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UNIFORM CONVERGENCE OF

DOUBLE TRIGONOMETRIC SERIES

Péter Kórus, Szeged
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Abstract. It is a classical problem in Fourier analysis to give conditions for a single sine
or cosine series to be uniformly convergent. Several authors gave conditions for this prob-
lem supposing that the coefficients are monotone, non-negative or more recently, general
monotone. There are also results for the regular convergence of double sine series to be
uniform in case the coefficients are monotone or general monotone double sequences. In
this paper we give new sufficient conditions for the uniformity of the regular convergence of
sine-cosine and double cosine series, which are necessary as well in case the coefficients are
non-negative. The new results also bring necessary and sufficient conditions for the uniform
regular convergence of double trigonometric series in complex form.
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1. Background: single trigonometric series

Let {ck}
∞

k=1 be a sequence of complex numbers and consider the series

∞∑

k=1

ck cos kx,(1.1)

∞∑

k=1

ck sin kx.(1.2)

The uniform convergence of the above series has been considered by many authors.

Chaundy and Jolliffe proved the following basic theorem for sine series.

This research was supported by TÁMOP-4.2.2/B-10/1-2010-0012.
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Theorem A ([1]). If {ck} is non-negative, decreasing to zero, then (1.2) converges

uniformly in x if and only if

(1.3) kck → 0 as k → ∞.

It is our main goal to relax the monotonicity condition on the coefficients. Several

classes of sequences have been introduced to generalize Theorem A, for historical

examples see [11]. The most recent classes are MVBVS, SBVS and SBVS2. We

define these classes in the context of β-general monotone sequences (see [2], [8]):

{ck} is a general monotone sequence with majorant β, in symbols: {ck} ∈ GM(β), if

2n−1∑

k=n

|∆ck| 6 Cβn

where ∆ck = ck − ck+1, C is a positive constant independent of n and β = {βk}
∞

k=1

is a positive sequence. For β-general monotone sequences, the following theorem was

proved in [9].

Theorem B. Let {ck} ∈ GM(β). If

(1.4) nβn → 0 as n → ∞,

then (1.2) is uniformly convergent in x.

For the uniform convergence of (1.2), a necessary condition was given in case of

special GM(β) classes mentioned before. We detail these classes and the adequate

result.

The class MVBVS was introduced in [11] (see also [9]). We say that {ck} is a mean

value bounded variation sequence, in symbols: {ck} ∈ MVBVS, if {ck} ∈ GM(β) with

βn =
1

n

[λn]∑

k=[n/λ]

|ck|.

The definition of SBVS is the following (see [3], [4]). A {ck} sequence is a supremum

bounded variation sequence, in symbols: {ck} ∈ SBVS, if {ck} ∈ GM(β) with

βn =
1

n
sup

m>[n/λ]

2m∑

k=m

|ck|.
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The class SBVS2 was defined in [4]. A {ck} sequence is a supremum bounded variation

sequence of second type, in symbols: {ck} ∈ SBVS2, if {ck} ∈ GM(β) with

βn =
1

n
sup

m>b(n)

2m∑

k=m

|ck|,

where {b(k)}∞k=1 tends to infinity. In this case, it is easy to see that without loss of

generality, we can assume that {b(k)} is non-decreasing or b(k) 6 k. It was proved

in [4] that MVBVS ( SBVS ( SBVS2. Hence SBVS2 is the largest known class for

which the Chaundy-Jolliffe theorem can be generalized appropriately, as the next

theorem shows.

Theorem C. Let {ck} ⊂ C belong to SBVS2.

(i) If (1.3) is satisfied, then (1.2) is uniformly convergent in x.

(ii) Conversely, if {ck} is a non-negative sequence and (1.2) converges uniformly

in x, then (1.3) holds.

For cosine series it is obvious that in case of non-negative {ck} coefficients, the

uniform convergence of (1.1) is equivalent to the convergence of
∑

ck. If we do not

require the non-negativity condition, then the situation is less obvious. The following

theorem was proved in [2].

Theorem D. Let {ck} ∈ GM(β). If (1.4) is satisfied, then (1.1) is uniformly

convergent in x if and only if

(1.5)

∞∑

k=1

ck converges.

It is useful to formulate an analogous result to Theorem C for cosine series as well.

Theorem E. Let {ck} ⊂ C belong to SBVS2.

(i) If (1.3) and (1.5) are satisfied, then (1.1) is uniformly convergent in x.

(ii) Conversely, if {ck} is non-negative and (1.1) converges uniformly in x, then (1.3)

and (1.5) hold.

P r o o f. Part (i): The uniform convergence of (1.1) can be deduced from Theo-

rem D, since for any {ck} ∈ SBVS2, (1.3) implies (1.4):

nβn = sup
m>b(n)

2m∑

k=m

|ck| 6 sup
m>b(n)

1

m

2m∑

k=m

k|ck| → 0 as n → ∞.
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For the reader’s convenience, we present a short proof of Part (i) without the use

of Theorem D. Let us suppose {ck} belongs to SBVS2 with a constant C and {b(k)},

moreover, let (1.3) and (1.5) hold. Set ε > 0 arbitrarily. Then by (1.3) and (1.5)

there exists n1 = n1(ε) such that for any n1 6 n 6 N we have

(1.6)

∣∣∣∣
N∑

k=n

ck

∣∣∣∣ 6 ε, n|cn| 6 ε.

We will prove the validity of the inequality

(1.7) |s(n, N, x)| :=

∣∣∣∣
N∑

k=n

ck cos kx

∣∣∣∣ 6 (8πC + 4π + 2)ε

for any x ∈ [0, π] and n0 6 n 6 N where n0 is the number for which any n > n0

satisfies n > n1 and b(n) > n1.

For x = 0, (1.6) immediately implies (1.7). Now let us suppose x ∈ (0, π] is

arbitrary and set ν := [1/x]. First, for any n0 6 n 6 N < ν (if there are such n

and N) we have

|s(n, N ; x)| =

∣∣∣∣
N∑

k=n

ck −

N∑

k=n

ck(1 − cos kx)

∣∣∣∣ 6

∣∣∣∣
N∑

k=n

ck

∣∣∣∣ +

∣∣∣∣
N∑

k=n

2ck sin2 kx

2

∣∣∣∣

6 ε +
N∑

k=n

2|ck| sin
kx

2
6 ε + x

ν−1∑

k=n

k|ck| 6 ε +
1

ν
(ν − 1)ε 6 2ε.

Secondly, for max{n0, ν} 6 n 6 N , estimate as follows:

|s(n, N ; x)| 6

N−1∑

k=n

|∆ck||Dk(x)| + |cn||Dn−1(x)| + |cN ||DN (x)|

6
π

x

(
∞∑

k=n

|∆ck| + |cn| + |cN |

)
6 π(ν + 1)

∞∑

k=n

|∆ck| + 2π(ν + 1)
ε

ν
,

where Dk(x) =
k∑

l=1

cos lx is the Dirichlet kernel for which it is known that |Dk(x)| 6

π/x for any k > 1 and 0 < x 6 π. We have for n0 6 n that

∞∑

k=n

|∆ck| =
∞∑

r=0

2r+1n−1∑

k=2rn

|∆ck| 6 C
∞∑

r=0

1

2rn
sup

m>b(2rn)

2m∑

k=m

|ck|

6
Cε

n

∞∑

r=0

1

2r
sup

m>b(2rn)

2m∑

k=m

1

k
6

2Cε

n

∞∑

r=0

1

2r
=

4Cε

ν
.
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Hence

|s(n, N ; x)| 6 (8πC + 4π)ε.

At last, for n0 6 n < ν 6 N , just combine the previous results:

|s(n, N ; x)| 6 |s(n, ν − 1; x)| + |s(ν, N ; x)| 6 (8πC + 4π + 2)ε.

Finally, we have got (1.7) for any x ∈ [0, π] and n0 6 n 6 N , which is enough for the

proof due to Cauchy’s criterion.

Part (ii): (1.5) comes from the convergence of (1.1) at x = 0. On the other hand,

by [9, Lemma 2.1] we have

cn 6
C

n
sup

m>b(n)

2m∑

k=m

ck +
1

n

2n∑

k=n

ck,

hence

ncn 6 C sup
m>b(n)

2m∑

k=m

ck +

2n∑

k=n

ck.

This inequality together with (1.5) gives (1.3). �

We assure the reader that there exists a sequence {ck} ∈ SBVS2 which satisfies

(1.3) and (1.5) but
∑

ck is not absolutely convergent (in the case
∑

ck is absolutely

convergent, (1.1) is absolutely and uniformly convergent). Consider the sequence

ck :=

{
(−1)r2−r(r + 1)−1 if 2r 6 k 6 2r+1 − 1, r = 0, 1, . . .

0 else.

Then kck → 0,
∑

ck = ln 2,
∑

|ck| = ∞, moreover, {ck} ∈ SBVS2 can be easily

seen. Part (i) of Theorem E implies the uniform convergence of (1.1) with the above

coefficients. Part (ii) only indicates that if a cosine series with non-negative SBVS2

coefficients is uniformly convergent, then (1.3) and (1.5) are necessary conditions,

too.
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2. Double trigonometric series

Let {cjk}
∞

j,k=1 be a double sequence of complex numbers. Consider the double

series

∞∑

j=1

∞∑

k=1

cjk cos jx cos ky,(2.1)

∞∑

j=1

∞∑

k=1

cjk sin jx cos ky,(2.2)

∞∑

j=1

∞∑

k=1

cjk sin jx sin ky.(2.3)

We will study the uniform convergence of the above series in (x, y) in the regular

sense. First we recall that a double series
∞∑

j=1

∞∑
k=1

zjk of complex numbers {zjk}
∞

j,k=1

converges regularly if the sums
m∑

j=1

n∑
k=1

zjk converge to a finite number as m and

n tend to infinity independently of each other, moreover, the row series
∞∑

j=1

zjn,

n = 1, 2, . . . and column series
∞∑

k=1

zmk, m = 1, 2, . . . are convergent. Or equivalently

(see [7]), if for any ε > 0 there exists a positive number m0 = m0(ε) such that

(2.4)

∣∣∣∣
M∑

j=m

N∑

k=n

zjk

∣∣∣∣ 6 ε

holds for any m, n, M, N for which m + n > m0, 1 6 m 6 M and 1 6 n 6 N .

We will use the usual notation

∆10cjk := cjk − cj+1,k, ∆01cjk := cjk − cj,k+1,

∆11cjk := ∆10(∆01cjk) = ∆01(∆10cjk) = cjk − cj+1,k − cj,k+1 + cj+1,k+1.

A monotonically decreasing double sequence {cjk}
∞

j,k=1 is a sequence of real numbers

for which

∆10cjk > 0, ∆01cjk > 0, ∆11cjk > 0, j, k = 1, 2, . . . .

Most results are about the uniform regular convergence of the double sine series (2.3).

The basic one is due to Zhak and Shneider, and is analogous to Theorem A.
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Theorem F ([10]). If {cjk}
∞

j,k=1 is a non-negative, monotonically decreasing

double sequence, then (2.3) is uniformly regularly convergent in (x, y) if and only if

(2.5) jkcjk → 0 as j + k → ∞.

The most recent general monotone double sequence classes are MVBVDS, SBVDS1

and SBVDS2 (see [5], [6]). We remind the reader of the definitions of these classes.

Definition. A double sequence {cjk}
∞

j,k=1 ⊂ C belongs to class MVBVDS (mean

value bounded variation double sequences), if there exist constants C and λ > 2,

depending only on {cjk}, for which

2m−1∑

j=m

|∆10cjn| 6
C

m

[λm]∑

j=[m/λ]

|cjn|, m > λ, n > 1,

2n−1∑

k=n

|∆01cmk| 6
C

n

[λn]∑

k=[n/λ]

|cmk|, m > 1, n > λ,

2m−1∑

j=m

2n−1∑

k=n

|∆11cjk| 6
C

mn

[λm]∑

j=[m/λ]

[λn]∑

k=[n/λ]

|cjk|, m, n > λ.

Definition. {cjk}
∞

j,k=1 ⊂ C is said to be a supremum bounded variation double

sequence of the first type, in symbols: {cjk} ∈ SBVDS1, if there exist constants C

and integer λ > 2 and sequences {b1(l)}
∞

l=1, {b2(l)}
∞

l=1, {b3(l)}
∞

l=1 such that each

one converges (not necessarily monotonically) to infinity, all of them depend only on

{cjk}, and

2m−1∑

j=m

|∆10cjn| 6
C

m

(
max

b1(m)6M6λb1(m)

2M∑

j=M

|cjn|

)
, m > λ, n > 1,(2.6)

2n−1∑

k=n

|∆01cmk| 6
C

n

(
max

b2(n)6N6λb2(n)

2N∑

k=N

|cmk|

)
, m > 1, n > λ,(2.7)

2m−1∑

j=m

2n−1∑

k=n

|∆11cjk| 6
C

mn

(
sup

M+N>b3(m+n)

2M∑

j=M

2N∑

k=N

|cjk|

)
, m, n > λ.(2.8)

Definition. {cjk}
∞

j,k=1 ⊂ C is said to be a supremum bounded variation double

sequence of the second type, shortly {cjk} ∈ SBVDS2, if there exist constants C and

integer λ > 1 and {b(l)}∞l=1 converging monotonically to infinity, depending only on
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{cjk}, such that

2m−1∑

j=m

|∆10cjn| 6
C

m

(
sup

M>b(m)

2M∑

j=M

|cjn|

)
, m > λ, n > 1,

2n−1∑

k=n

|∆01cmk| 6
C

n

(
sup

N>b(n)

2N∑

k=N

|cmk|

)
, m > 1, n > λ,

2m−1∑

j=m

2n−1∑

k=n

|∆11cjk| 6
C

mn

(
sup

M+N>b(m+n)

2M∑

j=M

2N∑

k=N

|cjk|

)
, m, n > λ.

It was proved in [5] that MVBVDS ( SBVDS1 ( SBVDS2. The latest general-

ization of Theorem F is the summation of Theorems 1 and 2 of [5].

Theorem G.

(i) If {cjk}
∞

j,k=1 ⊂ C belongs to the class SBVDS2 and (2.5) holds, then the regular

convergence of the double sine series (2.3) is uniform in (x, y).

(ii) Conversely, if {cjk}
∞

j,k=1 is non-negative and belongs to SBVDS1 and the regular

convergence of (2.3) is uniform in (x, y), then (2.5) is satisfied.

For double cosine series with non-negative {cjk} coefficients, the regular conver-

gence of (2.1) is uniform in (x, y) if and only if
∑∑

cjk is regularly convergent. In

the next section we will give conditions for the sine-cosine and double cosine series

with general monotone coefficients to be uniformly convergent in the regular sense.

3. Main results on double series

We prove three results for double trigonometric series with coefficients from the

class SBVDS1 (or one of its subclasses). The conditions we give for uniform con-

vergence are sufficient for coefficients of complex numbers and are necessary for

non-negative coefficients. However, all our attempts have failed so far to modify the

proofs of the sufficiency parts of the theorems to extend the sufficiency results for

SBVDS2, unlike the case of double sine series.

Theorem 1. Suppose that {cjk}
∞

j,k=1 ⊂ C belongs to the class SBVDS1.

(i) If (2.5) holds and there exists an m1 > 1 such that

(3.1) max
m<m1

∞∑

k=n

cmk → 0 and sup
m>m1

∞∑

k=n

m|cmk| → 0 as n → ∞,

then the regular convergence of the sine-cosine series (2.2) is uniform in (x, y).
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(ii) Conversely, if {cjk}
∞

j,k=1 is non-negative and the regular convergence of (2.2)

is uniform in (x, y), then (2.5) holds and (3.1) is satisfied for any m1.

Theorem 2. Suppose that {cjk}
∞

j,k=1 ⊂ C belongs to the class SBVDS1.

(i) If (2.5) holds,

(3.2)

∞∑

j=1

∞∑

k=1

cjk converges regularly

and there exists an m1 > 1 such that

(3.3) sup
m>m1

∞∑

k=n

m|cmk| → 0 as n → ∞ and sup
n>m1

∞∑

j=m

n|cjn| → 0 as m → ∞,

then the regular convergence of the double cosine series (2.1) is uniform in (x, y).

(ii) Conversely, if {cjk}
∞

j,k=1 is non-negative and the regular convergence of (2.1)

is uniform in (x, y), then (2.5), (3.2) hold and (3.3) is satisfied for any m1.

Corollary 1. Suppose that {cjk}
∞

j,k=1 ⊂ C belongs to the class SBVDS1.

(i) If (2.5), (3.2) hold and (3.3) is satisfied for an m1, then the regular convergence

of

(3.4)

∞∑

j=1

∞∑

k=1

cjkeijxeiky

is uniform in (x, y).

(ii) Conversely, if {cjk}
∞

j,k=1 is non-negative and the regular convergence of (3.4)

is uniform in (x, y), then (2.5), (3.2) hold and (3.3) is satisfied for any m1.

To show the usability of our results, we will give an example for a double sequence

{cjk} ∈ SBVDS1 which satisfies (2.5), (3.2) and (3.3) but
∑ ∑

|cjk| = ∞. It can be

seen that

cjk :=

{
(−1)r2−2r(r + 1)−1 if 2r 6 j, k 6 2r+1 − 1, r = 0, 1, . . .

0 else

is such a sequence. We can apply part (i) of Theorem 1, Theorem 2 or Corollary 1,

hence we have the uniform convergence of (2.1), (2.2) and (3.4) with the above

coefficients. Part (ii) only shows the necessity of the sufficient conditions in the

special case when the coefficients are non-negative and from SBVDS1.
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4. Auxiliary results

To prove Theorems 1–2 and Corollary 1 we need three lemmas, which are used in

the investigations of the regular convergence of double sine series as well. The proofs

of these assertions can be found in [5].

Lemma 1 ([5, Lemma 1]). If {cjk} ⊂ C is such that conditions (2.5) and (2.8)

are satisfied, then

mn

∞∑

j=m

∞∑

k=n

|∆11cjk| → 0 as m + n → ∞ and m, n > λ.

Lemma 2 ([5, Lemma 2]). Under the conditions of Lemma 1, we have

mn

∞∑

j=m

sup
k>n

|∆10cjk| → 0, mn

∞∑

k=n

sup
j>m

|∆01cjk| → 0

as m + n → ∞ and m, n > λ.

Lemma 3 ([5, Lemma 3]). If {cjk} is non-negative and belongs to the class

SBVDS1 with C, λ and {b1(l)}, {b2(l)}, {b3(l)} then for any m, n > λ we have

(4.1) mncmn 6 C sup
M+N>b3(m+n)

2M∑

j=M

2N∑

k=N

cjk + C

2λb1(m)∑

j=b1(m)

2n∑

k=n

cjk

+ C
2m∑

j=m

2λb2(n)∑

k=b2(n)

cjk + 2
2m∑

j=m

2n∑

k=n

cjk.

5. Proofs of the main results

P r o o f of Theorem 1. Let {cjk} ⊂ C belong to the class SBVDS1 with C, λ and

{b1(l)}, {b2(l)}, {b3(l)}.

Part (i): Our proof is analogous to the proof of the first part of [6, Theorem 1].

First, we can see that the single series

(5.1)

∞∑

j=1

cjn sin jx, n = 1, 2, . . . ,

∞∑

k=1

cmk cos ky, m = 1, 2, . . .
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are uniformly convergent in (x, y) in consequence of Theorems C and E which can

be applied since {cjn}
∞

j=1 ∈ SBVS2 for any n, {cmk}
∞

k=1 ∈ SBVS2 for any m and

(2.5), (3.1) are satisfied. Secondly, let ε > 0 be arbitrarily fixed. We will prove that

for any M > m > m0, N > n > m0 and any (x, y) we have

(5.2) |s(m, M ; n, N ; x, y)| 6 (9π
2 + 8π + 4πλC + 2)ε

where

s(m, M ; n, N ; x, y) :=

M∑

j=m

N∑

k=n

cjk sin jx cos ky

and m0 = m0(ε) > max{m1, λ} is the natural number which satisfies for any m, n >

m0,

(5.3) mn|cmn| 6 ε, mn

∞∑

j=m

∞∑

k=n

|∆11cjk| 6 ε,

mn

∞∑

j=m

sup
k>n

|∆10cjk| 6 ε, mn

∞∑

k=n

sup
j>m

|∆01cjk| 6 ε

for any m > m1,

(5.4)

∞∑

k=n

m|cmk| 6 ε,

and, in addition, for any m > m0, b1(m) > m1 is satisfied. The existence of m0 is

justified by (2.5), (3.1), Lemmas 1–2 and the fact that b1(l) tends to infinity. fact

that if a series is convergent, then the arithmetic mean of it also does converge to

the same limit.

For x = 0 and arbitrary y, (5.2) is trivial. For y = 0 and 0 < x 6 π, set

µ = µ(x) := [1/x], where [ · ] means the integer part of a real number. Then for any

m0 < m 6 M 6 µ and m0 < n 6 N , by (5.4) we have

|s(m, M ; n, N ; x, 0)| =

∣∣∣∣
M∑

j=m

N∑

k=n

cjk sin jx

∣∣∣∣ 6 x

M∑

j=m

N∑

k=n

j|cjk| 6
1

µ

µ∑

j=m

ε 6 ε
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and for any max{m0, µ} < m 6 M and m0 < n 6 N , by (2.6) and (5.4),

|s(m, M ; n, N ; x, 0)| 6

N∑

k=n

( M−1∑

j=m

|∆10cjk||D̃j(x)| + |cMk||D̃M (x)| + |cmk||D̃m−1(x)|

)

6
π

x

∞∑

k=n

( ∞∑

j=m

|∆10cjk| + |cMk| + |cmk|

)

6 π

∞∑

k=n

(
m

∞∑

r=0

2r+1m−1∑

j=2rm

|∆10cjk| + M |cMk| + m|cmk|

)

6 2πε + π

∞∑

k=n

(
m

∞∑

r=0

C

2rm
max

b1(m)6m′6λb1(m)

2m′∑

j=m′

|cjk|

)

6 2πε + πC
∞∑

k=n

∞∑

r=0

1

2r

2λb1(m)∑

j=b1(m)

|cjk| 6 2πε + 2πC
∞∑

k=n

2λb1(m)∑

j=b1(m)

|cjk|

6 2πε + 4πλC
1

2λb1(m)

2λb1(m)∑

j=b1(m)

∞∑

k=n

j|cjk| 6 2πε + 4πλCε

where D̃j(x) =
j∑

l=1

sin lx is the conjugate Dirichlet kernel, for which it is known that

|D̃j(x)| 6 π/x for any j > 1 and 0 < x 6 π. If we combine the above estimates, we

get (5.2) for y = 0. To consider the remaining case when 0 < x, y 6 π, set

µ = µ(x) :=
[ 1

x

]
, ν = ν(y) :=

[1

y

]
.

We investigate the four basic cases as in the proof of [6, Theorem 1] but for the

double series (2.2). We will use in every case the validity of the four inequalities

in (5.3) to estimate.

C a s e (a): m0 < m 6 M 6 µ and m0 < n 6 N 6 ν.

|s(m, M ; n, N ; x, y)| 6 |s(m, M ; n, N ; x, 0)|+

∣∣∣∣
M∑

j=m

N∑

k=n

2cjk sin jx sin2 ky

2

∣∣∣∣

6 ε +

M∑

j=m

N∑

k=n

2|cjk| sin jx sin
ky

2
6 ε + xy

M∑

j=m

N∑

k=n

jk|cjk|

6 ε +
1

µν

µ∑

j=m

ν∑

k=n

jk|cjk| 6 2ε.
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C a s e (b): max{m0, µ} < m 6 M and m0 < n 6 N 6 ν.

|s(m, M ; n, N ; x, y)| 6 |s(m, M ; n, N ; x, 0)|+

N∑

k=n

2 sin2 ky

2

∣∣∣∣
M∑

j=m

cjk sin jx

∣∣∣∣

6 2πε + 4πλCε + y

N∑

k=n

k

( M−1∑

j=m

|∆10cjk||D̃j(x)| + |cMk||D̃M (x)| + |cmk||D̃m−1(x)|

)

< 2πε + 4πλCε +
π

xν

ν∑

k=n

k

M−1∑

j=m

|∆10cjk| + 2 sup
j>m

k|cjk|

6 2πε + 4πλCε +
π

ν

ν∑

k=n

km

∞∑

j=m

|∆10cjk| + 2 sup
j>m

jk|cjk|

6 5πε + 4πλCε.

C a s e (c): m0 < m 6 M 6 µ and max{m0, ν} < n 6 N .

|s(m, M ; n,N ; x, y)| 6

M∑

j=m

sin jx

∣∣∣∣
N∑

k=n

cjk cos ky

∣∣∣∣ 6 x

M∑

j=m

j

∣∣∣∣
N∑

k=n

cjk cos ky

∣∣∣∣

6
1

µ

µ∑

j=m

j

( N−1∑

k=n

|∆01cjk||Dk(y)| + |cjN ||DN (y)| + |cjn||Dn−1(y)|

)

6
π

yµ

µ∑

j=m

j

N−1∑

k=n

|∆01cjk| + 2 sup
k>n

j|cjk|

6
π

µ

µ∑

j=m

jn

∞∑

k=n

|∆01cjk| + 2 sup
k>n

jk|cjk| 6 3πε.

is known that |Dk(x)| 6 π/y for any k > 1 and 0 < y 6 π.

C a s e (d): max{m0, µ} < m 6 M andmax{m0, ν} < n 6 N . This time, similarly

to the proof of [6, Theorem 1]—except that we replace each D̃l(y) by Dl(y)—double

summation by parts gives us

|s(m, M ; n, N ; x, y)| 6 π
2

(
mn

∞∑

j=m

∞∑

k=n

|∆11cjk| + 2mn
∞∑

j=m

sup
k>n

|∆10cjk|

+ 2mn

∞∑

k=n

sup
j>m

|∆01cjk| + 4 sup
j>m,k>n

jk|cjk|

)
6 9π

2ε.

If we summarize Cases (a)–(d), we get (5.2). To complete the proof of part (i)

just consider the end of the proof of [6, Theorem 1].
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Part (ii): Suppose that {cjk} is non-negative and let ε > 0 be arbitrarily fixed.

Using the form (2.4) for the uniform regular convergence of (2.2), we find that there

exists an integer m0 = m0(ε) for which

(5.5) |s(m, M ; n, N ; x, y)| =

∣∣∣∣
M∑

j=m

N∑

k=n

cjk sin jx cos ky

∣∣∣∣ 6 ε

holds for any m + n > m0 and any (x, y). Since {bi(l)}
∞

l=1 converges to infinity

for i = 1, 2, 3, there exists an m1 such that for any m, n: m + n > m1 implies

m + n > m0, b3(m + n) > m0, b1(m) + n > m0 and m + b2(n) > m0. Set

x1(m) =
π

4m
, x2(m) =

π

4λm
.

Then

sin(jx1(m)) > sin
π

4
if m 6 j 6 2m;

sin(jx2(m)) > sin
π

4λ
if m 6 j 6 2λm.

By (2.6), we have for any m > λ and k > 1 that

(5.6) mcmk 6

2m∑

j=m+1

(
cjk +

j−1∑

l=m

|∆10clk|

)
6

2m∑

j=m

cjk + C max
b1(m)6M6λb1(m)

2M∑

j=M

cjk.

Hence, by (5.5), for any m > λ and n > m1,

N∑

k=n

mcmk 6

2m∑

j=m

N∑

k=n

cjk + C

2λb1(m)∑

j=b1(m)

N∑

k=n

cjk

6 sin−1 π

4
|s(m, 2m; n, N ; x1, 0)|

+ C sin−1 π

4λ
|s(b1(m), 2λb1(m); n, N ; x2, 0)|

6

(
sin−1 π

4
+ C sin−1 π

4λ

)
ε,

The previous inequality and the uniform convergence of the first [λ] cosine series

in (5.1) together with Theorem E imply (3.1) for any fixed m1 > λ. It is easy to

verify that (3.1) holds for m1 < λ as well since {cjk} is non-negative and λ is finite.
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Moreover, by Lemma 3, we conclude that for m, n > λ, m + n > m1,

mncmn 6 C sup
M+N>b3(m+n)

2M∑

j=M

2N∑

k=N

cjk + C

2λb1(m)∑

j=b1(m)

2n∑

k=n

cjk

+ C

2m∑

j=m

2λb2(n)∑

k=b2(n)

cjk + 2

2m∑

j=m

2n∑

k=n

cjk

6 C sin−1 π

4
sup

M+N>b3(m+n)

|s(M, 2M ; N, 2N ; x1, 0)|

+ C sin−1 π

4λ
|s(b1(m), 2λb1(m); n, 2n; x2, 0)|

+ C sin−1 π

4
|s(m, 2m; b2(n), 2λb2(n); x1, 0)|

+ 2 sin−1 π

4
|s(m, 2m; n, 2n; x1, 0)|

6

(
(2C + 2) sin−1 π

4
+ C sin−1 π

4λ

)
ε.

Hence (2.5) is satisfied when j + k → ∞ and j, k > λ. If j → ∞ and k < λ or j < λ

and k → ∞, (2.5) follows from the uniform convergence of the series in (5.1) and

Theorems C and E. �

P r o o f of Theorem 2. Let {cjk} ⊂ C belong to the class SBVDS1 with C, λ and

{b1(l)}, {b2(l)}, {b3(l)}.

Part (i): Our proof is analogous to the proof of Theorem 1 and [6, Theorem 1].

We can see that the single series

(5.7)

∞∑

j=1

cjn cos jx, n = 1, 2, . . . ,

∞∑

k=1

cmk cos ky, m = 1, 2, . . .

are uniformly convergent in (x, y) in consequence of Theorem E, since (2.5), (3.2)

and (3.3) are satisfied. Now let ε > 0 be arbitrarily fixed. We will prove that

(5.8) |s(m, M ; n, N ; x, y)| 6 (9π
2 + 10π + 8πλC + 4)ε

holds for any M > m > m0, N > n > m0 and any (x, y), where

s(m, M ; n, N ; x, y) :=

M∑

j=m

N∑

k=n

cjk cos jx cos ky
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and m0 > max{m1, λ} is the natural number which satisfies the four inequalities in

(5.3), (5.4),

∣∣∣∣
∞∑

j=m

∞∑

k=n

jkcjk

∣∣∣∣ 6 ε for any m, n > m0,(5.9)

∞∑

j=m

n|cjn| 6 ε for any n > m1,(5.10)

and furthermore, bi(l) > m1 holds for any l > m0 and i = 1, 2. The existence of m0

is guaranteed by (2.5), (3.2), (3.3), Lemmas 1–2 and the fact that b1(l), b2(l) tend

to infinity.

For x = y = 0, (5.9) immediately implies (5.8). For y = 0 and 0 < x 6 π, set

µ = µ(x) := [1/x]. Then for any m0 < m 6 M 6 µ and m0 < n 6 N , by (5.4),

|s(m, M ; n, N ; x, 0)| =

∣∣∣∣
M∑

j=m

N∑

k=n

cjk cos jx

∣∣∣∣

6 |s(m, M ; n, N ; 0, 0)|+

∣∣∣∣
M∑

j=m

N∑

k=n

2cjk sin2 jx

2

∣∣∣∣

6 ε + x

M∑

j=m

N∑

k=n

j|cjk| 6 ε +
1

µ

µ∑

j=m

ε 6 2ε

and for any max{m0, µ} < m 6 M and m0 < n 6 N , after a summation by parts

we get

|s(m, M ; n, N ; x, 0)| 6

N∑

k=n

( M−1∑

j=m

|∆10cjk||Dj(x)|+|cMk||DM (x)|+|cmk||Dm−1(x)|

)
.

In an identical way as in the appropriate case of the proof of the previous theorem,

using the inequalities (2.6) and (5.4) we obtain

|s(m, M ; n, N ; x, 0)| 6 2πε + 4πλCε.

Combining the above estimates we get (5.8) for y = 0. For x = 0 and arbitrary y an

analogous argumentation gives

|s(m, M ; n, N ; 0, y)| 6 2ε + 2πε + 4πλCε;

in this case (2.7) is applied instead of (2.6) and (5.10) instead of (5.4). To consider

the remaining case when 0 < x, y 6 π, set µ := [1/x] and ν := [1/y]. The four cases

we need to investigate are the following.
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C a s e (a): m0 < m 6 M 6 µ and m0 < n 6 N 6 ν.

|s(m, M ; n, N ; x, y)| 6 |s(m, M ; n, N ; 0, 0)|+

∣∣∣∣
M∑

j=m

N∑

k=n

2cjk sin2 jx

2

∣∣∣∣

+

∣∣∣∣
M∑

j=m

N∑

k=n

2cjk sin2 ky

2

∣∣∣∣ +

∣∣∣∣
M∑

j=m

N∑

k=n

4cjk sin2 jx

2
sin2 ky

2

∣∣∣∣

6 ε + x

M∑

j=m

N∑

k=n

j|cjk| + y

N∑

k=n

M∑

j=m

k|cjk| + xy

M∑

j=m

N∑

k=n

jk|cjk|

6 ε +
1

µ

µ∑

j=m

ε +
1

ν

ν∑

k=n

ε +
1

µν

µ∑

j=m

ν∑

k=n

ε 6 4ε.

C a s e (b): max{m0, µ} < m 6 M and m0 < n 6 N 6 ν.

|s(m, M ; n, N ; x, y)| 6 |s(m, M ; n, N ; x, 0)|+

N∑

k=n

2 sin2 ky

2

∣∣∣∣
M∑

j=m

cjk cos jx

∣∣∣∣.

Repeating Case (b) of the proof of Theorem 1 except for replacing each conjugate

Dirichlet kernel by the appropriate Dirichlet kernel, we get

|s(m, M ; n, N ; x, y)| 6 5πε + 4πλCε.

C a s e (c): m0 < m 6 M 6 µ and max{m0, ν} < n 6 N . This is the symmetric

counterpart of Case (b), hence

|s(m, M ; n, N ; x, y)| 6 5πε + 4πλCε.

C a s e (d): max{m0, µ} < m 6 M and max{m0, ν} < n 6 N . From an argumen-

tation analogous to Case (d) of the proof of [6, Theorem 1] (except for replacing the

conjugate Dirichlet kernels by Dirichlet kernels) we obtain

|s(m, M ; n, N ; x, y)| 6 9π
2ε.

If we summarize Cases (a)–(d), we get (5.8) and the end of the proof of [6, Theo-

rem 1] completes the proof of this theorem’s part (i).

Part (ii): Suppose {cjk} is non-negative and let ε > 0 be arbitrarily fixed. From

the regular convergence of (2.1) in (x, y) = (0, 0) we have that

(5.11) |s(m, M ; n, N ; 0, 0)| =

M∑

j=m

N∑

k=n

cjk → 0 as m + n → ∞.
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This implies (3.2). Hence by (5.6), it is clear that

sup
m>λ

N∑

k=n

mcmk 6 sup
m>λ

( 2m∑

j=m

N∑

k=n

cjk + C

2λb1(m)∑

j=b1(m)

N∑

k=n

cjk

)
→ 0 as n → ∞;

similarly,

sup
n>λ

M∑

j=m

ncjn 6 sup
n>λ

( M∑

j=m

2n∑

k=n

cjk + C

M∑

j=m

2λb2(n)∑

k=b2(n)

cjk

)
→ 0 as m → ∞,

hence (3.3) is satisfied for m1 > λ. It can be easily seen that (3.3) holds for m1 < λ

as well since {cjk} is non-negative, λ is finite and (3.2) holds. At last, by Lemma 3,

the right hand side of (4.1) converges to zero as m+n tends to infinity andm, n > λ.

This implies that (2.5) is satisfied when j + k → ∞ and j, k > λ. In the remaining

cases (2.5) can be obtained from the uniform convergence of the series in (5.7) and

Theorem E. �

P r o o f of Corollary 1. Part (i): Obviously,

∞∑

j=1

∞∑

k=1

cjkeijxeiky =

∞∑

j=1

∞∑

k=1

cjk(cos jx cos ky − sin jx sin ky

+ i(sin jx cos ky + cos jx sin ky))

and we can apply Theorem G and Theorems 1–2.

Part (ii): In the proof of part (ii) of Theorem 2 we only used (5.11), the uniform

convergence of the row and column series in (5.7) and that {cjk} is non-negative and

belongs to SBVDS1. In this case, the regular convergence of (3.4) in (x, y) = (0, 0)

gives us (5.11):

∣∣∣∣
M∑

j=m

N∑

k=n

cjkeij0eik0

∣∣∣∣ =

∣∣∣∣
M∑

j=m

N∑

k=n

cjk

∣∣∣∣ → 0 as m + n → ∞.

Furthermore, the uniform convergence of the series in (5.7) follows from the uniform

convergence of the row and column series of (3.4), since

ℜ

{ ∞∑

j=1

cjneijx

}
=

∞∑

j=1

cjn cos jx, ℜ

{ ∞∑

k=1

cmkeiky

}
=

∞∑

k=1

cmk cos ky.

Hence we can just repeat the proof of part (ii) of Theorem 2. �
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