
Czechoslovak Mathematical Journal

Xiaoling Ma; Fei Wen
On the spectral radius of ‡-shape trees

Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 3, 777–782

Persistent URL: http://dml.cz/dmlcz/143488

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143488
http://dml.cz


Czechoslovak Mathematical Journal, 63 (138) (2013), 777–782

ON THE SPECTRAL RADIUS OF ‡-SHAPE TREES

Xiaoling Ma, Fei Wen, Urumqi
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Abstract. Let A(G) be the adjacency matrix of G. The characteristic polynomial of the
adjacency matrix A is called the characteristic polynomial of the graph G and is denoted
by ϕ(G, λ) or simply ϕ(G). The spectrum of G consists of the roots (together with their
multiplicities) λ1(G) > λ2(G) > . . . > λn(G) of the equation ϕ(G, λ) = 0. The largest root
λ1(G) is referred to as the spectral radius of G. A ‡-shape is a tree with exactly two of its
vertices having maximal degree 4. We will denote by G(l1, l2, . . . , l7) (l1 > 0, li > 1, i =
2, 3, . . . , 7) a ‡-shape tree such that G(l1, l2, . . . , l7)−u−v = Pl1∪Pl2∪. . .∪Pl7 , where u and v

are the vertices of degree 4. In this paper we prove that 3
√
2/2 < λ1(G(l1, l2, . . . , l7)) < 5/2.
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1. Introduction

Let G = (V, E) be a simple undirected connected graph with the vertex set V

and the edge set E. For a vertex v ∈ V , we denote by d(v) and ∆ the degree of v

and the maximum degree of vertices of G, respectively. Let A(G) be the adjacency

matrix of G. The characteristic polynomial of the adjacency matrix A is called

the characteristic polynomial of the graph G and is denoted by ϕ(G, λ) or simply

ϕ(G). The spectrum of G consists of the roots (together with their multiplicities)

λ1(G) > λ2(G) > . . . > λn(G) of the equation ϕ(G, λ) = 0. The largest root λ1(G)

is referred to as the spectral radius of G. Since A(G) is a real symmetric matrix, its

eigenvalues must be real. The terminology concerning graphs will follow [2]; for all

details on graph spectra, not given here, see [1].

A †-shape tree Dn (n > 7) is the coalescence of the star K1,4 and the path Pn−4

with respect to two pendant vertices (see Figure 1).
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A T -shape T (k1, k2, k3) is a tree with exactly one of its vertices having the maximal

degree 3 such that T (k1, k2, k3) − v = Pk1
∪ Pk2

∪ Pk3
, where Pki

is the path on ki

(i = 1, 2, 3) vertices, and v is the vertex of degree 3.

A ‡-shape is a tree with exactly two of its vertices having the maximal degree 4.
We will denote by G(l1, l2, . . . , l7) (l1 > 0, li > 1, i = 2, 3, . . . , 7) a ‡-shape tree such
that G(l1, l2, . . . , l7)− u− v = Pl1 ∪Pl2 ∪ . . .∪Pl7 , where u and v are the vertices of

degree 4 (see Figure 2).

Let Wn be a graph obtained from the path Pn−2 (indexed in the natural order

1, 2, . . . , n − 2) by adding two pendant edges at vertices 2 and n − 3 (see Figure 1).

Let Sn be a graph obtained from the path Pn−4 (indexed in the natural order

1, 2, . . . , n − 4) by adding four pendant edges at vertices 2 and n − 5, that is Sn =

G(n − 8, 1, 1, 1, 1, 1, 1) (see Figure 1).

1

2 n−2

Dn

1

2 n−3

Wn

1

2 n−5

Sn

Figure 1

There are many results in literature concerning the largest eigenvalue of a graph

and the graph structure (see [1], [7] and [4] for details). In this paper we are mainly

interested in obtaining the lower and upper bounds for the largest eigenvalue of

‡-shape trees.

u v

G(l1, l2, . . . , l7)

l2 l1 l6

l4

l3

l5

l7

1

2 3
n−4

Mn

Figure 2

2. Main results

First some useful established results about the spectrum are presented, which will

play an important role throughout this paper.
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Lemma 2.1 ([5]). The characteristic polynomial of a graph satisfies the following

identities:

(a) ϕ(G ∪ H, λ) = ϕ(G, λ)ϕ(H, λ);

(b) ϕ(G, λ) = ϕ(G − e, λ) − ϕ(G − u − v, λ) if e = uv is a cut-edge of G,

where G−e denotes the graph obtained from G by deleting the edge e and G−u−v

denotes the graph obtained fromG by deleting the vertices u, v and the edges incident

to them.

Lemma 2.2 ([1]). Let Pn denote the path on n vertices. Then

ϕ(G, λ) =

n
∏

j=1

(

λ − 2 cos
πj

n + 1

)

=
sin((n + 1) arccos 1

2λ)

sin(arccos 1
2λ)

.

Let λ = 2 cos θ, set t1/2 = eiθ; it is useful to write the characteristic polynomial of

Pn in the form

ϕ(Pn, t1/2 + t−1/2) =
t−n/2(tn+1 − 1)

(t − 1)
.

Lemma 2.3 ([7]). Let Tm = T (m, m, m). Then

ϕ(Tm, t1/2 + t−1/2) =
t−(m+1)/2

t − 1
(tm+2 − 2tm+1 + 2t − 1)(ϕ(Pm, λ))2.

Lemma 2.4. Let G(0, 6l) = G(0, l, l, l, l, l, l). Then

ϕ(G(0, 6l), t1/2 + t−1/2) =
t−n/2(tl+1 − 1)4

(t − 1)6
[(tl+2 − 2tl+1 + 2t − 1)2 − t(tl+1 − 1)2].

P r o o f. By Lemma 2.1 we get

ϕ(G(0, 6l), λ) = ϕ(Tl, λ)ϕ(Tl, λ) − (ϕ(Pl, λ))6.

Let λ = t1/2 + t−1/2, by Lemma 2.4 we have

ϕ(G(0, 6l), t1/2 + t−1/2) =
t−(l+1)/2

t − 1
(tl+2 − 2tl+1 + 2t − 1)(ϕ(Pl, λ))2 − ϕ(Pl, λ)6

=
t−n/2(tl+1 − 1)4

(t − 1)6
[(tl+2 − 2tl+1 + 2t − 1)2 − t(tl+1 − 1)2],

where 6l + 2 = n. �
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Lemma 2.5 ([1]). Let G be a connected graph and H a proper subgraph of G.

Then λ1(H) < λ1(G).

Lemma 2.6 ([8]). Let Dn be a †-shape tree. Then

lim
n→∞

λ1(Dn) =
3
√

2

2
.

Lemma 2.7. Let Sn be a ‡-shape tree G(n − 8, 1, 1, 1, 1, 1, 1). Then

λ1(Sn) >
3
√

2

2
.

P r o o f. By the structure of the graphs Sn, Mn1
(see Figure 2) and Dn0

, we

have that Dn0
is a subgraph ofMn1

, and Sn containsMn1
as a subgraph for suitable

7 6 n0 < n1 < n. So we immediately obtain the following inequality from Lemma 2.5:

λ1(Sn) > λ1(Mn1
) > λ1(Dn0

).

By Lemma 2.6, for n1 > n0 we have λ1(Mn1
) > lim

n0→∞

λ1(Dn0
) = 3

√
2/2, which im-

plies that λ1(Mn1
) > 3

√
2/2. Also by Lemma 2.5, we easily get λ1(Sn) > λ1(Mn1

) >

3
√

2/2. Thus for all n > n0 we obtain

λ1(Sn) > 3
√

2/2.

�

Hoffman and Smith [3] define an internal path in a graph, denoted by v0,

v1, . . . , vk−1, vk, as a path joining vertices v0 and vk which are both of degree

greater than two (not necessarily distinct), while all other vertices (i.e. v1, . . . , vk−1)

are of degree equal to two.

Lemma 2.8 ([3]). Let G be a connected graph that is not isomorphic to Wn. Let

Guv be the graph obtained from G by subdividing the edge uv of G. If uv lies on an

internal path of G, then λ1(Guv) < λ1(G).

Lemma 2.9 ([6]). Let τ be a tree with the largest vertex degree ∆. Then

(2.1) λ1(τ) < 2
√

∆ − 1.
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Theorem 2.10. Let G = G(l1, . . . , l7). Then

(2.2)
3
√

2

2
< λ1(G) <

5

2
.

P r o o f. Let l be a positive integer such that li < l (i = 2, . . . , 7). By Lemma 2.4

we have

ϕ(G(0, 6l), t1/2 + t−1/2) =
t−n/2(tl+1 − 1)4

(t − 1)6
[(tl+2 − 2tl+1 + 2t − 1)2 − t(tl+1 − 1)2]

=
t−n/2(tl+1 − 1)4

(t − 1)6
[((t − 2)(tl+1 − 1) + 3(t − 1))2 − t(tl+1 − 1)2]

=: Φ(t).

Let t1 be the largest root of Φ(t), then t1 < 4 since Φ(t) > 0 for t > 4. Let

f(t) = t1/2 + t−1/2, then f ′(t) = t−3/2(t − 2)/2 > 0 for t > 1, so f(t) strictly

increases in [1,∞). Thus λ1(G(0, 6l)) = t
1/2
1 + t

−1/2
1 < 41/2 + 4−1/2 = 5/2.

On the one hand, by Lemmas 2.5 and 2.7 we have the inequality

(2.3)
3
√

2

2
< λ1(Sn) = λ1(G(l1, 1, 1, 1, 1, 1, 1)) 6 λ1(G(l1, l2, l3, l4, l5, l6, l7)).

On the other hand, by Lemmas 2.5 and 2.8, we obtain the inequality

(2.4) λ1(G(l1, l2, l3, l4, l5, l6, l7)) < λ1(G(l1, l, l, l, l, l, l)) < λ1(G(0, l, l, l, l, l, l)) <
5

2
.

Combining inequalities (2.3) and (2.4), we obtain the main result

3
√

2

2
< λ1(G(l1, l2, l3, l4, l5, l6, l7)) <

5

2
.

�

Now we have λ1(G(l1, l2, l3, l4, l5, l6, l7)) < 2
√

3 by inequality (2.1). Here we see

that the upper bound inequality (2.2) is better than the upper bound inequality

(2.1).
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