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Abstract. In this article, we present a new two-level stabilized nonconforming finite
elements method for the two dimensional Stokes problem. This method is based on a local
Gauss integration technique and the mixed nonconforming finite element of the NCP1 −
P1 pair (nonconforming linear element for the velocity, conforming linear element for the
pressure). The two-level stabilized finite element method involves solving a small stabilized
Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes problem
on a fine mesh size h = H/3. Numerical results are presented to show the convergence
performance of this combined algorithm.
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1. Introduction

Finite element methods are widely used in computational fluid dynamics. In par-

ticular, some stable mixed finite element methods are a basic component in search

for efficient numerical methods for solving the Stokes and Navier-Stokes equations

governing incompressible flows. Considering the mixed element methods, the equal-

order velocity-pressure pairs are quite practical in finite element approximations of

the Stokes problem. However, they violate the inf-sup condition and the compatibil-

ity between the velocity and pressure spaces.

Therefore, using a primitive variable formulation, the importance of ensuring the

compatibility of the component approximations of velocity and pressure by satisfying
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the so-called inf-sup condition is widely understood. It is also well known that the

simplest conforming lowest-order element pair P1 − P1 (linear velocity, linear pres-

sure) is not stable. This impinges on efficiency, since the simple logic and regular data

structure associated with low-order finite element methods make them particularly

attractive on modern vector and parallel architectures. So it is crucially important

to establish stabilized mixed formulation for the Stokes equations to adapt to the

need of the development of the fast iterative solution algorithms. Recently many

stabilized finite element methods have been proposed for Stokes equations. These

methods are based on Gauss integrations [11], [1], [10], [3], [6]. They have some

important features over traditional stabilized mixed finite methods: simple, efficient,

and independent of stabilization parameters. However, compared with conforming

finite element methods, nonconforming finite methods for incompressible flows are

more popular due to their simplicity and small support sets of basis functions. Fur-

thermore, they seem much easier to fulfill the discrete inf-sup condition. Moreover,

nonconforming finite element can easily relax the high-order continuity requirement

for conforming finite element. As a result, in practice, the nonconforming finite

element methods seem superior to the conforming finite element methods.

The basic idea of two-level discretization method is to capture the “large eddies”,

“low modes”, or “global solution envelope” by computing an initial approximation

on a very coarse mesh. The fine structures are captured by solving the linear system

on a fine mesh.

Some details on the two-level approach can be found in the papers of He [4],

Xu [12], [13], Layton [9], Layton and Lenferink [7], Ervin et al. [2], Layton and

Tobiska [8].

In this paper, we propose a two-level stabilized nonconforming finite element

method for the Stokes equations which uses the nonconforming and conforming piece-

wise linear polynomial approximations for the velocity and pressure, respectively.

The method we study combines the stabilized finite element with the two-level dis-

cretization for solving the two-dimensional Stokes problem. The method is of the

convergence rate of the same order as the usual stabilized finite element method.

Meanwhile, with the certain relationship between coarse mesh and fine mesh, there

is no need to establish a coarse-to-fine intergrid operator. Hence, our method is more

efficient and simpler.

This paper is organized as follows. In the next section, we introduce some notation,

the Stokes equations, and their finite element discretizations. One-level and two-level

stabilized finite element approximations are presented in Section 3. Then, stability

and optimal order estimates for the two-level stabilized element method are obtained

in the fourth section. Finally, in Section 5, a suite of numerical experiments are given

to demonstrate the theoretical results obtained.
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2. Functional setting of the Stokes problem

In this paper, we consider the Stokes problem

−ν∆u + ∇p = f in Ω,(2.1)

∇ · u = 0 in Ω,(2.2)

u = 0 on ∂Ω,(2.3)

where Ω represents a bounded, convex and open subset of R2 with Lipschitz contin-

uous boundary Γ = ∂Ω, f is a prescribed body force, ν is the dynamic viscosity, and

u = (u1, u2) and p denote the velocity and pressure fields, respectively.

For the mathematical setting of problem (2.1)–(2.3), we introduce the following

Hilbert spaces

X = (H1
0 (Ω))2, Y = (L2(Ω))2,

M = L2
0(Ω) =

{
q ∈ L2(Ω):

∫

Ω

q dx = 0

}
.

We use the standard definitions for the Sobolev space Wm,r(Ω) and their associ-

ated norm ‖ ·‖m,r and seminorm | · |m,r, m, r > 0. We will write Hm(Ω) forWm,2(Ω)

and ‖ · ‖m for ‖ · ‖m,2. The spaces (L2(Ω))m, m = 1, 2 or 4, are endowed with the

usual L2-scalar product (·, ·) and L2-norm ‖ ·‖0, as appropriate. Also, the space X is

equipped with the scalar product (∇u,∇v) and the norm |u|1, u, v ∈ X . Due to the

norm equivalence between ‖ · ‖1 and | · |1, on X , we sometimes use the same notation

for them. Finally, for notational convenience, we set ν = 1.

Under the above notation, the variational formulation of the problem (2.1)–(2.3)

reads as: find (u, p) ∈ (X, M) such that for all (v, q) ∈ (X, M)

(2.4) B((u, p); (v, q)) = (f, v),

where
B((u, p); (v, q)) = a(u, v) − d(v, p) + d(u, q),

a(u, v) = (∇u,∇v),

d(v, q) = (∇ · u, q).

It is well known that the well-posedness of the model problem (2.1)–(2.3)

follows from the Lax-Milgram Lemma [10]. If the domain Ω is convex, the

H2 − H1-regularity of the solution of (2.1)–(2.3) holds; i.e., the unique solution

(u, p) ∈ ((H2(Ω))2, H1(Ω)) of (2.1)–(2.3) satisfies the following a priori estimate:

(2.5) ‖u‖2 + ‖p‖1 6 C‖f‖0,
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where C > 0 is a constant depending only on Ω. Subsequently, the constant C > 0

will depend only on the data (ν, Ω, f).

It is also well known that the bilinear forms a(·, ·) and d(·, ·) are continuous on

(X, X) and (X, M), respectively. Moreover, the bilinear form d(·, ·) satisfies the

inf-sup condition [10]:

(2.6) sup
06=v∈X

|d(v, q)|

‖v‖1
> β‖q‖0,

where β is a positive constant depending only on Ω.

3. One-level and two-level stabilized finite element approximations

Let τh =
J⋃

j=1

Kj be the regular triangulation of the domain Ω with the mesh

parameter h = max{diam(Kj)}. We denote the boundary edge of Kj by γj =

∂Ω ∩ ∂Kj, the interface between elements Kj and Kk by γk,j = γj,k = ∂Kj = ∂Kk

and the center of γj , γj,k by ξj , ξj,k, respectively.

Then we define the nonconforming Crouzeix-Raviart finite element space of veloc-

ity and the conforming finite element space of pressure, respectively, by

NCh = {v ∈ Y : v|Kk
∈ (P1(k))2, v(ξk,j) = v(ξj,k), v(ξj) = 0 ∀Kj , Kk ∈ τh},(3.1)

Mh = {v ∈ H1(Ω): v|Kk
∈ P1(k) ∀Kk ∈ τh}.(3.2)

And we define another nonconforming finite element space:

(3.3) Vh = {vh ∈ NCh : dh(vh, qh) = 0 ∀qh ∈ Mh}.

Note that the nonconforming finite element space NCh is not a subspace of X . For

any v in NCh, the following compatibility conditions hold for all j and k:
∫

γjk

[v] ds = 0,

and ∫

γj

v ds = 0,

where [v] = v|γjk
− v|γkj

denotes the jump of the function v across the interface γjk.

The two finite element spaces NCh and Mh satisfy the following approximation

property: for any (v, q) ∈ (H2(Ω)∩X, H1(Ω)∩M) there exists (vI , qI) ∈ (NCh, Mh)

such that [10]

(3.4) ‖v − vI‖0 + h(‖v − vI‖1,h + ‖q − qI‖0) 6 Ch2(‖v‖2 + ‖q‖1),
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where ‖ · ‖1,h denotes the energy norm of the nonconforming finite element space

NCh,

(3.5) ‖v‖1,h =

( ∑

j

|v|21,Kj

)1/2

, v ∈ NCh.

We set (·, ·)j = (·, ·)Kj
, 〈·, ·〉 = (·, ·)∂Kj

, and | · |m,j = | · |m,Kj
. Then the standard

discretization of the problem (2.4) is to find (uh, ph) ∈ (NCh, Mh) such that

(3.6) Bh((uh, ph); (v, q)) = (f, v) ∀q ∈ Mh,

where

Bh((u, p); (v, q)) = ah(u, v) − dh(v, p) + dh(u, q),

with

ah(u, v) =
∑

j

(∇u,∇v)j ,

dh(v, q) =
∑

j

(∇ · v, q)j .

Nevertheless, this formulation is not stable owing to the violation of the inf-sup

condition for velocity and pressure approximations. However, based on the early

analysis and knowledge, we can obtain stability and optimal estimates for this for-

mulation by adding a simple, local, and effective stability term Gh(·, ·) [10]:

Gh(p, q) =
∑

Kj∈τh

{∫

Kj,2

pq dx −

∫

Kj,1

pq dx

}
, p, q ∈ L2(Ω),

where
∫

Kj,i
pq dx indicates an appropriate Gauss integral over Kj that is exact for

polynomials of degree i(i = 1, 2), and pq is a polynomial of degree not greater than 2.

Thus the stabilizing term Gh(·, ·) defined by the difference of Gauss quadratures,

must be exact for all test functions q ∈ Mh and the trial function p ∈ P0 (piecewise

constants) when i = 1.

Consequently, we define the L2-projection operator πh: L2(Ω) → Wh by

(3.7) (p, qh) = (πhp, qh) ∀p ∈ L2(Ω), qh ∈ Wh,

where Wh ⊂ L2(Ω) denotes the piecewise constant space associated with τh. The

projection operator πh has the following properties [11], [1], [10]:

‖πhp‖0 6 C‖p‖0, ∀p ∈ L2(Ω),(3.8)

‖p − πhp‖0 6 Ch‖p‖1, ∀p ∈ H1(Ω).(3.9)
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Specifically, we define the stability term as follows:

(3.10) Gh(p, q) = (p − πhp, q − πhq).

Finally, the one-level stabilized discrete weak formulation of the Stokes equation

(2.1)–(2.3) is to find (uh, ph) ∈ (NCh, Mh) such that

(3.11) Bh((uh, ph); (v, q)) + Gh(ph, q) = (f, v) ∀(v, q) ∈ (NCh, Mh).

Next, the stability and error estimates of the discrete problem (3.11) are given as

follows:

Theorem 3.1 ([10]). The bilinear form Bh((·, ·), (·, ·)) satisfies the continuity

property

|Bh((uh, ph); (v, q)) + Gh(ph, q)| 6 C(‖uh‖1,h + ‖ph‖0)(‖v‖1,h + ‖q‖0),(3.12)

(uh, ph), (v, q) ∈ (NCh, Mh),

and the coercivity property

sup
06=(v,q)∈(NCh,Mh)

|Bh((uh, ph); (v, q)) + Gh(ph, q)|

‖v‖1,h + ‖q‖0
> β(‖uh‖1,h + ‖ph‖0),(3.13)

(uh, ph) ∈ (NCh, Mh),

where β and C are positive constants depending only on Ω, ν.

Theorem 3.2 ([10]). Let (u, p) and (uh, ph) be the respective solution of (2.1)–

(2.3) and (3.11). Then

(3.14) ‖u − uh‖0 + h(‖u − uh‖1,h + ‖p − ph‖0) 6 Ch2(‖u‖2 + ‖p‖1),

where C is a positive constant depending only on Ω, ν.

Then let τH be the coarser mesh obtained by coarsening of τh and H = 3h (see

Fig. 1).

Figure 1. Left, τH mesh; right, τh mesh.
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From Fig. 1, we know that with the special relationship between the coarse mesh

and the fine mesh, the nonconforming finite element space pair (NCH , MH) ⊂

(NCh, Mh) based on the triangulations τH(Ω) and τh(Ω). With the above finite

element space pairs, we will consider the following two-level stabilized finite element

method.

Step I: Solve the Stokes problem on the coarse mesh, i.e. find (uH , pH) ∈

(NCH , MH) such that for all (v, q) ∈ (NCH , MH)

(3.15) BH((uH , pH); (v, q)) + GH(pH , q) = (f, v).

Step II: Solve the Stokes problem on the fine mesh, i.e. find (uh, ph) ∈ (NCh, Mh)

such that for all (v, q) ∈ (NCh, Mh)

(3.16) Bh((uh, ph); (v, q)) + GH(pH , q) = (f, v).

Next, we will study the stability and error estimates for (uh, ph) in some norms.

4. Stability and error estimates for the two-level FEM

In this section, we will present the stability analysis and error estimate for the

stabilized two-level finite element method.

Theorem 4.1. Let (u, p) and (uh, ph) be the respective solution of (2.1)–(2.3)

and (3.16). Then

‖uh‖1,h 6
C

β
‖f‖−1,(4.1)

‖ph‖0 6
C

β
‖f‖−1,(4.2)

where ‖f‖−1 = sup
v∈NCh

(f, v)/‖v‖1,h, and β and C are positive constants depending

only on Ω, ν.

P r o o f. Combining (3.11) and Theorem 3.1, we arrive at

‖uH‖1,h 6
‖f‖−1

β
, ‖pH‖0 6

‖f‖−1

β
.

Owing to

(NCH , MH) ⊂ (NCh, Mh),
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we obtain

(4.3) ‖uh‖1,h 6 C‖uH‖1,h 6
C

β
‖f‖−1,

and

(4.4) ‖ph‖0 6 C‖pH‖0 6
C

β
‖f‖−1.

So, the proof is complete. �

Next we present error estimates for the two-level stabilized finite element method

using the (NCh, Mh) pair. We set

(4.5) B̃h((u, p); (v, q)) = Bh((u, p); (v, q)) − GH(pH , q).

And we introduce the projection operator:

(4.6) (Rh, Qh) : (X, M) → (NCh, Mh),

by

Bh((Rh(v, q), Qh(v, q)); (v, q)) = B̃h((v, q); (v, q)),(4.7)

∀(v, q) ∈ (NCh, Mh).

From the definition of the projection operator and the finite element interpolation

error estimation theory, we have the following results:

Lemma 4.1. For any (v, q) ∈ ((H2(Ω))2 ∩ X, H1(Ω) ∩ M), we have

‖v − Rh(v, q)‖0 + h(‖v − Rh(v, q)‖1,h + ‖q − Qh(v, q)‖0) 6 Ch2(‖v‖2 + ‖q‖1).

Lemma 4.2. For any s, w ∈ X ∪ NCh,

∣∣∣∣
∑

j

〈 ∂w

∂nj
, s

〉∣∣∣∣ 6 Ch‖w‖2‖s‖1,h, ∀w ∈ X ∩ (H2(Ω))2,

∣∣∣∣
∑

j

〈q, s · nj〉

∣∣∣∣ 6 Ch‖q‖1‖s‖1,h, ∀q ∈ H1(Ω).
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Theorem 4.2. Let (u, p) and (uh, ph) be the respective solutions of (2.1)–(2.3)

and (3.16). Then

(4.8) ‖u − uh‖1,h 6 Ch(‖u‖2 + ‖p‖1).

P r o o f. Multiplying (2.1) and (2.2) by v ∈ NCh, q ∈ Mh, respectively, and

integrating by parts over Ω, we see that

(4.9) ah(u, v) − dh(v, p) + dh(u, q) −
∑

j

〈∂u

∂n
, v

〉

j
+

∑

j

〈 v · n, p〉j = (f, v).

Combining (3.16) and (4.8), we find that

(4.10) ah(u − uh, v) − dh(v, p − ph) + dh(u − uh, q)

−
∑

j

〈∂u

∂n
, v

〉

j
+

∑

j

〈v · n, p〉j − GH(pH , q) = 0.

Using (4.4) and (4.6), we obtain

(4.11) Bh((Rh(u, p), Qh(u, p)); (v, q)) = B̃h((u, p); (v, q))

= Bh((u, p); (v, q)) − GH(pH , q),

and thus,

(4.12) Bh((Rh(u, p) − u, Qh(u, p) − p); (v, q)) = −GH(pH , q),

i.e.

(4.13) ah(Rh(u, p)−u, v)− dh(v, Qh(u, p)− p)+ dh(Rh(u, p)−u, q) = −GH(pH , q).

Obviously, from (4.9) and (4.12), we have

(4.14) ah(Rh(u, p) − uh, v) − dh(v, Qh(u, p) − ph) + dh(Rh(u, p) − uh, q)

−
∑

j

〈∂u

∂n
, v

〉

j
+

∑

j

〈v · n, p〉j = 0.

Now taking v = Rh(u, p) − uh ∈ Vh in (4.13) and q = 0, we obtain

(4.15) ah(Rh(u, p) − uh, Rh(u, p) − uh)

=
∑

j

〈∂u

∂n
, Rh(u, p) − uh

〉

j
−

∑

j

〈
(Rh(u, p) − uh) · n, p

〉

j
.
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Hence, owing to Lemma 4.2, we know that
∣∣∣∣
∑

j

〈∂u

∂n
, Rh(u, p) − uh

〉

j

∣∣∣∣ 6 Ch‖Rh(u, p) − uh‖1,h‖u‖2,(4.16)

∣∣∣∣
∑

j

〈(R(u, p) − uh) · n, p〉j

∣∣∣∣ 6 Ch‖Rh(u, p) − uh‖1,h‖p‖1.(4.17)

So we get

(4.18) ‖Rh(u, p) − uh‖2
1,h 6 Ch‖Rh(u, p) − uh‖1,h(‖u‖2 + ‖p‖1),

i.e.

(4.19) ‖Rh(u, p) − uh‖1,h 6 Ch(‖u‖2 + ‖p‖1).

Finally, using (4.18), the following error estimates holds

‖u − uh‖1,h = ‖Rh(u, p) − uh + u − Rh(u, p)‖1,h(4.20)

6 ‖Rh(u, p) − uh‖1,h + ‖Rh(u, p) − u‖1,h(4.21)

6 Ch(‖u‖2 + ‖p‖1).(4.22)

�

Theorem 4.3. Let (u, p) and (uh, ph) be the respective solutions of (2.1)–(2.3)

and (3.16). Then

(4.23) ‖p− ph‖0 6 Ch(‖u‖2 + ‖p‖1).

P r o o f. Combing (3.12), (3.13), Theorem 3.1, and using (4.14)–(4.19) yields

β‖p − ph‖0 6 sup
06=(v,q)∈(NCh,Mh)

Bh((u − uh); (v, q))

‖v‖1,h + ‖q‖0
(4.24)

6
|ah(u − uh, v) − dh(v, p − ph) + dh(u − uh, q)|

‖v‖1,h + ‖q‖0
(4.25)

6 Ch
(‖u − uh‖1,h‖v‖1,h

‖v‖1,h
+

‖p − ph‖0‖v‖1,h

‖v‖1,h
+

‖u − uh‖1,h‖q‖0

‖q‖0

)
.(4.26)

Finally, we get

(4.27) ‖p− ph‖0 6 Ch(‖u‖2 + ‖p‖1).

�
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5. Numerical experiment

In this section, we will evaluate the performance of the two-level stabilized noncon-

forming finite element method described. Then we report two experiments for Stokes

problems using this method with H = 3h: the problems with known polynomial so-

lution and trigonometric function. To show the desirable feature of our method, we

compare it with the one-level nonconforming finite element method in the first exam-

ple and compare with the two-level conforming finite element method in the second

example. In both examples we consider a unite-square domain in R
2. The pressure

and velocity are approximated using the same uniform triangulation of Ω into trian-

gles. Moreover, the algorithms are implemented using public domain finite element

software—FreeFem++ [5] with some our additional codes. In all experiments, the

nonlinear systems are linearised by allowing the nonlinearities to lag one step behind.

Besides, concerning iterative solver, we have chosen the standard conjugate gradient

method. Furthermore, if one wants to get a simpler and cheaper method, a precondi-

tioner should be used for Step II. Finally the experimental rates of convergence with

respect to the mesh size h are calculated by the formula log(Ei/Ei+1)/ log(hi/hi+1)

where Ei and Ei+1 are the relative errors corresponding to the meshes of size hi and

hi+1, respectively.

E x am p l e 1. We take an example of the Stokes equations (2.1)–(2.3) where the

right-hand side f(x, y) is determined by the prescribed exact velocity u = (u1, u2)

and pressure p:

u1(x, y) = 10x2(x − 1)2y(y − 1)(2y − 1),(5.1)

u2(x, y) = −10x(2x− 1)y2(y − 1)2,(5.2)

p(x, y) = 10(2x− 1)(2y − 1).(5.3)

In Fig. 2, we show the H1 error for the velocity and L2 error for the pressure ob-

tained by using different methods. Furthermore, from Fig. 2 it can be seen that

the L2-convergence for the pressure is clearly faster than the indicated convergence

of order 1. The performance of super convergence stems from the stability term

Gh(·, ·) which uses the Gauss integration. Finally, we can see that the results con-

firm a convergence rate of order O(h) for velocity in the H1-norm and pressure in

the L2-norm.

From Tab. 1, we can see that the method we propose costs less computational

time than the one-level method. Obviously, the computed time of our method is not

much less than the one-level method, because of the linear relationship between the

coarse mesh and the fine mesh. We can save much time if the relationship between

the coarse mesh and the fine mesh is square, but the coarse-to-fine intergrid operator

653



−5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4 −3.8
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
lo

g(
H

1  e
rr

or
 u

)

log(h)

 

 
slope=1
one level
two level

−5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4 −3.8
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

lo
g(

L2  e
rr

or
 p

)

log(h)

 

 

slope=1
one level
two level

(a) (b)

Figure 2. Convergence analysis using one and two-level methods. (a): H1 error for the
velocity; (b): L2 error for the pressure.

must be established. However, with a certain relationship between the coarse mesh

and the fine mesh, the method we proposed does not need the coarse-to-fine intergrid

operator. So our method is simpler. In brief, our method can achieve the same

convergence rate of the one-level nonconforming finite element method and with less

time.

1/h two-level one-level
60 5.422 6.094
90 12.437 14.516
120 24.109 27.672
150 36.265 41.609
180 64.906 71.001
210 80.703 90.328
240 104.515 115.453
270 150.141 178.547

Table 1. The comparison of the two-level nonconforming method with the one-level non-
conforming method

E x am p l e 2. We take an example of the Stokes equation (2.1)–(2.3), where the

right-hand side f(x, y) is determined by the prescribed exact velocity u = (u1, u2)

and pressure p:

u1(x, y) = 2π sin2(πx) sin(πy) cos(πx),(5.4)

u2(x, y) = −2π sin(πx) sin2(πy) cos(πx),(5.5)

p(x, y) = cos(πx) cos(πy).(5.6)

The error performance of our method and the two-level conforming method can

be clearly seen from Tab. 2, which shows that the two-level nonconforming method
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in this paper has a smaller error than the two-level conforming method. Because the

number of the degrees of freedom of the nonconforming method is nearly three times

larger than that of the conforming one on the given mesh.

nonconforming two-level conforming two-level
1/h 1/H ‖u − uh‖1,h/‖u‖1 ‖p− ph‖0/‖p‖0 ‖u − uh‖1,h/‖u‖1 ‖p− ph‖0/‖p‖0

60 20 0.036992 0.034488 0.042765 0.079421
90 30 0.024672 0.018687 0.028510 0.042003
120 40 0.018507 0.012108 0.021382 0.026874
150 50 0.014808 0.0086508 0.017105 0.019052
180 60 0.012340 0.0065743 0.014253 0.014403
210 70 0.010578 0.0052132 0.012217 0.011378
240 80 0.0092560 0.0042647 0.010690 0.0092806
270 90 0.0082278 0.0035725 0.0095017 0.0077568

Table 2. Comparison of the nonconforming two-level method with the conforming two-level
method.

R em a r k. Consider the uniform triangulation of Ω as illustrated in Fig. 1, right.

Here, ‘�’ and ‘©’ denote the nodes of conforming and nonconforming method, re-

spectively. From this figure, we can deduce that the number of nodes for the non-

conforming method is

(n − 1) + n(2n− 1) = 3n2 − 2n,

and that for the conforming one is

(n − 1)2 = n2 − 2n + 1,

where n = 1/h. Thus, the number of the degrees of freedom of the nonconforming

method is nearly three times larger than that of the conforming one on the given

mesh. Hence, it is natural that the two-level nonconforming P1 − P1 method has

better accuracy and costs more CPU time.

6. Concluding remarks

In this paper, we have extended and studied the two-level stabilized nonconforming

finite method based on two local Gauss integrals for the Stokes problem. Error

estimates and stability have been obtained, and numerical results agreeing with

these estimates have been presented. Also, further developments can extend these

techniques and ideas to general nonlinear problems.
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