̂i. (23)

The above basic process can be modified in such a way that approximately 2mn
multiplications and additions are dropped. As one can see from (20), the last column r̂i

of matrix R̂i is not required for the computation of matrix M̂ i
i . Thus we can compute

vector v̂i = ÛT
i gi+1 instead of r̂i = ÛT

i yi. Vector v̂i is then used for the determination
of the direction vector by the formula

si+1 = −λigi+1 − ÛiSiM̂
i
i Siv̂i. (24)

After the determination of si+1, one can compute the first 2(m− 1) elements of r̂i using
the formula

ǓT
i−1yi = ǓT

i−1gi+1 − ǓT
i−1gi, (25)

where vector ǓT
i−1gi+1 contains the first 2(m − 1) elements of v̂i (see (18)) and vector

ǓT
i−1gi contains the last 2(m−1) elements of v̂i−1 (vector v̂i−1 is known from the previous

iteration). The last two elements dT
i yi and yT

i yi of r̂i are computed separately, since
they serves for the determination of scaling parameter λi.

The above considerations are summarized in the following algorithm.

230 L. LUKŠAN AND J. VLČEK

Algorithm 2.2. Data m̄ < n, ε > 0, 0 < ε1 < 1/2, ε1 < ε2 < 1.

Step 1 Let Ǔ0 and Ř0 be empty matrices. Choose starting point x1 ∈ Rn and
compute quantities F1 := F (x1), g1 := g(x1). Set s1 := −g1 and i := 1.

Step 2 If ‖gi‖ ≤ ε, terminate the computation, otherwise set m := min(m̄, i).

Step 3 Determine step-size ti > 0 satisfying conditions (2) – (3) and set xi+1 :=
xi + tisi. Compute new quantities Fi+1 := F (xi+1), gi+1 := g(xi+1)
and set di := xi+1 − xi, yi := gi+1 − gi. Compute values dT

i yi, yT
i yi

and set λi := dT
i yi/yT

i yi to define 2m dimensional scaling matrix Si :=
diag(1, λi, . . . , 1, λi).

Step 4 Determine matrix M̂ i
i−m+1 by formula (19). Set Ûi := [Ǔi−1, di, yi], v̂i :=

ÛT
i gi+1 and j := i−m + 1.

Step 5 If j = i go to Step 7.

Step 6 Choose the value of parameter ηi
j appearing in (17). Set zi

j := M̂ i
jS

i
j ř

i
j ,

where Si
j is the 2(j − i + m) dimensional leading submatrix of Si and ři

j

is the 2(j − i + m) dimensional vector containing the first 2(j − i + m)
elements of the (j − i + m)th column of matrix Ři−1, compute matrix
M̂ i

j+1 by (20), set j := j + 1 and go to Step 5.

Step 7 Set M̄i := M̂ i
i and compute direction vector si+1 by formula (24). Com-

pute vector ǓT
i−1yi by (25) and matrix R̂i by (18).

Step 8 If i < m̄, set Ǔi := Ûi and Ři := R̂i, otherwise determine Ǔi and Ři by
(22) and (23). Set i := i + 1 and go to Step 2.

The recursive matrix formulation described above can be used also for some other
variable metric updates. We focus our attention on the Davidon class of variable metric
methods proposed in [3] and reformulated in [6]. Variable metric methods from this
class are generalizations of the Rank-1 method. Applied to the quadratic function, they
generate conjugate directions without perfect line search.

Limited memory variable metric methods from the Davidon class generate matrix
Hi+1 from matrix H1 = λiI by i updates of the form

Hj+1 = Hj + VjNjV
T
j , 1 ≤ j ≤ i, (26)

where Vj = [vj , dj −Hjyj] and

Nj =
[

ρj , σj

σj , τj

]
.

Vector vj is generated recursively to satisfy conditions

vj+1 ∈ span(vj , dj −Hjyj), vT
j+1yj = 0 (27)

(vector vj+1 is a linear combination of vectors vj , dj − Hjyj and is perpendicular to
vector yj). Conditions (27) are satisfied, e. g., if

vj+1 = yT
j (dj −Hjyj)vj − yT

j vj(dj −Hjyj). (28)

Recursive form of LM-VM methods 231

It can be easily proved, see [6], that the update Hj+1 = Hj + VjNjV
T
j , where Vj =

[vj , dj −Hjyj], satisfies quasi-Newton condition Hj+1yj = dj , if

Hj+1 = Hj +
(dj −Hjyj)(dj −Hjyj)T

yT
j (dj −Hjyj)

−
ϕjvj+1v

T
j+1

yT
j (dj −Hjyj)

, (29)

where ϕj = −det Nj is a free parameter and vj+1 is the vector determined by formula
(28). Thus

ρj = −ϕjy
T
j (dj −Hjyj), σj = ϕjy

T
j vj , τj =

1− ϕj(yT
j vj)2

yT
j (dj −Hjyj)

. (30)

Setting ϕj = 0, we obtain the Rank-1 update which lies in both the Broyden and the
Davidon classes. It is important that some updates from the Davidon class generate
positive definite matrices, but it is computationally difficult to find a suitable value of
parameter ϕj , see [6]. Notice that we have chosen the Davidon class of variable metric
updates not for its efficiency, but for the demonstration of the fact that the recursive
matrix formulation can be also used for variable metric updates that do not belong to
the Broyden class.

Analogously to (13), we seek the expression

Hi+1 = H1 + V̄iN̄iV̄
T
i , (31)

where V̄i = [v1, d1 −H1y1, . . . , vi, di −H1yi] and N̄i is a square matrix of order 2m.

Theorem 2.3. Let matrix Hi+1 be obtained from matrix H1 by i updates of the form
(26). Then (31) holds with matrix N̄i obtained recursively in such a way that N̄1 = N1

and

N̄j =

 N̄j−1 + τj zj−1z
T
j−1, σj zj−1, τj zj−1

σj zT
j−1, ρj , σj

τj zT
j−1, σj , τj

 , 2 ≤ j ≤ i, (32)

where
zj−1 = N̄j−1r̄j−1, r̄j−1 = V̄ T

j−1yj . (33)

P r o o f . We prove this theorem by induction. Assume that

Hj = H1 + V̄j−1N̄j−1V̄
T
j−1 (34)

for some index 2 ≤ j < i. Relation (34) holds for j = 2 by (26) since V̄1 = V1 and
N̄1 = N1. Denoting wj = dj −H1yj , substituting (34) into (26) and using the fact that

Vj = [vj , dj −Hjyj] =
[
vj , dj −H1yj + V̄j−1N̄j−1V̄

T
j−1yj

]
=
[
vj , wj + V̄j−1zj−1

]

232 L. LUKŠAN AND J. VLČEK

by (33) and (34), we can write

Hj+1 = H1 + V̄j−1N̄j−1V̄
T
j−1 +

[
vj , wj + V̄j−1zj−1

]
Nj

[
vj , wj + V̄j−1zj−1

]T
= H1 + V̄j−1 N̄j−1 V̄ T

j−1 + ρj vjv
T
j

+ σj

(
vjw

T
j + wjv

T
j

)
+ σj

(
vj (V̄j−1zj−1)T + V̄j−1zj−1 vT

j

)
+ τj wjw

T
j + τj

(
wj (V̄j−1zj−1)T + V̄j−1zj−1 wT

j

)
+ τj V̄j−1zj−1z

T
j−1V̄

T
j−1

= H1 +
[
V̄j−1, vj , wj

] N̄j−1 + τj zj−1z
T
j−1, σj zj−1, τj zj−1

σj zT
j−1, ρj , σj

τj zT
j−1, σj , τj

[
V̄j−1, vj , wj

]T = H1 + V̄jN̄j V̄
T
j ,

so the induction step is proved. �

Using (33) and (34), we obtain

dj −Hjyj = dj −H1yj + V̄j−1N̄j−1V̄
T
j−1yj = dj −H1yj + V̄j−1zj−1,

and
yT

j (dj −Hjyj) = yT
j dj − yT

j H1yj + r̄T
j−1zj−1.

These quantities are necessary for the determination of vector vj+1 by (28) and for the
computation of numbers ρj , σj , τj by (32).

3. NUMERICAL EXPERIMENTS AND CONCLUSIONS

Limited memory variable metric methods from the Broyden class were tested by us-
ing 68 unconstrained minimization problems with 10000 variables from the collection
TEST25 described in [7] and 55 problems with 1000–5000 variables from the collection
TEST11 described in [8] (problems 15, 26, 33, 42, 48, 57, 58, 60, 61, 67–70, 79 from
TEST25 and 42, 48, 50 from TEST11, which were not solved by any limited memory
variable metric method, were excluded). These collections, written in Fortran 77, can be
downloaded from http://www.cs.cas.cz/luksan/test.html together with reports [7]
and [8] (TEST11 contains selected large scale problems from the CUTE collection [1]).

The summary results of our tests are presented in two tables given below, where NIT
is the total number of iterations, NFV is the total number of function evaluations and
TIME is the total computational time. Note that the total computational time is not
always proportional to the total number of function evaluations, since individual test
problems have different complexity. Rows of tables correspond to the methods tested:
BNS – the BFGS method with explicit matrix formulation (formula (10)), New 1.0 –
the BFGS method with recursive matrix formulation (Algorithm 1 with η = 1.0) and
New 0.8 variable metric method with recursive matrix formulation (Algorithm 1 with
η = 0.8). The standard value m̄ = 5 (the number of VM steps) was chosen in all
cases. All these methods were implemented with the same line search subroutine using
parameters ε = 10−6, ε1 = 0.001, ε2 = 0.9 and the unit initial step-size (the step-size

Recursive form of LM-VM methods 233

from which the line search is started). In fact, we tested many other methods with
various values of the parameter η, but the choice η = 0.8 gave the best results.

Method NIT NFV TIME
BNS 458225 475693 9:49.65

New 1.0 460369 477298 9:20.44
New 0.8 418447 427429 8:29.01

Test 25

Method NIT NFV TIME
BNS 85535 89975 17.11

New 1.0 87742 92382 17.31
New 0.8 84331 87358 15.96

Test 11

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [4]. The
performance profile πM (τ) is defined by the formula

πM (τ) =
number of problems where log2(τP,M) ≤ τ

total number of problems

with τ ≥ 0, where τP,M is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P .

The value of πM (τ) at τ = 0 gives the percentage of test problems for which the
method M is the best and the value for τ large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can be
directly seen from the performance profiles: the higher is the particular curve the better
is the corresponding method. The following figures, reveal the performance profiles for
tested methods graphically.

Test 25 – NFV

0 0.3 0.6 0.9 1.2 1.5
τ

π

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BNS
New 1.0
New 0.8

Test 25 – TIME

0 0.3 0.6 0.9 1.2 1.5
τ

π

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BNS
New 1.0
New 0.8

234 L. LUKŠAN AND J. VLČEK

Test 11 – NFV

0 0.3 0.6 0.9 1.2 1.5
τ

π

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BNS
New 1.0
New 0.8

Test 11 – TIME

0 0.3 0.6 0.9 1.2 1.5
τ

π

0

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BNS
New 1.0
New 0.8

From the results presented, we can deduce that limited memory variable metric meth-
ods with the recursive matrix formulation are at least competitive with standard real-
izations of limited memory variable metric methods (they use approximately 4mn op-
erations for the direction determination as well). Moreover, these results indicate that
limited memory variable metric methods from the Broyden class (formula (5)) with val-
ues of parameter η different from 1.0, can be more efficient than the limited memory
BFGS method. Since we have tested a limited number of simple updates, it is possible
that a more suitable choice of parameter η will be found. In this case, such an update
will be possible to realize by our recursive formulation approach.

(Received May 10, 2012)

R E FER E NCE S

[1] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint: CUTE: constrained and unconstrained
testing environment. ACM Trans. Math. Software 21 (1995), 123–160.

[2] R. H. Byrd, J. Nocedal, and R. B. Schnabel: Representation of quasi-Newton matrices and
their use in limited memory methods. Math. Programming 63 (1994), 129–156.

[3] W. C. Davidon: Optimally conditioned optimization algorithms without line searches.
Math. Programming 9 (1975), 1–30.

[4] E. D. Dolan and J. J. Moré: Benchmarking optimization software with performance pro-
files. Math. Programming 91 (2002), 201–213.

[5] S. Hoshino: A formulation of variable metric methods. J. Institute of Mathematics and
its Applications 10 (1972), 394–403.

[6] L. Lukšan: Quasi-Newton methods without projections for unconstrained minimization.
Kybernetika 18 (1982), 290–306.

[7] L. Lukšan, C. Matonoha, and J. Vlček: Sparse Test Problems for Unconstrained Opti-
mization. Report V-1064, Institute of Computer Science AS CR, Prague 2010.

[8] L. Lukšan, C. Matonoha, and J. Vlček: Modified CUTE Problems for Sparse Uncon-
strained Optimization. Report V-1081, Institute of Computer Science AS CR, Prague
2010.

Recursive form of LM-VM methods 235

[9] L. Lukšan amd E. Spedicato: Variable metric methods for unconstrained optimization
and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61–95.

[10] H. Matthies and G.Strang: The solution of nonlinear finite element equations. Internat.
J. Numer. Methods Engrg. 14 (1979), 1613–1623.

[11] J. Nocedal: Updating quasi-Newton matrices with limited storage. Math. Comput. 35
(1980), 773–782.

[12] J. Vlček and L. Lukšan: Generalizations of the Limited-memory BFGS Method Based on
Quasi-product Form of Update. Report V-1060, Institute of Computer Science AS CR,
Prague 2009.

Ladislav Lukšan, Institute of Computer Science, Academy of Sciences of the Czech Republic,

Pod Vodárenskou věž́ı 2, 182 07 Praha 8 and Technical University of Liberec, Hálkova 6, 461 17

Liberec. Czech Republic.

e-mail: luksan@cs.cas.cz

Jan Vlček, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod

Vodárenskou věž́ı 2, 182 07 Praha 8. Czech Republic.

e-mail: vlcek@cs.cas.cz

		webmaster@dml.cz
	2016-01-03T21:59:58+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document

