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On the adaptive wavelet estimation of a multidimensional

regression function under α-mixing dependence:

Beyond the standard assumptions on the noise

Christophe Chesneau

Abstract. We investigate the estimation of a multidimensional regression function
f from n observations of an α-mixing process (Y,X), where Y = f(X) + ξ, X
represents the design and ξ the noise. We concentrate on wavelet methods. In
most papers considering this problem, either the proposed wavelet estimator
is not adaptive (i.e., it depends on the knowledge of the smoothness of f in its
construction) or it is supposed that ξ is bounded or/and has a known distribution.
In this paper, we go far beyond this classical framework. Under no boundedness
assumption on ξ and no a priori knowledge on its distribution, we construct
adaptive term-by-term thresholding wavelet estimators attaining “sharp” rates
of convergence under the mean integrated squared error over a wide class of
functions f .

Keywords: nonparametric regression; α-mixing dependence; adaptive estima-
tion; wavelet methods; rates of convergence

Classification: 62G08, 62G20

1. Introduction

We consider the nonparametric multidimensional regression model with uni-
form design described as follows. Let (Yt, Xt)t∈Z be a strictly stationary random
process defined on a probability space (Ω,A,P), where

(1.1) Yt = f(Xt) + ξt,

f : [0, 1]d → R is the unknown d-dimensional regression function, d is a positive
integer, X1 follows the uniform distribution on [0, 1]d and (ξt)t∈Z is a strictly
stationary centered random process independent of (Xt)t∈Z (the uniform dis-
tribution of X1 will be discussed in Remark 4.6 below). Given n observations
(Y1, X1), . . . , (Yn, Xn) drawn from (Yt, Xt)t∈Z, we aim to estimate f globally on
[0, 1]d. Applications of this nonparametric estimation problem can be found in
numerous areas as economics, finance and signal processing. See, e.g., [58], [37]
and [38].
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The performance of an estimator f̂ of f can be evaluated by different measures
as the Mean Integrated Squared Error (MISE) defined by

R(f̂ , f) = E

(∫

[0,1]d
(f̂(x)− f(x))2 dx

)
,

where E denotes the expectation. The smaller R(f̂ , f) is for a large class of f , the

better f̂ is. Several nonparametric methods for f̂ are candidates to achieve this
goal. Most of them are presented in [56]. In this paper, we focus our attention on
the wavelet methods because of their spatial adaptivity, computational efficiency
and asymptotic optimality properties under the MISE. For exhaustive discussions
of wavelets and their applications in nonparametric statistics, see, e.g., [1], [57]
and [38].

The feature of this study is to consider (1.1) under the following general setting:

(i) (Yt, Xt)t∈Z is a dependent process following an α-mixing structure,
(ii) ξ1 is not necessarily bounded and its distribution is not necessarily known,

(the precise definitions are given in Section 2).
In order to clarify the interest of (i) and (ii), let us now present a brief review

on the wavelet estimation of f . In the common case where (Y1, X1), . . . , (Yn, Xn)
are i.i.d., various wavelet methods have been developed. The most famous of
them can be found in, e.g., [29], [30], [31], [27], [36], [2], [3], [4], [22], [61], [10],
[11], [12], [13], [40], [17], [53] and [8]. In view of the structure of the data of
many applications, the issue of the relaxation of the independence assumption
naturally arises. Among the answers, there are the considerations of various
kinds of mixing dependences as the β-mixing dependence (see, e.g., [5]) and the
α-mixing dependence mentioned in (i), and several kinds of correlated errors as
α-mixing errors (see, e.g., [51], [59], [44], [43] and [42]), long-range dependent
errors (see, e.g., [45], [54], [41] and [7]) and martingale difference errors (see, e.g.,
[62]). Even if some connections exist, these dependent conditions are of different
natures.

The interest of (i) is justified by its numerous applications in dynamic economic
systems and its relative weakness (see, e.g., [58] and [37]). In such an α-mixing
context, recent wavelet regression methods and their properties can be found in,
e.g., [49], [52], [32], [34], [18], [6] (exploring the nonparametric regression model
for censored data), [15] and [16] (both considering the nonparametric regression
model for biased data). However, in most of these works, either the proposed
wavelet estimator is not adaptive, i.e., its construction depends on the knowledge
of the smoothness of f , or it is supposed that ξ1 (or Y1) is bounded or has a
known distribution. In fact, to the best of our knowledge, [18] is the only work
which deals with such an adaptive wavelet regression function estimation problem
under (i) and (ii) (with d = 1). However, the construction of the proposed wavelet
estimator deeply depends on a parameter θ related to the α-mixing dependence.
Since θ is a priori unknown, this estimator can be considered as non adaptive.
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The aim of this paper is to provide a theoretical contribution to the full adaptive
wavelet estimation of f under (i) and (ii). We develop two adaptive wavelet

estimators f̂δ and f̂∗
δ , both using a term-by-term thresholding rule δ as the hard

thresholding rule or the soft thresholding rule (see, e.g., [29], [30] and [31]). We
evaluate their performances under the MISE over a wide class of functions f :
the Besov balls. In a first part, under mild assumptions on (1.1), we show that

the rate of convergence achieved by f̂δ is exactly the one of the standard term-
by-term wavelet thresholding estimator for f in the classical i.i.d. framework.
It corresponds to the optimal one in the minimax sense within a logarithmic
term. In a second part, with less restrictive assumptions on ξ1 (only moments of

order 2 is required), we show that f̂∗
δ achieves the same rate of convergence to f̂δ

up to a logarithmic term. Thus f̂∗
δ is somewhat less efficient than f̂δ in terms of

asymptotic MISE but can be used under very mild assumptions on (1.1). To prove
our main theorems, we establish a general result on the performance of wavelet
term-by-term thresholding estimators which may be of independent interest.

Our contribution can also be viewed as an extension of well-known adaptive
wavelet estimation results in the standard i.i.d.; for example, Gaussian case to a
more general setting allowing weak dependence on the observations and a wide
variety of distributions for ξ1. This complements recent studies investigating other
sophisticated dependent contexts as, e.g., [54], [41] and [7] (but with independent
(Xt)t∈Z, Gaussian distribution on ξ1 and d = 1).

The rest of this paper is organized as follows. Section 2 clarifies the assumptions
on the model and introduces some notations. Section 3 describes the considered
wavelet basis on [0, 1]d and the Besov balls. Section 4 is devoted to our adaptive
wavelet estimators and their MISE properties over Besov balls. The technical
proofs are postponed to Section 5.

2. Assumptions

We make the following assumptions on the model (1.1).

Assumptions on the noise. Let us recall that (ξt)t∈Z is a strictly stationary
random process independent of (Xt)t∈Z such that E(ξ1) = 0.

H1. We suppose that there exist two constants σ > 0 and ω > 0 such that,
for any t ∈ R,

E(etξ1) ≤ ωet
2σ2/2.

H2. We suppose that E(ξ21) <∞.

Remark 2.1. Note that H1 and H2 are satisfied for a wide variety of ξ1, in-
cluding Gaussian distributions and the bounded distributions. Obviously H1
implies H2.

Remark 2.2. It follows from H1 that

• for any p ≥ 1, we have E(|ξ1|p) <∞,
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• for any λ > 0, we have

(2.1) P(|ξ1| ≥ λ) ≤ 2ωe−λ2/(2σ2).

α-mixing assumption. For any m ∈ Z, we define the m-th strongly mixing
coefficient of (Yt, Xt)t∈Z by

αm = sup
(A,B)∈F(Y,X)

−∞,0×F(Y,X)
m,∞

|P(A ∩B)−P(A)P(B)| ,

where F (Y,X)
−∞,0 is the σ-algebra generated by . . . , (Y−1, X−1), (Y0, X0) and F (Y,X)

m,∞
is the σ-algebra generated by (Ym, Xm), (Ym+1, Xm+1), . . ..

The assumption H3 below measuring the α-mixing dependence between
(Yt, Xt)t∈Z will be at the heart of our study.

H3. We suppose that there exist two constants γ > 0 and β > 0 such that

sup
m≥1

(
αme

βm
)
≤ γ.

Further details on the α-mixing dependence can be found in, e.g., [35], [14] and
[9]. Applications and advantages of assuming α-mixing condition on (1.1) can be
found in, e.g., [58], [55], [37] and [47].

Remark 2.3. The particular case where (Xt)t∈Z are independent and (ξt)t∈Z is an
α-mixing process with an exponential decay rate is covered by H3. Various kinds
of correlated errors are permitted including certain short-range dependent errors
as strictly stationary AR(1) processes (see, e.g., [35]). However, for instance, the
long-range dependence on (ξt)t∈Z as described in [41, Section 1] is not covered.

Boundedness assumptions.

H4. We suppose that there exists a constant K > 0 such that

sup
x∈[0,1]d

|f(x)| ≤ K.

H5. For any m ∈ Z, let g(X0,Xm) be the density of (X0, Xm). We suppose that
there exists a constant L > 0 such that

(2.2) sup
m≥1

sup
(x,x∗)∈[0,1]2d

g(X0,Xm)(x, x∗) ≤ L.

These boundedness assumptions are standard for (1.1) under α-mixing depen-
dence. See, e.g., [49] and [52].

3. Preliminaries on wavelets

This section contains some facts about the wavelet tensor-product basis on
[0, 1]d and the considered function space in terms of wavelet coefficients that will
be used in the sequel.
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3.1 Wavelet tensor-product basis on [0, 1]d. For any p ≥ 1, set

Lp([0, 1]
d) =



h : [0, 1]d → R; ||h||p =

(∫

[0,1]d
|h(x)|p dx

)1/p

<∞



 .

For the purpose of this paper, we use a compactly supported wavelet-tensor prod-
uct basis on [0, 1]d based on the Daubechies wavelets. Let N be a positive integer,
φ be “father” Daubechies-type wavelet and ψ be a “mother” Daubechies-type
wavelet of the family db2N . In particular, mention that φ and ψ have compact
supports (see [24] and [48]).

Then, for any x = (x1, . . . , xd) ∈ [0, 1]d, we construct 2d functions as follows:

• a scale function

Φ(x) =

d∏

u=1

φ(xu)

• 2d − 1 wavelet functions

Ψu(x) =





ψ(xu)

d∏

v=1
v 6=u

φ(xv) when u ∈ {1, . . . , d},

∏

v∈Au

ψ(xv)
∏

v/∈Au

φ(xv) when u ∈ {d+ 1, . . . , 2d − 1},

where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d}
of cardinality greater or equal to 2.

We set

Dj = {0, . . . , 2j − 1}d,
for any j ≥ 0 and k = (k1, . . . , kd) ∈ Dj ,

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2
jxd − kd)

and, for any u ∈ {1, . . . , 2d − 1},

Ψj,k,u(x) = 2jd/2Ψu(2
jx1 − k1, . . . , 2

jxd − kd).

Then there exists an integer τ such that, for any j∗ ≥ τ , the collection

B = {Φj∗,k, k ∈ Dj∗ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , j∗ − 1}, k ∈ Dj}

(with appropriated treatments at the boundaries) forms an orthonormal basis of
L2([0, 1]

d).
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Let j∗ be an integer such that j∗ ≥ τ . A function h ∈ L2([0, 1]
d) can be

expanded into a wavelet series as

h(x) =
∑

k∈Dj∗

cj∗,kΦj∗,k(x) +

2d−1∑

u=1

∞∑

j=j∗

∑

k∈Dj

dj,k,uΨj,k,u(x),

where

(3.1) cj,k =

∫

[0,1]d
h(x)Φj,k(x) dx, dj,k,u =

∫

[0,1]d
h(x)Ψj,k,u(x) dx.

The idea behind this wavelet representation is to decompose h into a set of wavelet
approximation coefficients, i.e., {cj∗,k; k ∈ Dj∗}, and wavelet detail coefficients,
i.e., {dj,k,u; j ≥ j∗, k ∈ Dj, u ∈ {1, . . . , 2d − 1}}. For further results and details
about this wavelet basis, we refer the reader to [50], [24], [23] and [48].

3.2 Besov balls. Let M > 0, s ∈ (0, N), p ≥ 1 and r ≥ 1. A function h ∈
L2([0, 1]

d) belongs to the Besov balls Bs
p,r(M) if and only if there exists a constant

M∗ > 0 such that the associated wavelet coefficients (3.1) satisfy

(∑

k∈Dτ

|cτ,k|p
)1/p

+




∞∑

j=τ


2j(s+d(1/2−1/p))




2d−1∑

u=1

∑

k∈Dj

|dj,k,u|p



1/p



r


1/r

≤M∗

and with the usual modifications for p = ∞ or r = ∞.
For a particular choice of parameters s, p and r, these sets contain Sobolev and

Hölder balls as well as function classes of significant spatial inhomogeneity (such
as the Bump Algebra and Bounded Variations balls). Details about Besov balls
can be found in, e.g., [28], [50] and [38].

4. Wavelet estimators and results

4.1 Introduction. We consider the model (1.1) with f ∈ L2([0, 1]
d) and we

adopt the notations introduced in Sections 2 and 3. The first step to the wavelet
estimation of f is its expansion into B as

(4.1) f(x) =
∑

k∈Dj0

cj0,kΦj0,k(x) +
2d−1∑

u=1

∞∑

j=j0

∑

k∈Dj

dj,k,uΨj,k,u(x),

where j0 ≥ τ , cj,k =
∫
[0,1]d

f(x)Φj,k(x) dx and dj,k,u =
∫
[0,1]d

f(x)Ψj,k,u(x) dx.

In the next section, we construct two different adaptive wavelet estimators for f
according to the two following lists of assumptions:

• List 1: H1, H3, H4 and H5,
• List 2: H2, H3 and H4,
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both used a term-by-term thresholding of suitable wavelet estimators for cj,k
and dj,k.

4.2 Wavelet estimator I and result. Suppose that H1, H3, H4 and H5

hold. We define the term-by-term thresholding estimator f̂δ by

(4.2) f̂δ(x) =
∑

k∈Dj0

ĉj0,kΦj0,k(x) +

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

δ(d̂j,k,u, κλn)Ψj,k,u(x),

where ĉj,k and d̂j,k,u are the empirical wavelet coefficients estimators of cj,k and
dj,k,u, i.e.,

(4.3) ĉj,k =
1

n

n∑

i=1

YiΦj,k(Xi), d̂j,k,u =
1

n

n∑

i=1

YiΨj,k,u(Xi),

δ : R× (0,∞) → R is a term-by-term thresholding rule satisfying that there exists
a constant C > 0 such that, for any (u, v, λ) ∈ R2 × (0,∞),

(4.4) |δ(v, λ) − u| ≤ C
(
min(|u|, λ) + |v − u|1{|v−u|>λ/2}

)
.

Furthermore, κ is a large enough constant,

(4.5) λn =

√
lnn

n
,

j0 and j1 are integers satisfying

1

2
(lnn)2 < 2j0d ≤ (lnn)2,

1

2

n

(lnn)4
< 2j1d ≤ n

(lnn)4
.

Remark 4.1. The estimators ĉj,k and d̂j,k,u (4.3) are unbiased. Indeed the
independence of X1 and ξ1, and E(ξ1) = 0 imply that

E(ĉj,k) = E(Y1Φj,k(X1)) = E(f(X1)Φj,k(X1)) =

∫

[0,1]d
f(x)Φj,k(x) dx = cj,k.

Similarly we prove that E(d̂j,k,u) = dj,k,u.

Remark 4.2. Among the thresholding rules δ satisfying (4.4), there are

• the hard thresholding rule defined by δ(v, λ) = v1{|v|≥λ}, where 1 denotes
the indicator function,

• the soft thresholding rule defined by δ(v, λ) = sign(v)max(|v| − λ, 0),
where sign denotes the sign function.

The technical details can be found in [27, Lemma 1].
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The idea behind the term-by-term thresholding rule δ in f̂δ is to only estimate
the “large” wavelet coefficients of f (and to remove the others). The reason is that
wavelet coefficients having small absolute value are considered to encode mostly
noise whereas the important information of f is encoded by the coefficients having

large absolute value. This term-by-term selection gives to f̂δ an extraordinary lo-
cal adaptability in handling discontinuities. For further details on such estimators
in various statistical framework, we refer the reader to, e.g., [29], [30], [31], [27],
[2] and [38]. For the constructions of such estimators under H3 in a regression
context, we refer to [52], [18], [6] and [15].

The considered threshold λn (4.5) corresponds to the universal one determined
in the standard Gaussian i.i.d. case (see [29], [30]).

Remark 4.3. It is important to underline that f̂δ is adaptive; its construction
does not depend on the smoothness of f .

Theorem 4.1 below explores the performance of f̂δ under the MISE over Besov
balls.

Theorem 4.1. Let us consider the model (1.1) under H1, H3, H4 and H5. Let

f̂δ be (4.2). Suppose that f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or

{p ∈ [1, 2) and s ∈ (d/p,N)}. Then there exists a constant C > 0 such that

R(f̂δ, f) ≤ C

(
lnn

n

)2s/(2s+d)

,

for n large enough.

The proof of Theorem 4.1 is based on a general result on the performance of
the wavelet term-by-term thresholding estimators (see Theorem 5.1 below) and
some statistical properties on (4.3) (see Proposition 5.1 below).

The rate of convergence ((lnn)/n)2s/(2s+d) is the near optimal one in the mini-
max sense for the standard Gaussian i.i.d. case (see, e.g., [38] and [56]). “Near” is
due to the extra logarithmic term (lnn)2s/(2s+d). Also, following the terminology
of [38], note that this rate of convergence is attained over both the homogeneous
zone of the Besov balls corresponding to p ≥ 2 and the inhomogeneous zone cor-

responding to p ∈ [1, 2). This shows that the performance of f̂δ is unaffected by
the presence of discontinuities in f .

In view of Theorem 4.1, it is natural to address the following question: is it
possible to construct an adaptive wavelet estimator reaching the two following
objectives:

• relax some assumptions on the model,
• attain a suitable rate of convergence, i.e., as close as possible to the opti-
mal one n−2s/(2s+d).

An answer is provided in the next section.
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4.3 Wavelet estimator II and result. Suppose that H2, H3 and H4 hold
(only moments of order 2 are required on ξ1 and we have no a priori assumption

on g(X0,Xm) as in (2.2)). We define the term-by-term thresholding estimator f̂∗
δ

by

(4.6) f̂∗
δ (x) =

∑

k∈Dj0

ĉ∗j0,kΦj0,k(x) +

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

δ(d̂∗j,k,u, κλn)Ψj,k,u(x),

where ĉ∗j,k and d̂∗j,k,u are the wavelet coefficients estimators of cj,k and dj,k,u
defined by

(4.7) ĉ∗j,k =
1

n

n∑

i=1

Ai,j,k, d̂∗j,k,u =
1

n

n∑

i=1

Bi,j,k,u,

Ai,j,k = YiΦj,k(Xi)1{

|YiΦj,k(Xi)|≤
√

n

lnn

},

Bi,j,k,u = YiΨj,k,u(Xi)1{

|YiΨj,k,u(Xi)|≤
√

n

lnn

},

δ : R × (0,∞) → R is a term-by-term thresholding rule satisfying (4.4), κ is a
large enough constant,

λn =
lnn√
n

and j0 and j1 are integers such that

j0 = τ,
1

2

n

(lnn)2
< 2j1d ≤ n

(lnn)2
.

The role of the thresholding selection in (4.7) is to remove the large |Yi|. This
allows us to replace H1 by the less restrictive assumption H2. Such an observa-
tions thresholding technique has already been used in various contexts of wavelet
regression function estimation in [27], [19], [18] and [20].

Remark 4.4. It is important to underline that f̂∗
δ is adaptive.

Theorem 4.2 below investigates the performance of f̂∗
δ under the MISE over

Besov balls.

Theorem 4.2. Let us consider the regression model (1.1) under H2, H3 and H4.

Let f̂∗
δ be (4.6). Suppose that f ∈ Bs

p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)}
or {p ∈ [1, 2) and s ∈ (d/p,N)}. Then there exists a constant C > 0 such that

R(f̂∗
δ , f) ≤ C

(
(lnn)2

n

)2s/(2s+d)

,

for n large enough.
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The proof of Theorem 4.2 is based on a general result on the performance of
the wavelet term-by-term thresholding estimators (see Theorem 5.1 below) and
some statistical properties on (4.7) (see Proposition 5.2 below).

Theorem 4.2 significantly improves [18, Theorem 1] in terms of rates of con-
vergence and provides an extension to the multidimensional setting.

Remark 4.5. In the case where ξ1 is bounded, the only interest of Theorem 4.2,

and a fortiori f̂∗
δ , is to relax H5.

Remark 4.6. Our work can be extended to any compactly supported regression
function f and any random design X1 having a known density g bounded from
below over the support of f (including X1(Ω) = Rd). In this case, it suffices
to adapt the considered wavelet basis to the support of f and to replace Yi by

Yi/g(Xi) in the definitions of f̂δ and f̂∗
δ to be able to prove Theorems 4.1 and 4.2.

Some technical ingredients can be found in [21, Proof of Proposition 2].
When g is unknown, a possible approach following the idea of [52] is to consider

f̂ g = f̂δ (or f̂∗
δ ) to estimate fg, then estimate the unknown density g by a term-

by-term wavelet thresholding estimator ĝ (as the one in [38]) and finally consider

f̂ † = f̂ g/ĝ. This estimator is particularly useful if we work with (1.1) in an
autoregressive framework (see, e.g., [26] and [33]). However, we do not claim it
to be near optimal in the minimax sense.

Remark 4.7. Theorems 4.1 and 4.2 are established without necessary knowledge
of the distribution of ξ1. This flexibility seems difficult to reach for other depen-
dent contexts as the long-range dependence on the errors. See, e.g., [45], [54], [41]
and [7], where the Gaussian distribution of ξ1 is supposed and extensively used
in the proofs.

Conclusion and discussion. This paper provides some theoretical contribu-
tions to the adaptive wavelet estimation of a multidimensional regression function
from the α-mixing sequence (Yt, Xt)t∈Z defined by (1.1). Two different wavelet

term-by-term thresholding estimators f̂δ and f̂
∗
δ are constructed. Under very mild

assumptions on (1.1) (including unbounded ξ1 and no a priori knowledge on the
distribution of ξ1), we determine their rates of convergence under the MISE over
Besov balls Bs

p,r(M). To be more specific, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)}
or {p ∈ [1, 2) and s ∈ (d/p,N)}, we prove that

Results Assumptions Estimators Rates of convergence

Theorem 4.1 H1, H3, H4, H5 f̂δ (4.2) ((lnn)/n)2s/(2s+d)

Theorem 4.2 H2, H3, H4 f̂∗
δ (4.6) ((lnn)2/n)2s/(2s+d)

Since n−2s/(2s+d) is the optimal rate of convergence in the minimax sense for

the standard i.i.d. framework, these results show the good performances of f̂δ
and f̂∗

δ .
Let us now discuss several aspects of our study.
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• Some useful assumptions in Theorem 4.1 are relaxed in Theorem 4.2 and

the rate of convergence attained by f̂∗
δ is close to the one of f̂δ (up to the

logarithmic term (lnn)2s/(2s+d)).

• Stricto sensu, f̂δ is more efficient to f̂∗
δ . Moreover the construction of f̂∗

δ is

more complicated to the one of f̂δ due to the presence of the thresholding
in (4.7). This could be an obstacle from a practical point of view.

Possible perspectives of this work are to

• determine the optimal lower bound for (1.1) under the α-mixing depen-
dence,

• consider a random design X1 with unknown or/and unbounded density,
• relax the exponential decay assumption of αm in H3,
• improve the rates of convergence by perhaps using a group thresholding
rule (see, e.g., [10], [11]),

• consider another type of dependence on (Xt)t∈Z and/or (Yt)t∈Z as long-
range dependence.

All these aspects need further investigations that we leave for a future work.

5. Proofs

In the following, the quantity C denotes a generic constant that does not
depend on j, k and n. Its value may change from one term to another.

5.1 A general result. Theorem 5.1 below is derived from [39, Theorem 3.1]
and [27, Theorem 1]. The main contributions of this result are to clarify

• the minimal assumptions on the wavelet coefficients estimators,
• the possible choices of the levels j0 and j1 (which will be crucial in our
dependent framework),

to ensure a “suitable” rate of convergence for the corresponding wavelet term-by-
term thresholding estimator. This result may be of independent interest.

Theorem 5.1. We consider a general nonparametric model where an unknown

function f ∈ L2([0, 1]
d) needs to be estimated from n observations of a random

process defined on a probability space (Ω,A,P). Using the wavelet series expan-

sion (4.1) of f , we define the term-by-term thresholding estimator f̂⋄
δ by

f̂⋄
δ (x) =

∑

k∈Dj0

ĉ⋄j0,kΦj0,k(x) +

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

δ(d̂⋄j,k,u, κλn)Ψj,k,u(x),

where ĉ⋄j0,k and d̂⋄j,k,u are wavelet coefficients estimators of cj0,k and dj,k,u respec-

tively, δ : R × (0,∞) → R is a term-by-term thresholding satisfying (4.4), κ is

a large enough constant, λn is a threshold depending on n, and j0 and j1 are
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integers such that

1

2
2τd(lnn)ν < 2j0d ≤ 2τd(lnn)ν ,

1

2

1

λ2n(lnn)
̺
≤ 2j1d ≤ 1

λ2n(lnn)
̺
,

with ν ≥ 0 and ̺ ≥ 0.
We suppose that

• ĉ⋄j,k, d̂
⋄
j,k,u, κ, λn, ν and ̺ satisfy the following properties:

(a) there exists a constant C > 0 such that, for any k ∈ Dj ,

E((ĉ⋄j0,k − cj0,k)
2) ≤ Cλ2n,

(b) there exist a constantC > 0 and̟n such that, for any j ∈ {j0, . . . , j1},
k ∈ Dj and u ∈ {1, . . . , 2d − 1},

P
(
|d̂⋄j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ C

λ8n
̟n

,

where ̟n satisfies

E((d̂⋄j,k,u − dj,k,u)
4) ≤ ̟n,

(c) limn→∞(lnn)max(ν,̺)λ
2(1−υ)
n = 0 for any υ ∈ [0, 1),

• f ∈ Bs
p,r(M) with r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and

s ∈ (d/p,N)}.
Then there exists a constant C > 0 such that

R(f̂⋄
δ , f) ≤ C

(
λ2n
)2s/(2s+d)

,

for n large enough.

Proof of Theorem 5.1: The orthonormality of the considered wavelet basis
yields

(5.1) R(f̂⋄
δ , f) = R1 +R2 +R3,

where

R1 =
∑

k∈Dj0

E
(
(ĉ⋄j0,k − cj0,k)

2
)
, R2 =

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

E
(
(δ(d̂⋄j,k,u, κλn)− dj,k,u)

2
)

and

R3 =

2d−1∑

u=1

∞∑

j=j1+1

∑

k∈Dj

d2j,k,u.



On the adaptive wavelet estimation of a multidimensional regression function 539

Bound for R1: By (a) and (c) we have

(5.2) R1 ≤ C2j0dλ2n ≤ C(lnn)νλ2n ≤ C
(
λ2n
)2s/(2s+d)

.

Bound for R2: The feature of the term-by-term thresholding δ (i.e., (4.4)) yields

(5.3) R2 ≤ C(R2,1 +R2,2),

where

R2,1 =

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2

and

R2,2 =

2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

E
(
|d̂⋄j,k,u − dj,k,u|21{|d̂⋄

j,k,u
−dj,k,u|≥κλn/2}

)
.

Bound for R2,1: Let j2 be an integer satisfying

1

2

(
1

λ2n

)1/(2s+d)

< 2j2 ≤
(

1

λ2n

)1/(2s+d)

.

Note that, by (c), j2 ∈ {j0 + 1, . . . , j1 − 1}.
First of all, let us consider the case p ≥ 2. Since f ∈ Bs

p,r(M) ⊆ Bs
2,∞(M), we

have

R2,1 =

2d−1∑

u=1

j2∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2 +
2d−1∑

u=1

j1∑

j=j2+1

∑

k∈Dj

(min(|dj,k,u|, κλn))2

≤
2d−1∑

u=1

j2∑

j=j0

∑

k∈Dj

κ2λ2n +

2d−1∑

u=1

j1∑

j=j2+1

∑

k∈Dj

d2j,k,u

≤ C


λ2n

j2∑

j=τ

2jd +

∞∑

j=j2+1

2−2js


 ≤ C

(
λ2n2

j2d + 2−2j2s
)
≤ C

(
λ2n
)2s/(2s+d)

.
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Let us now explore the case p ∈ [1, 2). The facts that f ∈ Bs
p,r(M) with s > d/p

and (2s+ d)(2 − p)/2 + (s+ d(1/2− 1/p))p = 2s lead to

R2,1 =
2d−1∑

u=1

j2∑

j=j0

∑

k∈Dj

(min(|dj,k,u|, κλn))2

+

2d−1∑

u=1

j1∑

j=j2+1

∑

k∈Dj

(min(|dj,k,u|, κλn))2−p+p

≤
2d−1∑

u=1

j2∑

j=j0

∑

k∈Dj

κ2λ2n +

2d−1∑

u=1

j1∑

j=j2+1

∑

k∈Dj

|dj,k,u|p(κλn)2−p

≤ C


λ2n

j2∑

j=τ

2jd + (λ2n)
(2−p)/2

∞∑

j=j2+1

2−j(s+d(1/2−1/p))p




≤ C
(
λ2n2

j2d + (λ2n)
(2−p)/22−j2(s+d(1/2−1/p))p

)
≤ C

(
λ2n
)2s/(2s+d)

.

Therefore, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ (d/p,N)},
we have

(5.4) R2,1 ≤ C
(
λ2n
)2s/(2s+d)

.

Bound for R2,2: It follows from the Cauchy-Schwarz inequality, (b) and (c) that

R2,2 ≤ C
2d−1∑

u=1

j1∑

j=j0

∑

k∈Dj

√
E
(
(d̂⋄j,k,u − dj,k,u)4

)
P
(
|d̂⋄j,k,u − dj,k,u| > κλn/2

)
(5.5)

≤ Cλ4n

j1∑

j=τ

2jd ≤ Cλ4n2
j1d ≤ Cλ4n

1

λ2n(lnn)
̺
≤ Cλ2n ≤ C

(
λ2n
)2s/(2s+d)

.

Putting (5.3), (5.4) and (5.5) together, for any r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or
{p ∈ [1, 2) and s ∈ (d/p,N)}, we obtain

(5.6) R2 ≤ C
(
λ2n
)2s/(2s+d)

.

Bound for R3: In the case p ≥ 2, we have f ∈ Bs
p,r(M) ⊆ Bs

2,∞(M). This with
(c) imply that

R3 ≤ C

∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ C
(
λ2n(lnn)

̺
)2s/d ≤ C

(
λ2n
)2s/(2s+d)

.
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On the other hand, when p ∈ [1, 2), we have f ∈ Bs
p,r(M) ⊆ B

s+d(1/2−1/p)
2,∞ (M).

Observing that s > d/p leads to (s+ d(1/2− 1/p))/d > s/(2s+ d) and using (c),
we have

R3 ≤ C

∞∑

j=j1+1

2−2j(s+d(1/2−1/p)) ≤ C2−2j1(s+d(1/2−1/p))

≤ C
(
λ2n(lnn)

̺
)2(s+d(1/2−1/p))/d ≤ C

(
λ2n
)2s/(2s+d)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > d/p}, we have

(5.7) R3 ≤ C
(
λ2n
)2s/(2s+d)

.

Combining (5.1), (5.2), (5.6) and (5.7), we arrive at, for r ≥ 1, {p ≥ 2 and
s > 0} or {p ∈ [1, 2) and s > d/p},

R(f̂⋄
δ , f) ≤ C

(
λ2n
)2s/(2s+d)

.

The proof of Theorem 5.1 is completed. �

5.2 Proof of Theorem 4.1. The proof of Theorem 4.1 is a consequence of The-
orem 5.1 above and Proposition 5.1 below. To be more specific, Proposition 5.1
shows that (a), (b) and (c) of Theorem 5.1 are satisfied under the following con-

figuration: ĉ⋄j0,k = ĉj0,k and d̂⋄j,k,u = d̂j,k,u from (4.3), λn =
√
(lnn)/n, κ is a

large enough constant, ν = 2 and ̺ = 3.

Proposition 5.1. Suppose that H1, H3, H4 and H5 hold. Let ĉj,k and d̂j,k,u
be defined by (4.3), and

λn =

√
lnn

n
.

Then

(i) there exists a constant C > 0 such that, for any j satisfying (lnn)2 ≤
2jd ≤ n and k ∈ Dj ,

E((ĉj,k − cj,k)
2) ≤ C

1

n

(
≤ Cλ2n

)
,

(ii) there exists a constant C > 0 such that, for any j satisfying 2jd ≤ n,
k ∈ Dj and u ∈ {1, . . . , 2d − 1},

E((d̂j,k,u − dj,k,u)
4) ≤ Cn (= ̟n) ,

(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any

j satisfying (lnn)2 ≤ 2jd ≤ n/(lnn)4, k ∈ Dj and u ∈ {1, . . . , 2d − 1},

P
(
|d̂j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ C

1

n5

(
≤ Cλ8n/̟n

)
.
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Proof of Proposition 5.1: The technical ingredients in our proof are suitable
covariance decompositions, a covariance inequality for α-mixing processes (see
Lemma 5.3 in Appendix) and a Bernstein-type exponential inequality for α-mixing
processes (see Lemma 5.4 in Appendix).

(i) Since E(Y1Φj,k(X1)) = cj,k, we have

ĉj,k − cj,k =
1

n

n∑

i=1

Ui,j,k,

where

Ui,j,k = YiΦj,k,u(Xi)−E(Y1Φj,k(X1)).

Considering the event Ai =
{
|Yi| ≥ κ∗

√
lnn

}
, where κ∗ denotes a constant

which will be chosen later, we can split Ui,j,k as

Ui,j,k = Vi,j,k +Wi,j,k,

where

Vi,j,k = YiΦj,k(Xi)1Ai
−E (Y1Φj,k(X1)1Ai

)

and

Wi,j,k = YiΦj,k(Xi)1Ac
i
−E

(
Y1Φj,k(X1)1Ac

i

)
.

It follows from these decompositions and the inequality (x + y)2 ≤ 2(x2 + y2),
(x, y) ∈ R2, that

(5.8)

E((ĉj,k − cj,k)
2) =

1

n2
E



(

n∑

i=1

Ui,j,k

)2



=
1

n2
E



(

n∑

i=1

Vi,j,k +

n∑

i=1

Wi,j,k

)2



≤ 2

n2


E



(

n∑

i=1

Vi,j,k

)2

+E



(

n∑

i=1

Wi,j,k

)2



 =

2

n2
(S + T ),

where

S = V

(
n∑

i=1

YiΦj,k(Xi)1Ai

)
, T = V

(
n∑

i=1

YiΦj,k(Xi)1Ac
i

)
,

and V denotes the variance.

Bound for S: Let us now introduce a result which will be useful in the rest of
study.
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Lemma 5.1. Let p ≥ 1. Consider (1.1). Suppose that E(|ξ1|p) < ∞ and H4
holds. Then

• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ Dj,

E (|Y1Φj,k(X1)|p) ≤ C2jd(p/2−1);

• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ Dj and

u ∈ {1, . . . , 2d − 1},

E (|Y1Ψj,k,u(X1)|p) ≤ C2jd(p/2−1).

Using the inequality (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i , a = (a1, . . . , am) ∈ Rm, Lem-

ma 5.1 with p = 4 (thanks to H1 implying E(|ξ1|p) <∞ for p ≥ 1) and 2jd ≤ n,
we arrive at

S ≤ E



(

n∑

i=1

YiΦj,k(Xi)1Ai

)2

 ≤ n2E

(
(Y1Φj,k(X1))

21A1

)

≤ n2
√
E ((Y1Φj,k(X1))4)P(A1) ≤ Cn22jd/2

√
P(A1)

≤ Cn5/2
√
P(A1).

Now, using H4, H1 (implying (2.1)) and taking κ∗ large enough, we obtain

P(A1) ≤ P(|ξ1| ≥ κ∗
√
lnn−K) ≤ P

(
|ξ1| ≥

κ∗
2

√
lnn

)

≤ 2ωe−κ2
∗ lnn/(8σ2) = 2ωn−κ2

∗/(8σ
2) ≤ C

1

n3
.

Hence

(5.9) S ≤ Cn5/2 1

n3/2
= Cn.

Bound for T : Observe that

(5.10) T ≤ C(T1 + T2),

where

T1 = nV
(
Y1Φj,k(X1)1Ac

1

)
,

T2 =

∣∣∣∣∣
n∑

v=2

v−1∑

ℓ=1

Cov

(
YvΦj,k(Xv)1Ac

v
, YℓΦj,k(Xℓ)1Ac

ℓ

)
∣∣∣∣∣

and Cov denotes the covariance.

Bound for T1: Lemma 5.1 with p = 2 yields

(5.11) T1 ≤ nE
(
(Y1Φj,k(X1))

2
1Ac

1

)
≤ nE

(
(Y1Φj,k(X1))

2
)
≤ Cn.
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Bound for T2: The stationarity of (Yt, Xt)t∈Z and 2jd ≤ n imply that

(5.12)

T2 =

∣∣∣∣∣
n∑

m=1

(n−m)Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)
∣∣∣∣∣

≤ n

n∑

m=1

∣∣Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)∣∣ = n(T2,1 + T2,2),

where

T2,1 =

[(lnn)/β]−1∑

m=1

∣∣Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)∣∣ ,

T2,2 =
n∑

m=[(lnn)/β]

∣∣Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)∣∣

and [(lnn)/β] is the integer part of (lnn)/β (where β is the one in H3).

Bound for T2,1: First of all, for any m ∈ {1, . . . , n}, let h(Y0,X0,Ym,Xm) be the
density of (Y0, X0, Ym, Xm) and h(Y0,X0) the density of (Y0, X0). We set

(5.13)

θm(y, x, y∗, x∗) = h(Y0,X0,Ym,Xm)(y, x, y∗, x∗)

− h(Y0,X0)(y, x)h(Y0,X0)(y∗, x∗),

(y, x, y∗, x∗) ∈ R× [0, 1]d × R× [0, 1]d.

For any (x, x∗) ∈ [0, 1]2d, since the density of X0 is 1 over [0, 1]d and using H5,
we have

(5.14)

∫ ∞

−∞

∫ ∞

−∞
|θm(y, x, y∗, x∗)| dy dy∗

≤
∫ ∞

−∞

∫ ∞

−∞
h(Y0,X0,Ym,Xm)(y, x, y∗, x∗) dy dy∗

+

(∫ ∞

−∞
h(Y0,X0)(y, x) dy

)2

= g(X0,Xm)(x, x∗) + 1 ≤ L+ 1.
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By a standard covariance equality, the definition of (5.13), (5.14) and Lemma 5.1
with p = 1, we obtain

∣∣Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)∣∣

=

∣∣∣∣
∫ κ∗

√
lnn

−κ∗
√
lnn

∫

[0,1]d

∫ κ∗
√
lnn

−κ∗
√
lnn

∫

[0,1]d
θm(y, x, y∗, x∗)

× (yΦj,k(x)y∗Φj,k(x∗)) dy dx dy∗dx∗

∣∣∣∣

≤
∫

[0,1]d

∫

[0,1]d

(∫ κ∗
√
lnn

−κ∗
√
lnn

∫ κ∗
√
lnn

−κ∗
√
lnn

|y||y∗||θm(y, x, y∗, x∗)| dy dy∗
)

× |Φj,k(x)||Φj,k(x∗)| dx dx∗

≤ κ2∗ lnn

∫

[0,1]d

∫

[0,1]d

(∫ ∞

−∞

∫ ∞

−∞
|θm(y, x, y∗, x∗)| dy dy∗

)

× |Φj,k(x)||Φj,k(x∗)| dx dx∗

≤ C lnn

(∫

[0,1]d
|Φj,k(x)| dx

)2

≤ C lnn 2−jd.

Therefore, since 2jd ≥ (lnn)2,

(5.15) T2,1 ≤ C(lnn)22−jd ≤ C.

Bound for T2,2: By the Davydov inequality (see Lemma 5.3 in Appendix with
p = q = 4), Lemma 5.1 with p = 4, 2jd ≤ n and H3, we have

∣∣Cov

(
Y0Φj,k(X0)1Ac

0
, YmΦj,k(Xm)1Ac

m

)∣∣ ≤ C
√
αm

√
E
(
(Y0Φj,k(X0))

4 1Ac
0

)

≤ C
√
αm

√
E
(
(Y0Φj,k(X0))

4
)

≤ C
√
αm2jd/2 ≤ Ce−βm/2

√
n.

The previous inequality implies that

(5.16) T2,2 ≤ C
√
n

n∑

m=[(lnn)/β]

e−βm/2 ≤ C
√
ne−(lnn)/2 ≤ C.

Combining (5.12), (5.15) and (5.16), we arrive at

(5.17) T2 ≤ Cn(T2,1 + T2,2) ≤ Cn.

Putting (5.10), (5.11) and (5.17) together, we have

(5.18) T ≤ T1 + T2 ≤ Cn.



546 C. Chesneau

Finally, (5.8), (5.9) and (5.18) lead to

E((ĉj,k − cj,k)
2) ≤ 2

n2
(S + T ) ≤ C

1

n2
n ≤ C

1

n
.

This ends the proof of (i).

(ii) Using E(Y1Ψj,k,u(X1)) = dj,k,u the inequality (
∑m

i=1 ai)
4 ≤ m3

∑m
i=1 a

4
i ,

a = (a1, . . . , am) ∈ Rm, the Hölder inequality, Lemma 5.1 with p = 4 and 2jd ≤ n,
we obtain

E((d̂j,k,u − dj,k,u)
4) =

1

n4
E



(

n∑

i=1

(YiΨj,k,u(Xi)−E(Y1Ψj,k,u(X1)))

)4



≤ C
1

n4
n4E

(
(Y1Ψj,k,u(X1))

4
)
≤ C2jd ≤ Cn.

The proof of (ii) is completed.

Remark 5.1. This bound can be improved using more sophisticated moment
inequalities for α-mixing processes (as [60, Theorem 2.2]). However, the obtained
bound in (ii) is enough for the rest of our study.

(iii) Since E(Y1Ψj,k,u(X1)) = dj,k,u, we have

d̂j,k,u − dj,k,u =
1

n

n∑

i=1

Pi,j,k,u,

where

Pi,j,k,u = YiΨj,k,u(Xi)−E(Y1Ψj,k,u(X1)).

Considering again the event Ai = {|Yi| ≥ κ∗
√
lnn}, where κ∗ denotes a constant

which will be chosen later, we can split Pi,j,k,u as

Pi,j,k,u = Qi,j,k,u +Ri,j,k,u,

where

Qi,j,k,u = YiΨj,k,u(Xi)1Ai
− E (Y1Ψj,k,u(X1)1Ai

)

and

Ri,j,k,u = YiΨj,k,u(Xi)1Ac
i
−E

(
Y1Ψj,k,u(X1)1Ac

i

)
.

Therefore

(5.19) P
(
|d̂j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ I1 + I2,

where

I1 = P

(
1

n

∣∣∣∣∣
n∑

i=1

Qi,j,k,u

∣∣∣∣∣ ≥
κ

4
λn

)
, I2 = P

(
1

n

∣∣∣∣∣
n∑

i=1

Ri,j,k,u

∣∣∣∣∣ ≥
κ

4
λn

)
.
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Bound for I1: The Markov inequality, the Cauchy-Schwarz inequality and Lem-
ma 5.1 with p = 2 yield

I1 ≤ 4

κnλn
E

(∣∣∣∣∣
n∑

i=1

Qi,j,k,u

∣∣∣∣∣

)
≤ C

√
nE(|Q1,j,k,u|) ≤ C

√
nE (|Y1Ψj,k,u(X1)|1A1)

≤ C
√
n

√
E
(
(Y1Ψj,k,u(X1))

2
)
P(A1) ≤ C

√
n
√
P(A1).

Now, using H4, H1 (implying (2.1)) and taking κ∗ large enough, we obtain

P(A1) ≤ P(|ξ1| ≥ κ∗
√
lnn−K) ≤ P

(
|ξ1| ≥

κ∗
2

√
lnn

)

≤ 2ωe−κ2
∗ lnn/(8σ2) = 2ωn−κ2

∗/(8σ
2) ≤ C

1

n11
.

Hence

(5.20) I1 ≤ C
√
n

1

n11/2
≤ C

1

n5
.

Bound for I2: We will bound I2 via the Bernstein inequality for α-mixing process
described in Lemma 5.4 (see Appendix).

We have E(R1,j,k,u) = 0 and, since |Y1|1Ac
1

≤ κ∗
√
lnn and |Ψj,k,u(x)| ≤

C2jd/2 ≤ C
√
n/(lnn)2,

|Ri,j,k,u| ≤ C
√
lnn sup

x∈[0,1]d
|Ψj,k,u(x)| ≤ C

√
lnn

√
n

(lnn)2
= C

√
n

(lnn)3
.

Using arguments similar to the proofs of the bounds for T1 and T2,1 in (i), for
any l ≤ C lnn, since 2jd ≥ (lnn)2, we have

V

(
l∑

i=1

Ri,j,k,u

)
= V

(
l∑

i=1

YiΨj,k,u(Xi)1Ac
i

)
≤ C(l + l2 lnn2−jd) ≤ Cl.

Hence

Dm = max
l∈{1,...,2m}

V

(
l∑

i=1

Ri,j,k,u

)
≤ Cm.
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Lemma 5.4 applied with R1,j,k,u, . . . , Rn,j,k,u, λ = κλn/4, λn =
√
(lnn)/n, m =

[u lnn] with u > 0 chosen later, M = C
√
n/(lnn)3 and H3 gives

I2 ≤ C

(
exp

(
−C κ2λ2nn

Dm/m+ κλnmM

)
+
M

λn
ne−βm

)

≤ C

(
exp

(
−C κ2 lnn

1 + κ
√
(lnn)/nu lnn

√
n/(lnn)3

)
+

√
n/(lnn)3

(lnn)/n
ne−βu lnn

)

≤ C
(
n−Cκ2/(1+κu) + n2−βu

)
.

Therefore, taking u =
√
κ (for instance) and κ large enough, we have

(5.21) I2 ≤ C
1

n5
.

It follows from (5.19), (5.20) and (5.21) that

P
(
|d̂j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ I1 + I2 ≤ C

1

n5
.

This completes the proof of (iii). This ends the proof of Proposition 5.1. �

5.3 Proof of Theorem 4.2. The proof of Theorem 4.2 is a consequence of The-
orem 5.1 above and Proposition 5.2 below. To be more specific, Proposition 5.2
shows that (a), (b) and (c) of Theorem 5.1 can be applied under the following

configuration: ĉ⋄j0,k = ĉ∗j0,k and d̂⋄j,k,u = d̂∗j,k,u from (4.7), λn = lnn/
√
n, κ is a

large enough constant, ν = 0 and ̺ = 0.

Proposition 5.2. Suppose that H2, H3 and H4 hold. Let ĉ∗j,k and d̂∗j,k,u be

defined by (4.7), and

λn =
lnn√
n
.

Then

(i) there exists a constant C > 0 such that, for any j satisfying 2jd ≤ n and

k ∈ Dj ,

E((ĉ∗j,k − cj,k)
2) ≤ C

(lnn)2

n

(
≤ Cλ2n

)
,

(ii) there exists a constant C > 0 such that, for any j such that 2jd ≤ n,
k ∈ Dj and u ∈ {1, . . . , 2d − 1},

E((d̂∗j,k,u − dj,k,u)
4) ≤ C (= ̟n) ,
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(iii) for κ > 0 large enough, there exists a constant C > 0 such that, for any

j satisfying 2jd ≤ n, k ∈ Dj and u ∈ {1, . . . , 2d − 1},

P
(
|d̂∗j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ C

1

n4

(
≤ Cλ8n/̟n

)
.

Proof of Proposition 5.2. Again the technical tools in this proof are suitable
covariance decompositions, a covariance inequality for α-mixing processes (see
Lemma 5.3 in Appendix) and a Bernstein-type exponential inequality for α-mixing
processes (see Lemma 5.4 in Appendix).

The following result will be useful in the sequel.

Lemma 5.2. Let ĉ∗j,k and d̂∗j,k,u be defined by (4.7). Suppose that H2 and H4
hold. Then

• there exists a constant C > 0 such that, for any j ≥ τ and k ∈ Dj,

|ĉ∗j,k − cj,k| ≤
1

n

∣∣∣∣∣
n∑

i=1

(Ai,j,k −E(A1,j,k))

∣∣∣∣∣ + C
lnn√
n
,

• there exists a constant C > 0 such that, for any j ≥ τ , k ∈ Dj and

u ∈ {1, . . . , 2d − 1},

|d̂∗j,k,u − dj,k,u| ≤
1

n

∣∣∣∣∣
n∑

i=1

(Bi,j,k,u −E(B1,j,k,u))

∣∣∣∣∣ + C
lnn√
n
.

(i) Lemma 5.2 and the inequality (x2 + y2) ≤ 2(x2 + y2), (x, y) ∈ R
2, yield

(5.22)
E((ĉ∗j,k − cj,k)

2) ≤ C

(
1

n2
V

(
n∑

i=1

Ai,j,k

)
+

(lnn)2

n

)

≤ C
1

n2

(
S + T + n(lnn)2

)
,

where

S = nV (A1,j,k) , T =

∣∣∣∣∣
n∑

v=2

v−1∑

ℓ=1

Cov (Av,j,k, Aℓ,j,k)

∣∣∣∣∣ .

Bound for S: It follows from Lemma 5.1 with p = 2 that

(5.23) S ≤ nE
(
(A1,j,k)

2
)
≤ nE

(
(Y1Φj,k(X1))

2
)
≤ Cn.

Bound for T : The stationarity of (Yt, Xt)t∈Z implies that

(5.24)
T =

∣∣∣∣∣
n∑

m=1

(n−m)Cov (A0,j,k, Am,j,k)

∣∣∣∣∣ ≤ n

n∑

m=1

|Cov (A0,j,k, Am,j,k)|

= n(T1 + T2),
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where

T1 =

[(lnn)/β]−1∑

m=1

|Cov (A0,j,k, Am,j,k)| , T2 =
n∑

m=[(lnn)/β]

|Cov (A0,j,k, Am,j,k)|

and [(lnn)/β] is the integer part of (lnn)/β (where β is the one in H3).

Bound for T1: The covariance inequality: Cov(U, V ) ≤ E(U2), where U and V
are identically distributed random variables admitting moments of order 2, and
Lemma 5.1 with p = 2 lead to

(5.25) T1 ≤ C

[(lnn)/β]−1∑

m=1

E
(
(A0,j,k)

2
)
≤ C lnnE

(
(Y0Φj,k(X0))

2
)
≤ C lnn.

Bound for T2: By the Davydov inequality (see Lemma 5.3 in Appendix with
p = q = 4), the Hölder inequality, (A0,j,k)

4 ≤ n(Y0Φj,k(X0))
2, Lemma 5.1 with

p = 2 and H3, we have

|Cov (A0,j,k, Am,j,k)| ≤ C
√
αm

√
E ((A0,j,k)4)

≤ C
√
αm

√
n
√
E ((Y0Φj,k(X0))2) ≤ Ce−βm/2√n.

Owing to the previous inequality, we arrive at

(5.26) T2 ≤ C
√
n

n∑

m=[(lnn)/β]

e−βm/2 ≤ C
√
ne−(lnn)/2 = C.

Combining (5.24), (5.25) and (5.26), we obtain

(5.27) T ≤ n(T1 + T2) ≤ Cn lnn.

Finally, putting (5.22), (5.23) and (5.27) together, we have

E((ĉ∗j,k − cj,k)
2) ≤ C

1

n2

(
S + T + n(lnn)2

)
≤ C

(lnn)2

n
.

This ends the proof of (i).

(ii) Using |dj,k,u| ≤ C (since f ∈ L2([0, 1]
d)) and |Bi,j,k,u| ≤

√
n/ lnn, we have

|d̂∗j,k,u − dj,k,u| ≤ |d̂∗j,k,u|+ |dj,k,u| ≤
1

n

n∑

i=1

|Bi,j,k,u|+ C ≤
√
n

lnn
+ C ≤ C

√
n

lnn
.

Moreover, proceeding as in the proof of (i) but with Ψj,k,u instead of Φj,k, we
obtain

E((d̂∗j,k,u − dj,k,u)
2) ≤ C

(lnn)2

n
.
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Therefore, we have

E((d̂∗j,k,u − dj,k,u)
4) ≤ C

n

(lnn)2
E((d̂∗j,k,u − dj,k,u)

2) ≤ C
n

(lnn)2
(lnn)2

n
≤ C.

This finishes the proof of (ii).

(iii) For any j ≥ τ , k ∈ Dj and u ∈ {1, . . . , 2d − 1}, set

Wi,j,k,u = Bi,j,k,u −E(B1,j,k,u).

Lemma 5.2 and λn = (lnn)/
√
n imply that, for κ large enough,

(5.28)

P
(
|d̂∗j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ P

(
1

n

∣∣∣∣∣
n∑

i=1

Wi,j,k,u

∣∣∣∣∣ ≥
κ

2
λn − C

lnn√
n

)

≤ P

(
1

n

∣∣∣∣∣
n∑

i=1

Wi,j,k,u

∣∣∣∣∣ ≥
κ

4
λn

)
.

We will bound this probability term via the Bernstein inequality for α-mixing
process (see Lemma 5.4 in Appendix).

We have E(W1,j,k,u) = 0 and, since |Bi,j,k,u| ≤
√
n/ lnn, we get

|Wi,j,k,u| ≤ 2

√
n

lnn
.

Arguments similar to the proofs of the bounds of S and T in (i) with 1 ≤ l ≤ C lnn
lead to

V

(
l∑

i=1

Wi,j,k,u

)
= V

(
l∑

i=1

Bi,j,k,u

)
≤ C(l + l2) ≤ l2.

Hence

Dm = max
l∈{1,...,2m}

V

(
l∑

i=1

Wi,j,k,u

)
≤ Cm2.

Lemma 5.4 applied with W1,j,k,u, . . . ,Wn,j,k,u, λ = κλn/4, λn = (lnn)/
√
n,

m = [u lnn] with u > 0 chosen later, M = C
√
n/ lnn and H3 gives

P

(
1

n

∣∣∣∣∣
n∑

i=1

Wi,j,k,u

∣∣∣∣∣ ≥
κ

4
λn

)

≤ C

(
exp

(
−C κ2λ2nn

Dm/m+ κλnmM

)
+
M

λn
ne−βm

)
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≤ C

(
exp

(
−C κ2(lnn)2

u lnn+ κ((lnn)/
√
n)u lnn(

√
n/ lnn)

)
+

√
n/ lnn

(lnn)/
√
n
ne−βu lnn

)

≤ C

(
exp

(
−C κ2(lnn)2

u lnn(1 + κ)

)
+ n2e−βu lnn

)

≤ C
(
n−Cκ2/u(1+κ) + n2−βu

)
.

Therefore, taking u =
√
κ (for instance) and κ large enough, we have

(5.29) P

(
1

n

∣∣∣∣∣
n∑

i=1

Wi,j,k,u

∣∣∣∣∣ ≥
κ

4
λn

)
≤ C

1

n4
.

It follows from (5.28) and (5.29) that

P
(
|d̂j,k,u − dj,k,u| ≥

κ

2
λn

)
≤ C

1

n4
.

This completes the proof of (iii). This ends the proof of Proposition 5.2. �

5.4 Proof of the auxiliary results.

Proof of Lemma 5.1: Owing to E(|ξ1|p) < ∞, H4, the inequality |x + y|p ≤
2p−1(|x|p + |y|p), (x, y) ∈ R

2, p ≥ 1, the independence between X1 and ξ1 and
the change of variables y = 2jx− k, we obtain

E (|Y1Φj,k(X1)|p) ≤ CE ((Kp + |ξ1|p)|Φj,k(X1)|p)

= C(Kp +E(|ξ1|p))E (|Φj,k(X1)|p) ≤ C

∫

[0,1]d
|Φj,k(x)|p dx

= C2jdp/2

(∫

[0,1]

|φ(2jx− k)|p dx
)d

≤ C2jd(p/2−1).

The proof of the other point is similar; it is enough to replace Φj,k by Ψj,k,u. This
ends the proof of Lemma 5.1. �

Proof of Lemma 5.2: Since E(Y1Φj,k(X1)) = cj,k, we have

cj,k = E(A1,j,k) +E

(
Y1Φj,k(X1)1{

|Y1Φj,k(X1)|>
√

n

lnn

}

)
.

Therefore

|c∗j,k − cj,k| ≤
1

n

∣∣∣∣∣
n∑

i=1

(Ai,j,k −E(A1,j,k))

∣∣∣∣∣ +E

(
|Y1Φj,k(X1)|1{

|Y1Φj,k(X1)|>
√

n

lnn

}

)
.
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Let us now bound the last term. The Markov inequality and Lemma 5.1 with
p = 2 yield

E

(
|Y1Φj,k(X1)|1{

|Y1Φj,k(X1)|>
√

n

lnn

}

)
≤ lnn√

n
E
(
(Y1Φj,k(X1))

2
)
≤ C

lnn√
n
,

that ends the proof of the first point. The proof of the second point is identical;
it is enough to replace Φj,k by Ψj,k,u. Lemma 5.2 is proved. �

Appendix. In this section we give some preliminary lemmas which have been
used in the proofs of our main results.

Lemma 5.3 below presents a covariance inequality for α-mixing processes.

Lemma 5.3 ([25]). Let (At)t∈Z be a strictly stationary α-mixing process with

mixing coefficient αm, m ≥ 0, and h and k be two measurable functions. Let

p > 0 and q > 0 satisfying 1/p+ 1/q < 1, such that E(|h(A0)|p) and E(|k(A0)|q)
exist. Then there exists a constant C > 0 such that

|Cov(h(A0), k(Am))| ≤ Cα1−1/p−1/q
m (E(|h(A0)|p))1/p (E(|k(A0)|q))1/q .

Lemma 5.4 below describes a concentration inequality for α-mixing processes.

Lemma 5.4 ([46]). Let (At)t∈Z be a strictly stationary process with the m-th

strongly mixing coefficient αm, m ≥ 0, n be a positive integer, h : R → C

be a measurable function and, for any t ∈ Z, Ut = h(At). We assume that

E(U1) = 0 and there exists a constant M > 0 satisfying |U1| ≤M . Then, for any

m ∈ {1, . . . , [n/2]} and λ > 0, we have

P

(
1

n

∣∣∣∣∣
n∑

i=1

Ui

∣∣∣∣∣ ≥ λ

)
≤ 4 exp

(
− λ2n

16(Dm/m+ λMm/3)

)
+ 32

M

λ
nαm,

where

Dm = max
l∈{1,...,2m}

V

(
l∑

i=1

Ui

)
.

Acknowledgments. We thank the referee for the constructive comments which
have lead to significant improvement of the paper.

References

[1] Antoniadis A., Wavelets in statistics: a review (with discussion), J. Italian Statistical
Society Series B 6 (1997), 97–144.
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