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APPLICATION OF THE RANDOM FIELD THEORY
IN PET IMAGING – INJECTION DOSE OPTIMIZATION

Jiř́ı Dvořák, Jiř́ı Boldyš, Magdaléna Skopalová and Otakar Bělohlávek

This work presents new application of the random field theory in medical imaging. Results
from both integral geometry and random field theory can be used to detect locations with
significantly increased radiotracer uptake in images from positron emission tomography (PET).
The assumptions needed to use these results are verified on a set of real and simulated phantom
images.

The proposed method of detecting activation (locations with increased radiotracer concen-
tration) is used to quantify the quality of simulated PET images. Dependence of the quality on
the injection dose (amount of applied radiotracer) and patient’s body parameters is estimated.
It is used to derive curves of constant quality determining the injection dose needed to achieve
desired quality of the resulting images. The curves are compared with the formula currently
used in medical practice.

Keywords: random field theory, Euler characteristic, PET imaging, PET image quality
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1. INTRODUCTION

Random field theory has many exciting applications for example in cosmology or neu-
roscience, see [25] and references therein. This work presents new application of the
random field theory in medical imaging – particularly in positron emission tomography
(PET). It is based on the results concerning exceedance probabilities of smooth random
fields.

PET is a medical imaging technique designed to provide functional information about
the processes in human body [16], as opposed to the anatomical information provided
by other imaging modalities such as computed tomography (CT). It estimates spatial
distribution of the radiotracer in the patient’s body. Figure 1 shows examples of sections
of the corresponding CT and PET images of the same patient.

All radiotracers used in PET produce positrons during their decay. Specific radio-
tracer is chosen according to the diagnostic task. The most common application of PET
in medical practice is examination of oncologic patients and detection of possible tumors.
In the case of tumor detection the typical choice of radiotracer is 18F-FDG, a radioactive
analogue of glucose, because tumors display higher glucose uptake than normal tissues.
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Fig. 1. Examples of CT (left) and PET images (right) of the

corresponding section of patient’s liver.

This leads to increased concentration of the radiotracer in the tumor compared to the
background.

Quality of the resulting three-dimensional (3D) image depends strongly on the amount
of radiotracer applied (and its activity), duration of the scan and physical parameters
of the patient’s body, besides scanner quality and other scanning and reconstruction
parameters. The need to optimize the injected dose of radiotracer arises from the con-
tradictory demands for sufficient image quality and minimization of the radiation dose
received by the patient.

The radiotracer dosage recommendation used nowadays in practice depends linearly
on the patient’s weight (EANM guidelines [5]). An exception is the specific recommen-
dation for children which tries to equalize effective radiation dose among the patients
(the EANM pediatric dosage card [13]). However, there is a possibility to improve the
recommendation so that it produces images of comparable diagnostic quality for different
patients.

Standard metrics of PET image quality are based on statistical properties of the
acquired data [2, 9, 15, 22], the amount of noise in the resulting image [15, 21] or its
subjective visual quality [10, 12].

The ultimate measure of PET image quality is the performance of human observer in
a given diagnostic task, such as detection of lesions. These are seen in the image as small
foci of increased radiotracer concentration, suggesting the presence of a tumor [11, 12].
Studies involving human observers are very time-consuming and thus mathematical
model observers were developed to simulate performance of human observers [1, 11].

In certain situations PET images can be regarded as realizations of a smooth random
field sampled on a rectangular lattice of discrete points [19, 24, 26, 27]. The diagnostic
task of detecting significant increase of the random field’s values in a given homogeneous
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region can be treated as a problem of testing null hypothesis that the random field has
a constant mean. Example of such a task is detecting tumors in patient’s liver.

Under the assumptions of Gaussian distribution, stationarity and isotropy threshold
can be determined which is exceeded by the values of the random field only with a given
probability (e. g. 0.05) [26]. Then, following the standard procedure of hypothesis
testing, one can reject the null hypothesis of constant mean if the values of the random
field exceed the threshold at any point. This leads to the conclusion that significant
activation (increase of the random field’s values) is present in the image. What’s more,
the activation can be easily localized – it is situated at the points at which the values
exceed the threshold.

This work presents alternative method of expressing quality of (simulated) PET im-
ages in terms of lesion detectability, see Section 4. The method makes use of the results
of the random field theory and integral geometry. For comparison, a standard metric of
PET image quality – NEC, see Section 2 or [9, 15, 18] – is calculated as well.

Relationship between the quality of the images, the amount of applied radiotracer and
patient’s body parameters is estimated. Curves of constant quality are derived which
determine the amount of radiotracer needed to achieve required quality of the resulting
image. The curves are compared with the formula currently used in medical practice
[13].

The paper is organized as follows. Section 2 provides necessary information about
PET. Section 3 formulates the task of lesion detection as a hypotheses testing problem.
Exceedance probabilities of random fields and their approximations are discussed in
Section 4 and 5. Details of the PET images simulation are given in Section 6. In
Section 7 statistical properties of real and simulated PET images are assessed. The
curves of constant quality are derived in Section 8 and the results are summarized in
Section 9. Finally, concluding remarks are given in Section 10.

2. POSITRON EMISSION TOMOGRAPHY

In a typical case of oncologic PET examination the patient is injected some amount of
a radiotracer (e. g. 18F-FDG, as stated above) and rests for 60 – 90 minutes so that the
radiotracer is distributed along the patient’s body in the time of examination.

18F is an unstable isotope of fluorine and it decays with half-life of approximately 110
minutes while emitting a positron. The positron almost immediately annihilates and a
pair of annihilation photons with high energy moving in opposite directions is emitted.

If the annihilation photon hits the detector surrounding the patient’s body it is de-
tected by a scintillation crystal. If two photons are registered within a short time interval
called coincidence window (typically a few nanoseconds long) it is assumed that they
originated in the same annihilation. The event of detecting such a pair of annihilation
photons is called coincidence.

There are three different types of coincidences (see also Figure 2):

• true – two photons from the same annihilation are detected and none of them
changed its direction (no scatter occurred),

• scattered – one or both photons from the same annihilation interacted with mate-
rial and underwent a scatter (change of direction),
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Fig. 2. Three types of events which give rise to different types of

coincidences: true (left), scattered (middle) and random coincidences

(right), with corresponding lines of response (dashed lines).

• random – two photons from different annihilations are detected in the given coin-
cidence window.

Only the true coincidences bring valid information about the radiotracer distribution
in the patient’s body. Scattered coincidences can be thought of as a blur and random
coincidences represent noise in the data.

To every recorded coincidence so-called line of response (LOR) can be assigned. It is
a line joining the two detectors which detected the two photons in coincidence (see also
Figure 2). It is assumed that the annihilation during which the photons originated took
place somewhere along this LOR.

True coincidences are assigned a correct LOR while scattered and random coinci-
dences are assigned a wrong LOR (see again Figure 2) which degrades the data quality.
The acquisition process results in counts of coincidences which occur along individual
LORs. This form of output is called sinogram and it is used to estimate the radiotracer
distribution in the field of view [16].

The undesirable effect of scattered and random coincidences can be reduced by ap-
plication of different corresponding correction methods. They are followed by a recon-
struction process during which a 3D image of radiotracer concentration is calculated
from the sinogram.

So called noise equivalent count (NEC) calculated from the coincidence counts is a
standard measure of the quality of the sinogram. It quantifies signal strength in noisy
data. Let T, S and R, respectively, denote the number of true, scattered and random
coincidences recorded during the acquisition. Then NEC can be calculated as follows:

NEC =
T 2

T + S + kfR
, (1)

where f is fraction of the patient’s volume in the scanner field of view and k is either 1
or 2, depending on the type of applied random coincidence correction.
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NEC describes statistical quality of the sinogram and it is not affected by the re-
construction process. This makes it very useful when comparing data obtained from
different scanners and under different acquisition protocols.

In practice the number and distribution of the scatter coincidences can be estimated
e. g. by a model-based scatter correction algorithm using a single-scatter simulation
technique described in [23]. Such kind of algorithm is implemented in many scanners.

The most common way of estimating the random coincidence counts is using delayed
coincidence channel, where one of the single-photon events (registration of a photon
in a detector) has an arbitrarily large time delay. Thus, no coincidence recorded in
this channel can be true or scattered. Number of these delayed coincidences equals, on
average, number of actual random coincidences [7].

These estimates of numbers of scattered and random coincidences can be subtracted
from the total number of recorded coincidences (so-called prompt coincidences) in order
to estimate the number of true coincidences and calculate the NEC value. In the simula-
tions described in Section 6 data related to the true, scattered and random coincidences
are directly available. This enables simple and efficient calculation of NEC.

From finite amount of data one cannot estimate whole spatial distribution of the
radiotracer and thus some discretization is needed. The field of view is divided into
a finite number of voxels (3D analogue of a two-dimensional pixel). Output of the
reconstruction algorithm is the estimate of the number of annihilations in each voxel.
High value in a voxel indicates high concentration of the radiotracer in the given area.

The resulting image is finally smoothed by a 3D Gaussian filter with a full width at
half maximum (FWHM) of 5 mm. The reason is to reduce noise and to improve the
visual image quality prior to the diagnostic process.

3. LESION DETECTION AS A HYPOTHESES TESTING PROBLEM

We regard concentration of the radiotracer in the patient’s body as a realization of a
smooth random field and values recorded in the PET image as the values of the random
field on a regular grid of points. We will consider the task of lesion detection – finding
locations with significantly increased values that should not be exhibited by background
with no pathological changes. Such areas will be attributed to an “activation”.

Both real and simulated PET images contain large amount of noise and it is difficult
to distinguish whether certain peak in the data occurs by chance or indicates presence
of a lesion, see Figure 1 (right).

Random field theory can help solve this problem. It has been successfully used in
the past years in interpretation of brain imaging experiments (e. g. [27] and references
therein). When studying which parts of human brain are involved in solving given tasks
two brain PET images are acquired – one during the task and the other when the patient
is at rest.

Parts of the brain involved in solving the task exhibit increased blood flow due to
increased neuron activity. This leads to increased image intensities compared to those
recorded in parts of the brain not involved in solving the task or to values recorded under
the rest condition. The difference of the two images is then analyzed. It is assumed that
the values of this difference image are centered around zero except of the parts of the
brain activated by the task.



Application of the random field theory in medical imaging 285

To decrease the effect of noise the same study is performed for several volunteers. The
average of the difference images is then analyzed to locate parts of the brain activated
by the task.

Our situation is different. We want to inspect PET image of the liver area in order to
locate possible tumors and we work with a single image of a single patient. There is no
way we could obtain two images of the patient in “activated/non-activated” conditions.
Similarly, we cannot obtain multiple images to be averaged in order to increase the signal-
to-noise ratio as this would extend scan duration and accentuate problems related to
the patient’s movement. However, with some caution we can utilize the same methods
of the random field theory even in this case.

PET image model used in the following is a smooth real-valued random field (Xs, s∈R3).
We are interested in its properties in the set S ⊂ R3, e. g. in part of the patient’s body.
We take the values of the PET images in individual voxels for the values of the random
field in appropriate lattice points.

Applying the classical scheme of hypothesis testing we formulate the null hypothesis
H0 that no lesion (“activation”) is present in the region of interest S (just as in the
standard method used in [26] or [27]). This means that under H0 the random field
(Xs, s ∈ S) has a constant mean. If the values of the random field exceed an appropriate
threshold t0 in any point of S we reject the null hypothesis of no activation.

Important consequence of this procedure is that rejection of the null hypothesis im-
plies localization of the activation – it occurs in those points of S in which the random
field’s values exceed the threshold t0.

In the context of the brain imaging experiment described above the choice of the
null hypothesis (zero mean of the random field) was motivated by the subtraction of
the two images. In our situation we restrict ourselves to regions S with homogeneous
radiotracer distribution (under H0), such as the liver area. This means that the random
field (Xs, s ∈ S) has a constant mean which can be estimated and subtracted from Xs.
Thus we can assume that the random field has a zero mean under the null hypothesis
and in what follows we can work along the lines of the standard method used in [26] or
[27] (where the zero mean of the random field, under H0, was ensured by subtracting
two independent copies of the random field).

When constructing a test of the hypothesis of no activation a classical problem of
multiple comparison arises. Typical PET image of liver comprises of 10 to 30 thousand
voxels. If we compared each value with a threshold t0 set to e. g. a 95%-quantile of its
distribution, several hundred voxels would exceed this threshold only by chance even
under the null hypothesis. We would find activation in hundreds of voxels even though
no activation was actually present in the image.

Clearly another method of choosing t0 must be applied. One option is to use the
Bonferroni correction. Suppose we have n identically distributed observations (this
would be the case if our random field was weakly stationary and Gaussian). We want
to reject H0 if any of the observations exceeds a given threshold t0. If we set α0 = α/n
and find the threshold t0 such that it is exceeded by a single observation only with the
probability α0, the significance level of the test will be less than or equal to α.

This method is very useful if the observations are independent or nearly independent
– the actual significance level of the test is close to α. If the observations are strongly
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correlated (as could be expected in the case of a smooth random field), this test is
unnecessarily conservative and its significance level is much lower than α.

Another option is to slightly restate the problem. We want to reject the null hypoth-
esis if the maximum of the observed values exceeds t0, i. e. if sups∈S Xs ≥ t0. We set
the significance level α ∈ (0, 1). Then we can determine the value of the threshold t0
from the equation

P
(

sup
s∈S

Xs ≥ t0

)
= α. (2)

The only flaw of this procedure is the necessity to know the distribution of sups∈S Xs

under H0 or at least good approximations of P (sups∈S Xs ≥ t) for high values of t.

4. EXCEEDANCE PROBABILITIES OF RANDOM FIELDS

Surprising result of the random field theory is that approximation of P (sups∈S Xs ≥ t)
is provided by the expected value of the Euler characteristic of the set of points where
the values of the random field exceed the threshold t [25]:

P
(

sup
s∈S

Xs ≥ t

)
≈ E χ({s ∈ S : Xs ≥ t}). (3)

Here we call Et = {s ∈ S : Xs ≥ t} the excursion set of the random field X above the
threshold t and χ (A) denotes the Euler characteristic of the set A.

We consider the definition of the Euler characteristic as one of the intrinsic volumes.
They are a class of additive functionals that can be defined on a fairly general class
of sets called the basic complexes. We do not need that level of generality so we first
consider only the class of compact convex sets K. For the following definition and more
thorough discussion on intrinsic volumes see [4].

Definition 4.1. Let K be a convex body in RN and Kr its dilation by distance r > 0:

Kr =
{
x ∈ RN : d(x,K) ≤ r

}
, (4)

where d(x,K) = infy∈K |x− y| is the Euclidean distance of the point x and the set K.
Let λN denote the Lebesgue measure in RN . The intrinsic volumes µj , j = 0, 1, . . . , N,
are the only additive functionals on the class of compact convex sets K fulfilling the
Steiner’s formula

λN (Kr) =
N∑

j=0

ωN−jr
N−jµj(K), (5)

where ωj is volume of the unit ball in Rj (see e. g. [4]).
µ0(K) is the Euler characteristic of K and µN (K) its volume. In R3 (N = 3) µ2(K)

and µ1(K) express (up to a scaling factor) surface area of K and its cross-sectional
diameter, respectively.

Definition of the intrinsic volumes can be extended to the class of finite unions of
compact convex sets using the following additivity property:

µj(K ∪ L) = µj(K) + µj(L)− µj(K ∩ L) (6)

for any K, L ∈ K and j = 0, 1, . . . , N.
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For further extension of the definition of Euler characteristic to the class of basic
complexes see Ch. 6 of [4].

Ch. 14 of [4] discusses the accuracy of the approximation (3) and it derives an upper
bound on |E [χ(Et)]− P (sups∈S Xs ≥ t)|.

Note that for values of t close to the global maximum of (suitably regular) random field
X it can be seen that χ(Et) = 1 if sups∈S Xs ≥ t (the excursion set Et consists of a single
connected component with no holes or hollows), and χ(Et) = 0 for sups∈S Xs < t (Et is
empty). Calculating the expectation gives (3) and intuitively justifies the approximation,
at least for high values of t.

Important result of integral geometry and differential topology is an explicit formula
for calculating E [χ(Et)] for certain classes of random fields (particularly Gaussian and
related fields). This enables us to solve the equation

P
(

sup
s∈S

Xs ≥ t0

)
≈ E [χ(Et0)] = α (7)

for small values of α. From (7) we determine the desired value of t0 needed to perform
the test of the null hypothesis of no activation. If the values of the random field exceed
t0 in any point of S we reject the null hypothesis. Moreover, the activation is localized
in Et0 .

5. CALCULATING THE EXPECTED EULER CHARACTERISTIC

The crucial formulae for calculating E [χ(Et)] appear in literature in many forms with
different context and level of generality. Very general results of this type can be found
in [4]. We present more specific version from the paper [25] (for notation and overview
of the results for different types of random fields see also [8]).

Suppose that S ⊂ RN is a compact convex set with a smooth boundary ∂S that is
a regular (N − 1)-dimensional C2-manifold. Following results hold for random fields
defined in all points of S. In the case of a discrete random field with values defined only
in a set of given lattice points the results can be used as approximations if the random
field is smooth enough (see e. g. discussion in [19]).

Let X = X(s), s = (s1, . . . , sN ) ∈ RN , be a weakly stationary random field in RN and
Ẋj = Ẋj(s) = ∂X(s)/∂sj , Ẍjk = Ẍjk(s) = ∂2X(s)/∂sj∂sk, j, k = 1, . . . , N. The moduli
of continuity of Ẋj and Ẍjk inside S are defined as follows:

ωj(h) = sup
s,t∈S,
‖s−t‖<h

∣∣∣Ẋj(s)− Ẋj(t)
∣∣∣ , j = 1, . . . , N, (8)

ωjk(h) = sup
s,t∈S,
‖s−t‖<h

∣∣∣Ẍjk(s)− Ẍjk(t)
∣∣∣ , j, k = 1, . . . , N. (9)

Let Ẋ = ∂X/∂s be the gradient vector of X and Ẍ = ∂2X/∂s∂s′ its N × N Hessian
matrix.

Theorem 5.1. (Worsley [25])
Let S ⊂ RN be as above and X(s) a weakly stationary isotropic random field satis-

fying the following conditions:
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C1. for any ε > 0

P
(

max
j,k

{ωj(h), ωjk(h)} > ε

)
= o(hN ), h ↘ 0, (10)

C2. Ẍ has finite variance conditional on (X, Ẋ),

C3. the density of (X, Ẋ) is bounded from above, uniformly for all s ∈ S.

Then

E [χ(Et)] =
N∑

i=0

µi(S)ρi(t), (11)

where ρi(t), i = 1, . . . , N, are so-called i-dimensional intensities of the Euler character-
istic of the excursion set Et (for precise definition see [25]).

It is clear from (11) that the expected value of χ(Et) depends on the properties of S
only by means of its intrinsic volumes µi(S) and on the properties of the random field
only by means of the intensities ρi(t).

The considered conditions on smoothness of ∂S are too restrictive in many applica-
tions. However, [26] shows that (11) holds in R2 and R3 for sets S with a piecewise
smooth boundary such as cube and other polyhedra.

In the following we consider a zero-mean stationary isotropic Gaussian random field
X with unit variance. Components of the vector Ẋ are in this case independent (see
Ch. 5 of [4]). The intensities of the Euler characteristic are in this situation given by

ρ0(t) =
1

(2π)
1
2

∫ ∞

t

e−u2/2 du, (12)

ρn(t) =
λ

n
2

(2π)
n+1

2

Hn−1(t)e−t2/2, n = 1, . . . , N, (13)

(see [8, 25] and consider the independence of the components of Ẋ). The parameter
λ expresses the roughness of the random field and it is defined as the variance of one
component of the gradient vector Ẋ. Note that due to the stationarity and isotropy of
the random field X all N components of Ẋ have the same variance. In practice λ is
estimated by empirical variance of properly scaled numerical differences of the values
in neighbouring voxels as suggested in [24]. Hm(t) denotes the Hermite polynomial of
degree m in t given by

Hm(t) = m!
bm/2c∑
j=0

(−1)jtm−2j

j!(m− 2j)!2j
,m ≥ 0, t ∈ R, (14)

where bxc is the largest integer not greater than x.
For Gaussian random fields Theorem 5.2.2 of [3] presents simpler conditions which

assure that C1 – C3 from the Theorem 5.1 are satisfied. Also, a sufficient condition on
the covariance function can be obtained from Theorem 3.4.1 of [3]. For example, it is
sufficient that the third derivatives of X(s) have finite variances or that the correlation
function of X is of the form r(h) = exp{−ρ||h||2/2} for some ρ > 0 [25].
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Theorem 4.3.1 of [3] shows that under certain conditions on regularity of the random
field X the excursion set Et is a basic complex and thus its Euler characteristic is
properly defined. These conditions can be verified using Theorem 3.2.4 of [3]. For
detailed discussion of these conditions for Gaussian random fields see Section 3.3 of [3].

The proposed method of lesion detection will be used in the following sections to
quantify the quality of a set of simulated PET images in terms of detectability of liver
lesions with different contrast against the background.

6. SIMULATION OF PET IMAGES

Computer simulations can be used to generate artificial PET images, mainly by Monte
Carlo methods. For this purpose we used the open-source software GATE dedicated
to numerical simulations in medical imaging and radiotherapy [14]. It simulates the
physical processes that give rise to PET images (radioactive decay, positron-electron
annihilation, photon interactions in different materials, etc.).

We prepared model of the Siemens Biograph 40 TruePoint TrueV HD PET/CT scan-
ner. To assess the statistical properties of PET images we modeled a simple cylindrical
phantom (artificial object representing the patient’s body) with a homogeneous distri-
bution of the radiotracer. The height of the phantom is 250 mm, diameter of its base
is 210 mm. Real images of the same phantom from the Siemens Biograph scanner are
available for comparison (see Section 7).

We chose liver area as the main region of interest in this study. It is important region
for PET imaging with frequent tumor occurrence and it exhibits a homogeneous distri-
bution of 18F-FDG. We want to quantify PET image quality in terms of detectability of
simulated liver lesions.

For assessing the relationship between the image quality, the amount of radiotracer
applied and the patient’s physical parameters we constructed another cylindrical phan-
tom that approximates human abdomen. The phantom’s height is 250 mm and its
structure can be described as follows: a cylinder with base radius r1 represents the
patient’s body; it contains another cylinder with base radius r2 which represents the
internal organs and contains a sphere with radius r3 = r2/2 which approximates the
liver.

This structure gives rise to three different layers of the phantom – liver, other inter-
nal organs and subcutaneous adipose tissue. A central section of the phantom which
illustrates these layers is shown in Figure 3. By adjusting the values of r1 and r2 we can
simulate images of patients with different body parameters (most importantly weight).
Construction of the phantom is described in more detail in [6].

Distribution of the radiotracer is homogeneous in each layer (liver, internal organs,
adipose tissue). The radiotracer concentrations are chosen so that their ratios approxi-
mately match the ratios determined empirically from a set of real PET images.

Six spherical lesions were added to the liver area of the phantom for the intended lesion
detection experiment. Their radius is 10 mm and they are positioned symmetrically
around the liver’s center, see Figure 3. The concentration of the radiotracer is different
in each lesion and it is higher than the background (liver) concentration, see Section 9.

A method of detecting the lesions in noisy PET images was proposed in Section 4.
The method was tested on a set of simulated images of this phantom with different radii
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adipose tissue

liver

internal organs

lesions

Fig. 3. Central section of the cylindrical phantom approximating

patient’s abdomen.

r1 and r2 and different amounts of the radiotracer.
Different types of output formats are available in GATE. At this early stage of the

research a simple format was chosen. This format includes information about locations
of the annihilations which give rise to true and scattered coincidences. The number of
random coincidences is also recorded. The result can be viewed as an image after ideal
reconstruction which is in practice estimated by intricate reconstruction algorithms.

Also, simple attenuation correction was applied to the images. The correction factors
were determined by simulation of a homogeneous phantom with appropriate size. Voxel
size was chosen to be 4.07 × 4.07 × 5 mm which is consistent with the voxel size in
available real PET images of patients.

7. STATISTICAL PROPERTIES OF PET IMAGES

To assess the properties of PET images we used 15 real images of a cylindrical phantom
(diameter 210 mm, height 250 mm) filled with a homogeneous solution of 18F-FDG.
These images were acquired during regular quality checks in Na Homolce Hospital,
Prague, Czech Republic. After reconstruction the images were smoothed using a Gaus-
sian kernel with FWHM 2 mm. 20 artificial images of the same phantom (not smoothed
prior to the analysis) were simulated to compare the statistical properties of real and
simulated PET images.

Voxel dimensions in the real phantom images were 5.35× 5.35× 2.03 mm. Note that
they are different from the voxel dimensions in the real patients images, see Section 6. In
the simulated phantom images the voxel dimensions were chosen to be 4× 4× 4 mm for
simplicity (such a cubic voxel has approx. the same volume as the voxel in real phantom
images). Central part of the phantom covering approx. 2000 cm3 was chosen for the
analysis. It also covers parts of the phantom just under its surface as well as those near
its base. All images (of the central part) were standardized to have zero mean and unit
variance.

To assess the range of correlation in the data we chose a voxel V0 in the centre of the
phantom and estimated the Pearson correlation coefficients of the values observed in V0
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Real data Simulated data
Location Rejected Fraction Rejected Fraction

centre 0/26 0.00 % 1/26 3.85 %
surface 2/26 7.69 % 0/26 0.00 %
base 3/26 11.54 % 3/26 11.54 %

Tab. 1. Results – testing if the true correlation in neighbouring

voxels is zero. In each location 26 tests at 5 % significance level were

performed.

and the values observed in voxels shifted from V0 by different amount in the direction
of one of the coordinate axes.

The estimated values of the correlation coefficient do not suggest stronger correlation
between pairs of nearby voxels compared to the distant pairs. We performed tests at 5%
significance level if the true correlation coefficients are zero. For real images 5 out of 112
tests (4.46 %) rejected the null hypothesis of no correlation, for simulated images 4 out of
93 tests (4.30 %) rejected the null hypothesis. However, the pairs of voxels for which the
null hypothesis was rejected do not tend to be close together and are rather uniformly
distributed among all pairs. Thus the range of correlation could not be estimated by
this analysis – it seems to be smaller than the voxel dimensions. Different number of
voxel pairs was analyzed (and number of tests performed) for real and simulated images
due to different voxel dimensions in order to cover the same distance between voxels in
the direction of each coordinate axis.

We also chose three voxels in different parts of the phantom: V0 in the centre of the
phantom, V1 near its surface and V2 near its base. We estimated the Pearson correlation
coefficient of values observed in Vi’s and their 26 respective neighbours and tested if
the true correlation is zero at 5 % significance level. We performed 3 sets of 26 tests
separately for real and simulated images.

The results are summarized in Table 1. The number of rejections is higher than
expected near the base for both real and simulated data. However, after Bonferroni
correction (for 26 tests in one set) no test rejected the null hypothesis. Therefore we
consider the values in different voxels uncorrelated.

Considering the Poisson character of the underlying physical processes (decay of
unstable radionuclides) one could expect the observed values to be Poisson distributed.
Since the Poisson distribution can be approximated by a Gaussian distribution for large
values of the mean we performed tests for the normality of distribution.

To test univariate normality of the observed values in individual voxels we chose two
different types of tests: Shapiro–Wilk and Anderson–Darling test (see e. g. [20]). For
the real data we chose a large rectangular block of voxels fully covered by the phantom
(25× 25× 65 = 40, 625 voxels). For each voxel we have 15 independent observed values
from 15 images and we test the normality of these values. Altogether we performed
40,625 tests for the real images.
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Similarly, for the simulated data we selected a block of 323 = 32, 768 voxels covering
approx. the same volume as the block chosen for the real images. For each voxel we have
20 independent observed values from the 20 simulated images. Altogether we performed
32,768 tests for the simulated images.

At 5 % significance level the null hypothesis of the Gaussian distribution was rejected
in approx. 5.2 % of the tests (of both types) performed for different voxels for the real
data and approx. 5.6 % for the simulated data. When using the Bonferroni correction
no test rejected the null hypothesis. This means that the values observed in individual
voxels can be considered normally distributed.

Multivariate normality follows immediately from the univariate normality and the
correlation structure of the data (values in different voxels are uncorrelated). Formal
test of multivariate normality on a smaller portion of the data was performed. We chose
the test proposed in [17]. We tested the null hypothesis of multivariate normality of the
vector of 8 neighbouring values in a cube of 2 × 2 × 2 voxels. At 5% significance level
the null hypothesis was rejected in approx. 5.9 % of the performed tests for the real
data and approx. 4.4 % for the simulated data. When using the Bonferroni correction
no test rejected the null hypothesis of multivariate normality.

To use Theorem 5.1 we need also weak stationarity and isotropy of the considered
random field. To assess these properties of real and simulated data we estimated, indi-
vidually for each voxel, the mean value and standard deviation (s.d.) of the recorded
values as sample mean and sample s.d. By this we obtained 3D maps of the sample
means and sample s.d.’s corresponding to individual voxels. We performed the estima-
tion separately for real and for simulated images of the phantom.

Since the values in different voxels are uncorrelated it is sufficient for the random
field to be stationary that the mean values and standard deviations are constant.

Real data exhibit visible spatial trends in mean values despite the fact that the distri-
bution of radiotracer is homogeneous in the whole phantom and attenuation correction
was applied during the reconstruction process. Values in voxels near the axis of the
cylindrical phantom are lower (on average) than in the voxels closer to surface. On the
other hand, simulated data show only small random deviations of the mean values in
individual voxels from the overall average without any spatial trends.

Inspection of the standard deviations of the voxel values in simulated data showed
mild global trends. Values in voxels near the axis and near the base of the cylinder
exhibit higher standard deviations than voxels near the surface. This behavior reflects
the different values of the attenuation correction coefficients, see Section 6.

As a result, we cannot consider the real data to be realizations of a stationary random
field and we cannot apply the method described in Section 4. In the case of simulated
data, the random field in question can be considered stationary only locally (in parts
of the phantom where the standard deviations are constant or almost constant) rather
than in the whole volume of the phantom.

From the correlation structure of the simulated data we can expect locally isotropic
behavior of the random field in the parts of the phantom where we consider it stationary.
Informal method for assessing isotropy of a random field observed in discrete lattice
points proposed in [28] confirmed that the simulated data can be considered isotropic in
smaller parts of the phantom.
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Theorem 5.1 assumes that the random field is sufficiently smooth. We can expect
that the simulated data require additional smoothing before calculating the expected
value of Euler characteristic of an excursion set due to its correlation structure (see [19]
for a relevant simulation study in 2D).

We applied isotropic Gaussian filters with different widths to the 20 simulated im-
ages of cylindrical phantom to obtain images with different smoothness. Applica-
tion of the filters to uncorrelated data results in a correlation function of the form
r(h) = exp{−ρ||h||2/2} for some ρ > 0. This justifies the use of Theorem 5.1, see
Section 5 above. Since the filtering consists of forming linear combinations of the (un-
correlated) values of the random field the normal distribution of the values is not affected
by this process.

We calculated mean Euler characteristic of excursion sets Et of the smoothed simu-
lated data for a wide range of values of threshold t. Estimation of χ(Et) from discretely
sampled values of the random field was performed using a method described in [26].
Then we compared the mean values of χ(Et) with the theoretical values of E [χ(Et)],
see Figure 4.

The results lead to conclusion that the empirical behavior of χ(Et) corresponds well
to the theoretical expressions for E [χ(Et)], particularly in the tails, if the simulated data
were smoothed by isotropic Gaussian filter with FWHM larger than 5 times the length
of voxel edge. This is consistent with the conclusions in [19].

The above analysis showed that the formula (11) can be applied to the simulated data
after sufficient smoothing and in smaller parts of the image rather than in the whole
volume of the phantom.

8. QUALITY OF SIMULATED PET IMAGES

To determine the relationship of PET image quality, amount of the applied radiotracer
and patient’s body parameters we simulated images of phantom approximating the ab-
domen of patients with different weight, see Section 6 and [6] for details. We chose six
weights varying from 48.6 kg to 129.6 kg which result in BMI from 15.0 to 40.0 for a
patient with height 1.80 m.

For each weight we simulated a set of 15 images with different amount of applied
radiotracer. Its activity was chosen randomly between 180 and 530 MBq. This interval
covers the activities that would be administered in practice to patients with weights
considered above.

To detect simulated lesions in the liver we applied the method using Euler characte-
ristic described in Section 4 and also the method using Bonferroni correction. Measure
of quality of the simulated images based on the lesion detectability should take into
account two factors: how many lesions were detected by the given method and the
degree of certainty (expressed by the number of voxels marked as significant by the
given method; the idea is that larger number of significant voxels in a small area brings
more information about the presence of a lesion and its location).

To evaluate the quality of simulated images we used the following formula:

Qm,i = k · nm,i + vm,i, m = 1, . . . , 6, i = 1, . . . , 15, (15)
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Fig. 4. Simulated data: comparison of theoretical value of E [χ(Et)]

(solid curve) and mean values bχ(Et) (points) calculated for different

values of threshold t. Top to bottom: simulated images smoothed

with isotropic Gaussian filter with FWHM 25 mm, 20 mm, 5 mm and

0 mm (unsmoothed images), respectively.
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where nm,i is the number of detected lesions in the ith image in the mth weight cate-
gory, vm,i is the number of voxels marked as significant and k is the mean number of
significant voxels per detected lesion in the whole study (calculated by averaging the
values vm,i/nm,i, m = 1, . . . , 6, i = 1, . . . , 15, i. e. averaging across images and weight
categories). Of course the choice of the constant k is arbitrary and different values put
more emphasis on the first or the second factor (number of detected lesions or number
of significant voxels). However, it turned out that the above-mentioned choice of k is a
good compromise incorporating all the available information.

We also calculated values of NEC in each simulated image according to the formula
(1). It is a standard metric of PET image quality in medical practice and it enables us
to assess clinical relevance of the results obtained by the previous methods.

It is difficult to find a suitable model for the image quality Qm,i depending on weight
and activity of the applied radiotracer. We attempted to fit simple linear additive or
multiplicative models to the data (quality of simulated images expressed in terms of
lesion detectability). However, these models did not fit the data satisfactorily and more
complex model needs to be considered. Instead, we concentrate on the dependence of
image quality on the activity for each weight category separately. For a fixed weight
category m we fit the following curve to the data by least squares

Qm,i = am + bm · (Am,i)cm , i = 1, . . . , 15, (16)

where Am,i is the activity of the radiotracer applied in the ith simulation in the weight
category m and am, bm and cm are parameters describing the dependence of image
quality on applied activity in this weight category.

Finally, we invert formula (16) to obtain curves of constant quality (CCQ), i. e. curves
determining the activity of radiotracer needed to obtain image of the same (given) quality
in each weight category. By this procedure we obtain three sets of CCQs, one for quality
measure based on Euler characteristic, one for Bonferroni correction and one for NEC.

9. RESULTS

In this section we present the curves of constant quality derived from the simulated
images. Note that we cannot do the same for real images – the real images of phan-
tom contain no lesions. Applicability of the method of lesion detection as described in
Section 4 to images of patients with possible lesions is to be further investigated.

First we performed simulations with the concentration of radiotracer in the lesions
being 120, 135, 150, 165, 180 and 195% of the background (liver) concentration, re-
spectively. This choice was suitable for using the Bonferroni correction but not for the
method based on Euler characteristic (using the latter method all lesions were detected
in nearly all images and thus we obtained only little information).

For this reason we repeated the simulations with the same amounts of applied activity
and concentrations of the radiotracer in the lesions being 105, 110, 115, 120, 125 and
130 % of the background concentration, respectively. This time the number of lesions
detected by the method using Euler characteristic was more affected by the applied
activity and weight category. Method of Bonferroni correction showed no trend in the
number of detected lesions with increasing activity in each weight category and thus was
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not used to express quality of images in this case. Differences between values of NEC
calculated in each set of simulations were negligible.

The obtained CCQs are shown in Figure 5 together with the prescription used nowa-
days in clinical practice which is based on recommendations in [13]. In three cases (the
highest weight category for method using Bonferroni correction and two highest weight
categories for method using Euler characteristic) the calculated amounts of activity were
considerably higher than amounts applicable in medical practice and thus were not taken
into account.

It is clear that the shapes of CCQs are qualitatively different from the shape of
the curve given by the current prescription (note particularly convexity of most of the
CCQs and nearly linear shape of the curve used nowadays). This supports the empirical
experience that radiotracer dosage based on [13] results in images of different quality for
patients with varying weight and it suggests the possibility of dosage optimization.

To estimate the significance level of the suggested testing procedure (of the null
hypothesis that no lesions are present in the image) the method using Euler characteristic
was applied also to the set of 90 images with no lesions. Due to the specific structure of
the simulation output it was possible to use the same images as in the study described
above but with the lesions removed. For 5 of these lesion-free images the null hypothesis
was rejected. Thus the estimated significance level of the test is 5.55 %. This is in
reasonable agreement with the nominal significance level of 5 %.

The same analysis was performed also for the method using Bonferroni correction.
In this case the null hypothesis was rejected for 45 images. This indicates that the
assumptions of the method are not fulfilled in this case and it should not be used for
hypothesis testing. In particular, the assumption of the same distribution of values in
all analyzed voxels turned out to be violated.

The previous statistical analysis was based on properties of values in individual vox-
els (e. g. for a given voxel (location), normality of the values was assessed based on a
sample of values in this voxel in 20 independent images). In the method using Bonfer-
roni correction values in thousands of voxels covering the liver are analyzed in a single
image, where the values in different voxels are treated as independent. In a sample of
this size even slight deviations from normality (or generally the “common distribution”
of the values) are exposed which may have been overlooked in the previous analysis.
The method using Euler characteristic requires substantial smoothing, thus reducing
the differences in distribution in individual voxel and making the method suitable for
hypothesis testing.

Even though the method using Bonferroni correction suffers from this problem and
cannot be used to test the hypothesis of no activation in the image, it can be used to
describe the image quality as suggested in Section 8. In the case of false positive discovery
(i. e. when estimating the significance level on images with no lesions) typically only one
or two voxels were marked as significant. On the other hand, tens of voxels were marked
as significant in images actually containing lesions. Thus, the total number of significant
voxels in this case is affected by the false positives only marginally.

Also, only the number of simulated lesions detected by this method was recorded in
the study described above, disregarding the regions of activation that do not coincide
with positions of any of the simulated lesions (i. e. disregardning the false positives). As
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a consequence the image quality based on the Bonferroni correction, calculated according
to (15), is still a useful tool for describing the dependence of the image quality on the
patient body parameters and the activity of applied radiotracer.

10. CONCLUSION

We described a method of lesion detection in PET images which takes advantage of
important results from the geometry of random fields. The method requires several non-
trivial assumptions about the distribution and probabilistic properties of the considered
random field.

These assumptions were fulfilled for the set of simulated images. However, the real
images of phantom inspected in this study violate the assumption of stationarity even
though the distribution of the radiotracer was homogeneous. This is a serious drawback
and the method needs to be adapted if it is to be used in the medical practice.

We applied the method to a set of simulated data to quantify the quality of simulated
PET images in terms of lesion detectability and to derive curves of constant quality.
Other measures of PET image quality were used as well.

The method using Euler characteristic was able to detect simulated lesions with
very low contrast against the background. On the other hand it required substantial
smoothing (with isotropic Gaussian filter with a FWHM of 25 mm, i. e. 5 times the
length of a voxel edge). That means the lesions could not be localized correctly and
appreciable number of voxels were marked as significant, even though they are outside
the locations of the simulated lesions.

The second method using Bonferroni correction performed well for simulated lesions
with higher contrast against background and could be used without any data smooth-
ing. The lesions were localized very precisely because virtually every voxel marked as
significant indeed covered (part of) a simulated lesion.

The last measure of PET image quality, NEC, is based on the coincidence counts
and not on lesion detection. It was affected only marginally by the contrast of simulated
lesions.

Shape of the derived curves of constant quality differs from the shape of the curve
given by the current prescription (see Figure 5). We see the aim of dosage optimization
for PET imaging in obtaining images of the same quality for different patients, thus
making the diagnostic process more consistent. It is clear that patients with low weight
and children are currently being given unnecessary amounts of the radiotracer, whereas
the overweight and obese patients need a higher dose in order to obtain image of sufficient
quality.

This shows that further optimization of the radiotracer dosage is desirable and it has
potential to reduce radiation burden to children and patients with low weight and to
improve diagnostic value of PET images of overweight and obese patients.
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The authors wish to thank RNDr. Jǐŕı Janáček, Ph.D., for his invaluable comments in the area
of random fields.
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Fig. 5. Derived curves of constant quality for different measures of

quality and different levels of required quality. Solid lines – activity

injected in Na Homolce Hospital, Prague (EANM pediatric dosage

card [13] extrapolated to the whole range of patient weight). Top:

quality levels are chosen as 1.5 · 106, 1.8 · 106, 2.1 · 106 and 2.4 · 106,

respectively. Middle: quality levels are chosen as 300, 330, 360 and

390, respectively. Bottom: quality levels are chosen as 1000, 1100,

1200 and 1300, respectively.
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