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Commutativity theorems for rings with

differential identities on Jordan ideals

L. Oukhtite, A. Mamouni, Mohammad Ashraf

Abstract. In this paper we investigate commutativity of ring R with involution
′
∗
′ which admits a derivation satisfying certain algebraic identities on Jordan

ideals of R. Some related results for prime rings are also discussed. Finally, we
provide examples to show that various restrictions imposed in the hypotheses of
our theorems are not superfluous.

Keywords: derivation; generalized derivation; ∗-Jordan ideal

Classification: 16W25, 16N60, 16U80

1. Introduction

Throughout this paper, R will denote an associative ring with center Z(R).
For any x, y ∈ R the symbol [x, y] will denote the commutator xy− yx; while the
symbol x ◦ y will stand for the anti-commutator xy + yx. R is 2-torsion free if
2x = 0 with x ∈ R implies x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. An
additive mapping x 7→ x∗ on a ring R is said to be an involution if (xy)∗ = y∗x∗

and (x∗)∗ = x hold for all x, y ∈ R. A ring equipped with an involution ′∗′ is
called a ring with involution or a ∗-ring. A ring R with involution ∗ is said to
be ∗-prime if aRb = aRb∗ = 0 implies that either a = 0 or b = 0, equivalently,
aRb = a∗Rb = 0 implies that either a = 0 or b = 0. Note that every prime ring
having an involution ∗ is ∗-prime but the converse is not true in general. Indeed,
if Ro denotes the opposite ring of a prime ring R, then R × Ro equipped with
the exchange involution ∗ex, defined by ∗ex(x, y) = (y, x), is ∗ex-prime but not
prime. This example shows that every prime ring can be injected in a ∗-prime
ring and from this point of view ∗-prime rings constitute a more general class of
prime rings.

Let R be a ∗-prime ring. The set of symmetric and skew symmetric elements
of R will be denoted by Sa∗(R) i.e., Sa∗(R) = {x ∈ R | x∗ = ±x}. An additive
subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J , for all u ∈ J and
r ∈ R. A Jordan ideal J which satisfies J∗ = J is called a ∗-Jordan ideal. If J
is a nonzero Jordan ideal of a ring R, then 2[R,R]J ⊆ J and 2J [R,R] ⊆ J ([12,
Lemma 2.4]). Moreover, from [1] (see the proof of Lemma 3) we have 4j2R ⊆ J

and 4Rj2 ⊆ J for all j ∈ J . Since 4jrj = 2{j(jr+rj)+(jr+rj)j}−{2j2r+r2j2},
it follows that 4jRj ⊆ J for all j ∈ J (see [1], proof of Theorem 3).
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Now we discuss some basic properties of ∗-prime ring which shall be used
frequently throughout the text. For the details, one can look into [8], [9] and [10].

(I) Every ∗-prime ring is semiprime.
(II) Let J be a nonzero Jordan ideal of a 2-torsion free ∗-prime ring R such

that aJb = a∗Jb = 0. Then a = 0 or b = 0 (see [9, Lemma 2]).
(III) Let J be a nonzero Jordan ideal of a 2-torsion free ∗-prime ring R such

that aJ = 0 (resp. Ja = 0). Then a = 0. In fact, if aJ = 0 (resp. Ja = 0),
then aJa = 0 = aJa∗ (resp. aJa = 0 = a∗Ja), and by (II) a = 0.

(IV ) Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal
of R. If J ⊆ Z(R), then R is commutative (see [10, Lemma 3]).

(V ) Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal
of R. If aJa = 0, then a = 0. In fact if aJa = 0, then aJaJa∗ = 0 and,
by (II), either a = 0 or aJa∗ = 0 in which case, because of aJa = 0, we
get a = 0.

Long ago Herstein [5] proved that if a prime ring R of characteristic different
from two admits a derivation d such that d(x)d(y) = d(y)d(x) holds for all x, y ∈
R, then R is commutative. Motivated by this result Bell and Daif [2] obtained
the same result by considering the identity d[x, y] = 0 for all x, y in a nonzero
ideal of R. Later, Daif and Bell [3] established commutativity of semiprime ring
satisfying d([x, y]) = [x, y] for all x, y in a nonzero ideal of R, and d a derivation
of R. Further, in the year 1997 M. Hongan [6] established commutativity of 2-
torsion free semiprime ring R which admits a derivation d satisfying d([x, y]) +
[x, y] ∈ Z(R) for all x, y ∈ I or d([x, y]) − [x, y] ∈ Z(R) for all x, y ∈ I, where
I is an ideal of R. In the present paper we generalize these results for ∗-prime
ring R satisfying any one of the properties: (i) d[x, y] = 0, (ii) d([x, y]) − [x, y] ∈
Z(R), (iii) d([x, y]) + [x, y] ∈ Z(R), (iv) d(xoy) = 0, (v) d(xoy) − xoy ∈ Z(R),
(vi) d(xoy) + xoy ∈ Z(R) for all x, y ∈ J , a nonzero Jordan ideal of R.

2. Differential identities with commutator

The following two basic commutator identities [x, yz] = y[x, z] + [x, y]z and
[xy, z] = x[y, z] + [x, z]y shall be used frequently, throughout the text, without
any specific mention. We begin with the following lemmas which are essential for
developing the proof of our main results. The proof of Lemma 1 can be seen in [6]
while Lemma 2 and Lemma 3 are essentially proved in [8] and [10] respectively.

Lemma 1 ([6, Corollary 1]). LetR be a 2-torsion free semiprime ring. If R admits

a derivation d such that either d([x, y]) + [x, y] ∈ Z(R) or d([x, y])− [x, y] ∈ Z(R)
for all x, y ∈ R, then R is commutative.

Lemma 2 ([8, Lemma 3]). Let R be a 2-torsion free ∗-prime ring and J a nonzero

∗-Jordan ideal of R. If R admits a derivation d such that d(x2) = 0, for all x ∈ J ,

then d = 0.



Commutativity theorems for rings with differential identities on Jordan ideals 449

Lemma 3 ([10, Theorem 1]). Let R be a 2-torsion free ∗-prime ring and J a

∗-Jordan ideal of R. If R admits a derivation d which is centralizing on J , i.e.

[d(x), x] ∈ Z(R) for all x ∈ J , then R is commutative.

Very recently, the results obtained by Bell and Daif [2] were further extended to
∗-prime ring by Oukhtite and Salhi (see [11, Theorem 1.3]) who proved that if R
is a 2-torsion free ∗-prime ring and I a nonzero ∗-ideal of R such that ∗ commutes
with a derivation d of R and d([x, y]) = 0, for all x, y ∈ I, then R is commutative.
It is easy to see that in the hypothesis of the above result “∗ commutes with the

derivation d” can be avoided. Now we prove the following lemma, which improves
Theorem 1.3 of [11] for the case when the underlying identity belongs to the center
of a ∗-prime ring.

Lemma 4. Let R be a 2-torsion free ∗-prime ring. If R admits a nonzero deriva-

tion d such that d([x, y]) ∈ Z(R) for all x, y ∈ R, then R is commutative.

Proof: Suppose that

(1) d([x, y]) ∈ Z(R) for all x, y ∈ R.

We claim that Z(R) 6= 0. Indeed, otherwise equation (1) reduces to

d([x, y]) = 0 for all x, y ∈ R.

Hence R is commutative by Theorem 1.3 of [11], and thus R = 0, a contradiction.
Now replacing x by xz in (1), where 0 6= z ∈ Z(R), we get [x, y]d(z) ∈ Z(R).
This yields that

(2) [[x, y], r]Rd(z) = 0 for all x, y, r ∈ R.

In the light of ∗-primeness, either [[x, y], r] = 0 for all x, y, r ∈ R and hence R is
commutative or d(z) = 0. Assume that d(z) = 0 for all z ∈ Z(R). Then

(3) d2([x, y]) = 0 for all x, y ∈ R.

Replacing y by xy in (3) and employing (3) we obtain

(4) d2(x)[x, y] + 2d(x)d([x, y]) = 0 for all x, y ∈ R.

Substituting yx for y in (4) we get

(5) d(x)[x, y]d(x) = 0 for all x, y ∈ R.

Writing yd(x)r instead of y in (5) and using (5) we obtain

(6) d(x)y[x, d(x)]rd(x) = 0 for all r, x, y ∈ R.

Right multiplication of the last equation by y[x, d(x)] yields

(7) d(x)y[x, d(x)]Rd(x)y[x, d(x)] = 0 for all x, y ∈ R.
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Since R is semiprime, (7) forces that

(8) d(x)y[x, d(x)] = 0 for all x, y ∈ R.

Left multiplication of the last equation by x implies that

(9) xd(x)y[x, d(x)] = 0 for all x, y ∈ R.

Replacing y by xy in (8) we obtain

(10) d(x)xy[x, d(x)] = 0 for all x, y ∈ R.

Subtracting (10) from (9) we find that

(11) [d(x), x]R[d(x), x] = 0 for all x ∈ R.

Once again using semiprimeness, we conclude that

(12) [d(x), x] = 0 for all x ∈ R.

Hence R is commutative by Lemma 3. �

Lemma 5. Let R be a 2-torsion free ∗-prime ring and J be a non-zero ∗-Jordan
ideal of R such that [J, J ] ⊆ Z(R). Then R is commutative.

Proof: If [J, J ] ⊆ Z(R), then [[x, y], r] = 0 for all x, y ∈ J and r ∈ R. Now
replacing x by 2x2 and y by 4yx2, we find that [x2, y][r, x2] = 0 for all x, y ∈ J

and r ∈ R. Further replacing r by ry we obtain that [x2, y]R[x2, y] = 0. But
since every ∗-prime ring is semiprime the latter relation yields that [x2, y] = 0,
for all x, y ∈ J . Again replace y by 2[r, s]y to get [r, s][x2, s] = 0 for all r, s ∈ R

and x ∈ J . Now substituting x2r for r, we obtain [x2, s]R[x2, s] = 0. This forces
that [x2, s] = 0 for all x ∈ J . This yields that [xy + yx, s] = 0 for all x, y ∈ J

and s ∈ R. Hence replacing x by 2x2 we arrive at 2[x2y + yx2, s] = 0. Now since
R is 2-torsion free and x2 ∈ Z(R), we find that x2[y, s] = 0. This implies that
x2R[y, s] = 0 = x2R[y, s]∗ for all x, y ∈ J and s ∈ R. Now using ∗-primeness we
find that either J ⊆ Z(R) or x2 = 0. But if x2 = 0 for all x ∈ J then xy+ yx = 0
for all x, y ∈ J . This yields that x(rx + xr) + (rx + xr)x = 0, for all x ∈ J and
r ∈ R and hence 2xRx = 0. But since R is 2-torsion free and semiprime, we find
that x = 0 for all x ∈ J , a contradiction. On the other hand if J ⊆ Z(R), then R

is commutative by (IV ). �

Theorem 1. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan
ideal of R. If R admits a nonzero derivation d such that d([x, y]) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof: It can be easily seen that d commutes with ∗. We have

(13) d([x, y]) ∈ Z(R) for all x, y ∈ J.
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Let us consider J1 = {x ∈ J | d(x) ∈ J}. Our claim is that J1 6= 0. Since
d(2x2) = 2d(x2) = 2(d(x) ◦ x) ∈ J , it follows that 2x2 ∈ J1 for all x ∈ J . Hence if
we assume that J1 = 0, then 2-torsion freeness yields x2 = 0 for all x ∈ J and thus
x ◦ y = 0 for all x, y ∈ J . In particular, x ◦ (2[r, s]y) = 0 so that x ◦ ([r, s]y) = 0
for all x, y ∈ J , r, s ∈ R. Since x ◦ ([r, s]y) = [x, [r, s]]y + [r, s](x ◦ y), the last
equation reduces to [x, [r, s]]y = 0 and thus [x, [r, s]]J = 0 for all x ∈ J , r, s ∈ R.
Therefore, [x, [r, s]] = 0 for all x ∈ J , r, s ∈ R, proving that J ⊆ Z(R). Since
x2 = 0 for all x ∈ J , xRx = 0 for all x ∈ J so that J = 0, a contradiction. It is
also easy to see that J1 is a ∗-Jordan ideal of R. If J ∩Z(R) = 0, then because of

d([x, 2y2]) = [d(x), 2y2] + [x, 2d(y) ◦ y] ∈ Z(R) ∩ J for all x, y ∈ J1

we get

(14) d([x, 2y2]) = 0 for all x, y ∈ J1.

Replacing x by 4xy2 in (14) we arrive at

(15) [x, y2]d(y2) = 0 for all x, y ∈ J1.

Substituting 2[r, s]x for x in (15) where r, s ∈ R we obtain

(16) [[r, s], y2]J1d(y
2) = 0 for all y ∈ J1, r, s ∈ R.

For y ∈ Sa∗(R)∩J1 we obtain 2y2 ∈ Z(R)∩J1 or d(y2) = 0. But 2y2 ∈ Z(R)∩J1
forces y2 = 0 so that in both the cases we arrive at d(y2) = 0. Let y ∈ J1.
Since y − y∗, y + y∗ ∈ Sa∗(R) ∩ J1, d(y + y∗)2 = d(y − y∗)2 = 0. Therefore,
d((y∗)2) = −d(y2). Replacing y by y∗ in (16) we obtain

(17) ([[r, s], y2])∗J1d(y
2) = 0 for all y ∈ J1, r, s ∈ R.

Combining (16) with (17) and reasoning as above we deduce that

(18) d(y2) = 0 for all y ∈ J1.

Hence by Lemma 2, d = 0, which is a contradiction. Consequently, Z(R)∩J 6= 0.
Let 0 6= z ∈ Z(R)∩J . Replacing 2xz instead of x in (13) we obtain [x, y]d(z) ∈

Z(R) so that [[x, y], r]d(z) = 0 for all x, y ∈ J , r ∈ R and therefore

(19) [[x, y], r]Rd(z) = 0 for all x, y ∈ J, r ∈ R.

As [[x, y], r]∗Rd(z) = 0 by (19), either d(z) = 0 or [J, J ] ⊆ Z(R). If d(z) = 0 for
all z ∈ Z(R) ∩ J then replacing x by 2rz in (13) and using (13) we obtain

(20) d([r, y]) ∈ Z(R) for all y ∈ J, r ∈ R.

Substituting 2zs for y in (20) we find that

(21) d([r, s]) ∈ Z(R) for all r, s ∈ R
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and hence R is commutative by Lemma 4. If [J, J ] ⊆ Z(R), then R is commutative
by Lemma 5. �

If d([x, y]) ∈ Z(R) then in that case we find the following theorem which
improves the result of [2] for the case when R is 2-torsion free.

Theorem 2. Let R be a prime ring of characteristic different from two and J

be a nonzero Jordan ideal of R. If R admits a nonzero derivation d such that

d([x, y]) ∈ Z(R) for all x, y ∈ J , then R is commutative.

Proof: Assume that d is a nonzero derivation of R such that d([x, y]) ∈ Z(R)
for all x, y ∈ J . Let D be the additive mapping defined on R = R × R0 by
D(x, y) = (d(x), 0). Clearly, D is a nonzero derivation of R. Moreover, if we
set J = J × J , then J is a ∗ex-Jordan ideal of R and D([x, y]) ∈ Z(R) for all
x, y ∈ J . Since R is a ∗ex-prime ring, in view of Theorem 1 we deduce that R is
commutative and a fortiori R is commutative. �

Corollary 1 ([7, Theorem 1]). Let R be a 2-torsion free ∗-prime ring and J be

a nonzero ∗-Jordan ideal of R. If R admits a nonzero derivation d such that

d([x, y]) = 0 for all x, y ∈ J , then R is commutative.

Theorem 3. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan
ideal of R. Then the following statements are equivalent:

(i) R is commutative;

(ii) R admits a derivation d such that d([x, y])− [x, y] ∈ Z(R) for all x, y ∈ J ;

(iii) R admits a derivation d such that d([x, y])+ [x, y] ∈ Z(R) for all x, y ∈ J .

Proof: Obviously (i) =⇒ (iii). Moreover, (iii) =⇒ (ii) indeed if d([x, y])+ [x, y] ∈
Z(R) then the derivation (−d) satisfies (−d)([x, y])− [x, y] ∈ Z(R).

(ii)=⇒ (i). Suppose that R satisfies (ii). If d = 0 then [J, J ] ⊆ Z(R) and R is
commutative by Lemma 5. Assume that d is a nonzero derivation such that

(22) d([x, y]) − [x, y] ∈ Z(R) for all x, y ∈ J.

Define J1 as in Theorem 1. If J ∩ Z(R) = 0, then because of

d([x, 2y2])− [x, 2y2] = [d(x), 2y2] + [x, 2d(y) ◦ y]− [x, 2y2] ∈ Z(R) ∩ J

for all x, y ∈ J1, we get

(23) d([x, 2y2])− [x, 2y2] = 0 for all x, y ∈ J1.

Replacing x by 4xy2 in (23) we arrive at

(24) [x, y2]d(y2) = 0 for all x, y ∈ J1.

Since equation (24) is the same as equation (15), arguing as in the proof of The-
orem 1 we are forced to Z(R) ∩ J 6= 0.
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Let 0 6= z ∈ Z(R)∩J . Writing 2xz instead of x in (22) and employing (22) we
obtain [x, y]d(z) ∈ Z(R) and thus

(25) [[x, y], r]Rd(z) = 0 for all x, y ∈ J and r ∈ R.

Since equation (25) is the same as equation (19), arguing as in the proof of The-
orem 1 we arrive at R is commutative or d(z) = 0.

Assume that d(z) = 0. Replacing x by 2zr = z ◦ r in (22), where r ∈ R, we
obtain

(26) d([r, y])− [r, y] ∈ Z(R) for all y ∈ J, r ∈ R.

Replacing y by 2zs in (26) where s ∈ R we get

(27) d([r, s])− [r, s] ∈ Z(R) for all r, s ∈ R,

and hence R is commutative by Lemma 1. �

Theorem 4. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan
ideal of R. Then R is commutative if and only if R admits a derivation d such

that for all x, y ∈ J , either d([x, y]) − [x, y] ∈ Z(R) or d([x, y]) + [x, y] ∈ Z(R).

Proof: Obviously, every commutative ring satisfies d([x, y])− [x, y] ∈ Z(R) and
d([x, y]) + [x, y] ∈ Z(R).

Conversely, for each fixed x ∈ J we put Jx = {y ∈ J | d([x, y])− [x, y] ∈ Z(R)}

and J ′

x = {y ∈ J | d([x, y]) + [x, y] ∈ Z(R)}. Then obviously Jx and J
′

x
are

additive subgroups of J whose union is J . But a group cannot be a set theoretic
union of two of its proper subgroups. Hence either J = Jx or J = J

′

x
. Further

using similar arguments as above, we find that J = {x ∈ J | Jx = J} or J = {x ∈

J | J
′

x
= J}. Therefore R is commutative by Theorem 3. �

Using similar arguments as used in proving Theorem 2 and employing Theo-
rem 3, we get the following theorem which improves Theorem 1 of [3].

Theorem 5. Let R be a prime ring of characteristic different from two and

J a nonzero Jordan ideal of R. If R admits a derivation d such that either

d([x, y])− [x, y] ∈ Z(R) for all x, y ∈ J , or d([x, y])+ [x, y] ∈ Z(R) for all x, y ∈ J ,

then R is commutative.

The following is an immediate consequence of Theorem 3.

Corollary 2 ([7, Theorem 3]). Let R be a 2-torsion free ∗-prime ring and J be

a nonzero ∗-Jordan ideal of R. If R admits a nonzero derivation d such that

d([x, y]) = [x, y] for all x, y ∈ J , then R is commutative.

3. Differential identities with anti-commutator

This section is devoted to a question whether the commutativity of the ring
still holds if the commutator in the statements of the preceding section is replaced
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by the anti-commutator. We have investigated this problem and obtained similar
results.

Theorem 6. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan
ideal of R. If R admits a nonzero derivation d such that d(x ◦ y) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof: Suppose that

(28) d(x ◦ y) ∈ Z(R) for all x, y ∈ J.

If J ∩ Z(R) = 0 then, because of d(x ◦ y) ∈ Z(R) ∩ J , we get

(29) d(x ◦ y) = 0 for all x, y ∈ J.

Hence d = 0 by Lemma 2, a contradiction. Accordingly, J ∩ Z(R) 6= 0.
Let 0 6= z ∈ J ∩ Z(R). Replacing x by 2zx = z ◦ x in (28) we arrive at

(30) d(x ◦ y)z + (x ◦ y)d(z) ∈ Z(R) for all x, y ∈ J.

Comparing (28) with (30) we obtain (x ◦ y)d(z) ∈ Z(R) so that

(31) [(x ◦ y), r]Rd(z) = 0 for all x, y ∈ J, r ∈ R.

In particular, we have

(32) [x2, r]Rd(z) = ([x2, r])∗Rd(z) = 0 for all x ∈ J, r ∈ R.

Consequently, either [x2, r] = 0 or d(z) = 0 for all z ∈ J∩Z(R). If d(J∩Z(R)) = 0,
then equation (28) assures that

(33) d2(x ◦ y) = 0 for all x, y ∈ J.

Substituting 2x2 for x and 2y2 for y in (33) and using both (28) and (33) we
arrive at

(34) d(x2)Rd(y2) = 0 for all x, y ∈ J

and so that

(35) d(x2)Rd(x2) = 0 for all x ∈ J

and the semiprimeness gives d(x2) = 0 for all x ∈ J . Hence again by Lemma 2,
d = 0, a contradiction. Thus [x2, r] = 0 for all x ∈ J , r ∈ R. Now applying similar
method as used in the proof of Lemma 5, we find that R is commutative. �

Further using similar arguments as used to prove Theorem 2, with application
of Theorem 6, one can prove the following.

Theorem 7. Let R be a prime ring of characteristic different from two and J

be a nonzero Jordan ideal of R. If R admits a nonzero derivation d such that

d(x ◦ y) ∈ Z(R) for all x, y ∈ J , then R is commutative.
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Theorem 8. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan
ideal of R. Then the following conditions are equivalent:

(i) R is commutative;

(ii) R admits a derivation d such that d(x ◦ y)− x ◦ y ∈ Z(R) for all x, y ∈ J ;

(iii) R admits a derivation d such that d(x ◦ y) + x ◦ y ∈ Z(R) for all x, y ∈ J .

Proof: Clearly (i) =⇒ (iii)=⇒ (ii).
(ii)=⇒ (i). Assume that R satisfies (ii). If d = 0 then x2 ∈ Z(R) for all x ∈ J

and arguing as in the proof of Lemma 5 we arrive at R is commutative. Suppose
that d is a nonzero derivation such that

(36) d(x ◦ y)− x ◦ y ∈ Z(R) for all x, y ∈ J.

If Z(R) ∩ J = 0, then by (36) we obtain

(37) d(x ◦ y) = x ◦ y for all x, y ∈ J.

Writing x2 instead of x and 4yx2 instead of y in (37) we get

(38) (x2 ◦ y)d(x2) = 0 for all x, y ∈ J.

Substituting 2[r, s]y for y in (38), where r, s ∈ R, we obtain

[x2, [r, s]]yd(x2) = 0

and therefore

(39) [x2, [r, s]]Jd(x2) = 0 for all x ∈ J, r, s ∈ R.

Since equation (39) is the same as equation (16), arguing as in the proof of The-
orem 1 we find that d = 0, a contradiction. Consequently, J ∩ Z(R) 6= 0.

Let 0 6= z ∈ J ∩ Z(R). Replacing x by 2xz = x ◦ z in (36) we find that
(x ◦ y)d(z) ∈ Z(R) and hence

(40) [x2, r]Rd(z) = [x2, r]∗Rd(z) = 0 for all x ∈ J, r ∈ R.

R being ∗-prime, from (40) it follows that either d(Z(R) ∩ J) = 0 or [x2, r] = 0
for all x ∈ J , r ∈ R. Assume that d(Z(R) ∩ J) = 0. From (36) it follows that

(41) d2(x ◦ y)− d(x ◦ y) = 0 for all x, y ∈ J.

In particular, for 0 6= y ∈ J ∩ Z(R) equation (41) leads to

(42) (d2(x)− d(x))y = 0 for all x ∈ J,

and hence (d2(x) − d(x))Ry = (d2(x) − d(x))Ry∗ = 0 for all x ∈ J . R being
∗-prime implies that

(43) d2(x) − d(x) = 0 for all x ∈ J.
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Writing 4xu2 instead of x in (43), where u ∈ J , we obtain

(44) d(x)d(u2) = 0 for all x, u ∈ J.

Replacing x by 4u2x in (44) we find that d(u2)Jd(u2) = 0 for all u ∈ J . Now
application of (V ) assures that d(u2) = 0 for all u ∈ J , and hence by Lemma 2,
d = 0, a contradiction. Consequently, [x2, r] = 0 for all x ∈ J , r ∈ R and hence
using similar arguments as given in the proof of Lemma 5, we get the required
result. �

Using similar procedure as used to prove Theorem 4, we get the following.

Theorem 9. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan
ideal of R. Then R is commutative if and only if R admits a derivation d such

that for all x, y ∈ J , either d(x ◦ y)− x ◦ y ∈ Z(R) or d(x ◦ y) + x ◦ y ∈ Z(R).

If R is a prime ring of characteristic different from two, then one can prove the
following.

Theorem 10. Let R be a prime ring of characteristic different from two and

J be a nonzero Jordan ideal of R. If R admits a derivation d such that either

d(x ◦ y)− x ◦ y ∈ Z(R) for all x, y ∈ J , or d(x ◦ y) + x ◦ y ∈ Z(R) for all x, y ∈ J ,

then R is commutative.

Corollary 3. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan
ideal of R. Suppose that R admits a derivation d. Then the following conditions

are equivalent:

(i) d(xy)− xy ∈ Z(R) for all x, y ∈ J ;

(ii) d(xy) + xy ∈ Z(R) for all x, y ∈ J ;

(iii) d(xy)− yx ∈ Z(R) for all x, y ∈ J ;

(iv) d(xy) + yx ∈ Z(R) for all x, y ∈ J ;

(v) R is commutative.

The following example demonstrates that Theorems 1, 3, 4, 6 and 8 cannot be
extended to semiprime rings.

Example 1. Let (R, σ) be a noncommutative prime ring with involution. Let us
consider R = R × Q[X ]. It is obvious to see that R is semiprime. Moreover, if
we define (r, P (X))∗ = (σ(r), P (X)), then ∗ is an involution of R for which J =
{0}×Q[X ] is a nonzero ∗-Jordan ideal. Furthermore, D(r, P (X)) = (0, P ′(X)) is
a nonzero derivation of R such that D([u, v]) ∈ Z(R), D([u, v]) − [u, v] ∈ Z(R),
D(u◦v) ∈ Z(R), D(u◦v)−u◦v ∈ Z(R), for all u, v ∈ J but R is not commutative.

The following example shows that in Theorems 1 and 6 the hypothesis that J
is a ∗-Jordan ideal is crucial.

Example 2. Let R be a noncommutative prime ring which admits a nonzero
derivation d and let R = R×R0. If we set J = R× 0, then J is a nonzero Jordan
ideal of the ∗ex-prime ring R. Furthermore, if we define D(x, y) = (0, d(y)), then
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D is a derivation of R which satisfies D[u, v] ∈ Z(R), D(u ◦ v) ∈ Z(R) for all
u, v ∈ J . However R is noncommutative.
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