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STABILITY ANALYSIS FOR NEUTRAL STOCHASTIC
SYSTEMS WITH MIXED DELAYS

Huabin Chen and Peng Hu

This paper is concerned with the problem of the exponential stability in mean square moment
for neutral stochastic systems with mixed delays, which are composed of the retarded one and
the neutral one, respectively. Based on an integral inequality, a delay-dependent stability
criterion for such systems is obtained in terms of linear matrix inequality (LMI) to ensure a
large upper bounds of the neutral delay and the retarded delay by dividing the neutral delay
interval into multiple segments. A new Lyapunov–Krasovskii functional is constructed with
different weighting matrices corresponding to different segments. And the developed method
can well reduce the conservatism compared with the existing results. Finally, an illustrative
numerical example is given to show the effectiveness of our proposed method.

Keywords: neutral stochastic time-delay systems, delay decomposition approach, expo-
nential stability, linear matrix inequality (LMI)

Classification: 93D09, 93E03

1. INTRODUCTION

Time-delay systems have been widely investigated since time-delay is frequently en-
countered in many dynamical systems, including chemical or process control systems
and networked control systems [9, 10, 14–15, 22] and the reference therein. Besides, due
to the much more conservatism of the delay-independent conditions compared with
delay-dependent ones when the time-delay is small, pursuing the delay-dependent sta-
bility criteria is much theoretical and practical value. Recently, the stability issue for
neutral time-delay systems has also been attracted much attention and some valuable
results about the delay-dependent stability criteria of such systems have been reported
in [6, 12–13, 16–17, 23] and the references therein.

Recently, the problems on the stability analysis, the H∞-control design and the
H∞ filter design of neutral stochastic time-delay systems have been considered in [2–
4, 11, 18, 21] and the references therein. By utilizing the free-weighting matrix technique
and the bounding technique, some LMI-based sufficient conditions ensuring the exponen-
tial stability in mean square moment and H∞ control for neutral stochastic time-delay
systems were given [3]; Resorting to the mode transformation method coupled with the
bounding technique, the exponential stability in mean square moment for such systems
was analyzed in [11]. But, the results [3, 11] are much more conservative since the bound-
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ing technique on cross term can bring much conservatism while using the free-weighting
matrix technique or the mode transformation technique. By only establishing the gen-
eralized Finsler’s Lemma, Chen, et al. in [4] have discussed the exponential stability in
mean square moment of such systems and the obtained stability criteria are much less
conservative than ones in [3, 11].

As pointed out in [10], the maximum allowable bound of the time delay is larger, the
obtained conditions are less conservative. Over the past decades, many valuable results
were mainly involved into the less conservative stability conditions for time-delay systems
by using the delay decomposition approach proposed in [7, 10], for example, time-delay
systems [5, 17], the Markov systems with interval time-varying delay [8], discrete time-
delay systems [9], neutral time-delay systems [12, 16], switched time-delay systems [19],
stochastic time-delay systems [20], fuzzy time-delay systems [22], and singular time-
delay systems [23], etc. However, the obtained results in [5, 7–9, 12, 16–17, 19–20, 22]
can not be applied into considering the stability analysis for neutral stochastic systems
with mixed delays since the existence of stochastic perturbation and the presence of the
neutral item can make the problem be complicated. Thus, how to obtain the delay-
dependent stability criteria for uncertain neutral stochastic linear systems with mixed
delays by using this useful approach still remains an interesting and challenging problem.

In this paper, an integral inequality is firstly established for neutral differential
equation, and then a new Lyapunov–Krasovskii functional is constructed with different
weighting matrices corresponding to different segments, the delay-dependent exponential
stability criterion for neutral stochastic systems with mixed delays is derived in terms of
linear matrix inequality (LMI). Finally, one numerical example is provided to illustrate
the effectiveness of the obtained result.

Notations: In this paper, Rn and Rm×n are the n-dimensional Euclidean space and
the set of real m×n matrix, respectively. | · | denotes the Euclidean norm. (Ω, =, P ) is
a completed probability space, where Ω is the sample space, = is a σ-algebra of subsets
of Ω, and P is the probability measure. For a real symmetric matrix X, X > 0 (X ≥ 0)
means that X is positive definite (positive semi-definite). The superscript ′′T ′′ denotes
the transpose of a matrix or a vector. Denote by L2

=0
([−r, 0];Rn) (r > 0) is the family of

all =0-measurable, C([−r, 0];Rn)-valued random variables ξ = {ξ(θ) : −r ≤ θ ≤ 0} such
that supθ∈[−r,0]E|ξ(θ)|2 < +∞, where E(·) stands for the mathematical expectation
operator. Matrices, it not explicitly stated, are assumed to have compatible dimensions.
LV (·) presents the Itô′s differential operator.

2. MAIN RESULTS

2.1. Problem formulation and some preliminaries

In this paper, we consider the neutral stochastic systems with mixed delays [4]:

d[x(t)− Cx(t− τ)] = [Ax(t) +Bx(t− h)] dt+ [Fx(t) +Gx(t− h)] dB(t), t ≥ 0, (1)

and the initial value x0(θ) = ϕ ∈ L2
=0

([−2σ, 0];Rn), θ ∈ [−2σ, 0], σ = max{τ, h}. And
x(t) ∈ Rn is the state vector with the Euclidean norm | · | in Rn, and B(t) is one-
dimensional Brownian motion defined on the complete probability space (Ω,=, P ). The
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delay τ and h are two positive scalars which represent the neutral delay and the retarded
delay, respectively. The matrices: A, B, C, F, G are five known constant ones.

Lemma 1. (Gu, et al. [10]) For any constant matrix Z > 0, Z ∈ Rn×n and a scalar
γ > 0, if there exists a vector function ω : [0, γ] → Rn such that the following integral
are well defined, then the following inequality holds:

γ

∫ γ

0

ωT (s)Zω(s) ds ≥
(∫ γ

0

ωT (s) ds
)
Z

(∫ γ

0

ω(s) ds
)
.

Lemma 2. For r > 0 and for two scalars: a, b with 0 ≤ a < b ≤ r, let n-dimensional
vector functions x(t), f̃(t) and a matrix D ∈ Rn×n satisfy the neutral differential equa-
tion:

d[x(t)−Dx(t− r)]
dt

= f̃(t), t ≥ 0, (2)

where the initial condition x(θ) = ψ(θ) (θ ∈ [−r, 0]). For any constant matrix W =
WT > 0, W ∈ Rn×n, if the following integral is well defined, then

−(b− a)
∫ t−a

t−b

f̃T (s)Wf̃(s) ds ≤ η(t)ΩηT (t), (3)

where η(t) = [xT (t− a) xT (t− b) xT (t− a− r) xT (t− b− r)] and

Ω =


−W W WD −WD
WT −W −WD WD
DTW −DTW −DTWD DTWD
−DTW DTW DTWD −DTWD

 .
P r o o f . From (2), we have∫ t−a

t−b

f̃(s) ds = x(t− a)−Dx(t− a− r)− x(t− b) +Dx(t− b− r). (4)

By using Lemma 1, it implies

−(b− a)
∫ t−a

t−b

f̃T (s)Wf̃(s) ds ≤ −
[∫ t−a

t−b

f̃T (s) ds
]
W

[∫ t−a

t−b

f̃(s) ds
]
. (5)

Thus, substituting (4) into the right side of (5), the desired result can be obtained. �

2.2. Stability analysis

In this subsection, we obtain the result on the exponential stability in mean square
moment for systems (1) in terms of LMI in [1]. For the sake of simplicity, the following
notations are adopted:

f(t) = Ax(t) +Bx(t− h) and g(t) = Fx(t) +Gx(t− h). (6)
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And in order to obtain the desired result, we need to construct the following new LKF:

V (t, x) = ζT (t)Pζ(t) +
∫ t−τ0

t−τm

χT (s)Hχ(s) ds+
∫ t−τ0

t−h

ηT (s)Qη(s) ds

+
2m−1∑
i=1

∫ t−τi−1

t−τi

ϕT (s)Tiϕ(s) ds

+h
∫ 0

−h

∫ t

t+θ

yT (s)Ry(s) dsdθ +
τ

m

m∑
j=1

∫ −τj−1

−τj

∫ t

t+θ

yT (s)Sjy(s) dsdθ, (7)

for any t ≥ 2σ, where ζ(t) = x(t− τ0)−Cx(t− τm), y(t) dt = f(t)dt+ g(t) dB(t), m > 0
denotes the number of divisions of the interval [−τ, 0], τi = iτ

m , (i = 0, 1, 2, . . . ,m),
χ(t) = [xT (t − τ0) xT (t − h) xT (t − τm)]T , η(t) = [xT (t − τ0) xT (t − τm)]T , ϕ(t) =
[xT (t− τ0) xT (t− τ1)]T and the matrices:

P > 0, H =

 H1 H2 H4

HT
2 H3 H5

HT
4 HT

5 H6

 > 0, Q =
[
Q1 Q2

QT
2 Q3

]
> 0,

Ti =
[

T 11
i T 12

i

(T 12
i )T T 22

i

]
> 0, i = 1, 2, . . . , 2m− 1, R > 0 and Sk > 0, k = 1, 2, . . . ,m,

are of appropriate dimensions.

Remark 1. If m = 1 and Ti = 0 (i = 1, 2, . . . , 2m− 1) in (7), the LKF (7) is degrated
into (25) defined in [4]. However, it should be pointed out that the proposed method in
[4] is extremely difficult to consider the stability analysis for neutral stochastic time-delay
systems (1) by constructing LKF (7).

Remark 2. In [12, 16–17], the authors have considered the stability analysis for neu-
tral time-delay system by using the delay-decomposition technique and some less con-
servative delay-dependent stability criteria were obtained, but the results in [12, 16–17]
can not be used to ensure the stability for neutral stochastic time-delay systems since
the existence of stochastic perturbation and the presence of the neutral item can make
the problem be complicated. In this paper, after establishing Lemma 2, the delay-
decomposition technique can well study our concerned problem.

Remark 3. From (6) and y(t) dt = f(t) dt+ g(t) dB(t), systems (1) can be written as
the following form:

d[x(t)− Cx(t− τ)]
dt

= y(t).

Consequently, based on the LKF (7) and Lemma 2, we can derive the following result:

Theorem 3. For a positive integer number m and two given scalars τ > 0, h > 0,
neutral stochastic systems with mixed delays (1) is exponentially stable in mean square
moment, if there exist matrices P > 0, H > 0, Q > 0, Ti > 0 (i = 1, 2, . . . , 2m − 1),
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R > 0, Sk > 0 (k = 1, 2, . . . ,m) and an appropriate dimensional matrix N , such that
the linear matrix inequality (LMI) holds

Υ =
[

Υ1 Υ2

(Υ2)T Υ3

]
< 0, (8)

where

Υ1 = (Υ1
ij)

(2m+3)×(2m+3),

Υ1
1,1 = PTA+ATP + FTPF +H1 +Q1 + T 11

1 −R− S1,

Υ1
1,2 = PB + FTPG+H2 +R,

Υ1
1,3 = T 12

1 + S1,

Υ1
1,m+2 = ATPC +H4 +Q2 +RC + S1C,

Υ1
1,m+3 = −S1C,

Υ1
1,2m+3 = −RC,

Υ1
2,2 = H3 −Q1 −R+GTPG,

Υ1
2,m+2 = H5 −BTPC −RC,

Υ1
2,2m+3 = RC −Q2,

Υ1
j,j = T 22

j−2 − T 11
j−2 + T 11

j−1 − T 22
j−3 − Sj−2 − Sj−1,

Υ1
j,j+1 = −T 12

j−2 + T 12
j−1 + Sj−1,

Υ1
j,j+3 = −Sj−2C,

Υ1
j,m+j = Sj−2C + Sj−1C,

Υ1
j,j+m+1 = −Sj−1C,

Υ1
m+j,m+j = T 22

m+j−2 − T 22
m+j−3 − T 11

m+j−2 + T 11
m+j−1 − CTSj−1C − CTSj−2C,

Υ1
m+j,m+j+1 = −T 12

m+j−2 + T 12
m+j−1 + CTSj−1C, j = 3, 4, . . . ,m+ 1,

Υ1
m+2,m+2 = H6 −H1 +Q3 + T 22

m − T 11
m + T 11

m+1 − T 22
m−1 − CTS1C − CTRC − Sm,

Υ1
m+2,m+3 = −T 12

m + T 12
m+1 + CTS1C,

Υ1
m+2,2m+1 = −SmC,

Υ1
m+2,2m+2 = SmC −H4,

Υ1
m+2,2m+3 = −H2 + CTRC,

Υ1
2m+2,2m+2 = −H6 − T 12

2m−1 − CTSmC,

Υ1
2m+2,2m+3 = −HT

5 ,

Υ1
2m+3,2m+3 = −CTRC −Q3 −H3,

T 22
0 ≡ 0, T 11

2m ≡ 0,
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Υ2 = (Υ2
ij)

(2m+3)×(m+1) =
[
NTA NTB 0 · · · 0

]T
,

Υ3 = h2R+
τ2

m2

m∑
j=1

Sj −NT −N,

and other items in the matrix Υ1 are zeros.

P r o o f . From LKF (7), by using the Itô’s formula, we have

dV (t, x) = LV (t, x) dt+ 2[x(t)− Cx(t− τ)]TPg(t) dB(t), (9)

where

LV (t, x) = 2ζT (t)Pf(t) + gT (t)Pg(t) + χT (t− τ0)Tχ(t− τ0)
−χT (t− τm)Tχ(t− τm) + ηT (t− τ0)Qη(t− τ0)− ηT (t− h)Qη(t− h)

+
2m−1∑
i=1

[ϕT (t− τi−1)Tiϕ(t− τi−1)− ϕT (t− τi)Tiϕ(t− τi)]

+h2yT (t)Ry(t)− h

∫ t

t−h

yT (s)Ry(s) ds+
(
τ

m

)2 m∑
j=1

yT (t)Sjy(t)

− τ

m

m∑
j=1

∫ t−τj−1

t−τj

yT (s)Sjy(s) ds. (10)

Applying Lemma 2, we can obtain

−h
∫ t

t−h

yT (s)Ry(s) ds ≤ ηT
0 (t)Ω0η0(t), (11)

and

− τ

m

m∑
j=1

∫ t−τj−1

t−τj

yT (s)Sjy(s) ds ≤
m∑

j=1

ηT
j (t)Ωjηj(t), (12)

where η0(t) = [xT (t− τ0) xT (t− h) xT (t− τm) xT (t− τm − h)]T ,
ηj(t) = [xT (t− τj−1) xT (t− τj) xT (t− τj+m−1) xT (t− τj+m)]T (j = 1, 2, . . . ,m),
the matrices

Ω0 =


−R R RC −RC
RT −R −RC RC
CTR −CTR −CTRC CTRC
−CTR CTR CTRC −CTRC

 ,
and

Ωj =


−Sj Sj SjC −SjC
ST

j −Sj −SjC SjC
CTSj −CTSj −CTSjC CTSjC
−CTSj CTSj CTSjC −CTSjC

 , j = 1, 2, . . . ,m.
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And from the Newton–Leibnitz formula [3, 13], it derives

2yT (t)NT {[f(t)− y(t)] dt+ g(t) dB(t)} = 0. (13)

Substituting (11) – (13) into (10), it follows

LV (t, x) ≤ ξT (t)Υξ(t) + 2[x(t)− Cx(t− τ)]TPg(t) dB(t) + 2yT (t)NT g(t) dB(t), (14)

where

ξ(t) = [xT (t− τ0) xT (t− h) xT (t− τ1) xT (t− τ2) . . .
. . . xT (t− τ2m−1) xT (t− τ2m) xT (t− τm − h) yT (t)]T .

Consequently, it gives from (8) and (14) that

LV (t, x) ≤

−λ(|x(t)|2 + |x(t− τ)|2) + 2[x(t)−Cx(t− τ)]TPg(t) dB(t) + 2yT (t)NT g(t) dB(t), (15)

where λ = λmin(−Υ) > 0. And from the definition of LKF (7), there exist positive
scalars δ1, δ2 and δ3 such that

V (t, x) ≤ δ1(|x(t)|2 + |x(t− τ)|2) + δ2

∫ t

t−σ

|x(s)|2 ds+ δ3

∫ t

t−σ

|x(s− τ)|2 ds.

Thus, for any α > 0, we obtain

d[eαtV (t, x)] ≤ eαt

[
(αδ1 − λ)|x(t)|2 + (αδ1 − λ)|x(t− τ)|2 + αδ2

∫ t

t−σ

|x(s)|2 ds

+αδ3
∫ t

t−σ

|x(t−τ)|2 ds
]

dt+ eαt

[
2[x(t)−Cx(t−τ)]TPg(t) dB(t)

+2yT (t)NT g(t) dB(t)
]
. (16)

And then, integrating both sides of (16) from 0 to t and two items:∫ t

0
eαs[x(s)−Cx(s−τ)]TPg(s) dB(s),

∫ t

0
eαsyT (s)NT g(s) dB(s) are martingale, we have

E{eαtV (t, xt)} − E{V (0, x0)} ≤

(αδ1 − λ)E
{∫ t

0

eαs|x(s)|2 ds
}

+ (αδ1 − λ)E
{∫ t

0

eαs|x(s− τ))|2 ds
}

+αδ2E
{∫ t

0

∫ s

s−σ

eαu|x(u)|2 du ds
}

+ αδ3E
{∫ t

0

∫ s

s−σ

eαu|x(u− τ)|2 du ds
}
.(17)

Consequently, by changing the integration sequence, the following inequalities hold:∫ t

0

∫ s

s−σ

eαu|x(u)|2 du ds ≤ σeασ

∫ t

0

eαs|x(s)|2 ds+ σ2eασ sup
θ∈[−2σ,0]

|ψ(θ)|2, (18)
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and∫ t

0

∫ s

s−σ

eαu|x(u− τ)|2 du ds ≤ σeασ

∫ t

0

eαs|x(s− τ)|2 ds+σ2eασ sup
θ∈[−2σ,0]

|ψ(θ)|2. (19)

Substituting (18) – (19) into (17), it obtains

E{eαtV (t, xt)} − E{V (0, x0)} ≤

2σ2eασE{ sup
θ∈[−2σ,0]

|ψ(θ)|2}+ (αδ1 − λ+ αδ2σe
ασ)E

{∫ t

0

eαs|x(s)|2 ds
}

+(αδ1 − λ+ αδ3σe
ασ)E

{∫ t

0

eαs|x(s− τ))|2 ds
}
. (20)

Choose α > 0 such that

αδ1 − λ+ αδ2σe
ασ < 0, and αδ1 − λ+ αδ3σe

ασ < 0. (21)

Therefore, from (20) – (21), it follows

eαtEV (t, x) ≤M, (22)

where M = E{V (0, x0)}+ 2σ2eασ E{supθ∈[−2σ,0] |ψ(θ)|2} > 0.
Due to the fact that λmin(P )|x(t)|2 ≤ V (t, x(t)), it deduces from (22) that

E|x(t)|2 ≤ M

λmin(P )
e−αt, α > 0, t ≥ 0,

which implies that systems (1) is exponential stability in mean square moment.
�

Remark 3. The exponential stability in mean square moment of systems (1) has
been discussed with the aids of the generalized Finsler Lemma [4]. In contrast to the
result given in [4], Theorem 3 gives some better ones since the simulation results given
in section 3 can show that the conservatism of Theorem 3 will be reduced as the m
increases.

Remark 4. It is well known that the input control can usually stabilize the unstable
systems [10]. Recently, in [14–15], Jerzy has discussed the controllability for stochastic
time-delay systems. Thus, inspired by ideas proposed in [14–15], we will make an attempt
to consider the controllability for neutral stochastic time-delay systems in our later
works.

3. AN ILLUSTRATIVE NUMERICAL EXAMPLE

Consider the following neutral stochastic systems [4]:
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d[x(t)− Cx(t− τ)] = [Ax(t) +Bx(t− h)] dt+ [Fx(t) +Gx(t− h)] dB(t), t ≥ 0, (23)

with the following parameters

C =
[
−0.6 0.0
0.0 0.5

]
, A =

[
−0.4 0.2
0.0 −0.5

]
, B =

[
−0.5 0.0
0.0 0.3

]
, F = G =

[
0.2 0.0
0.0 0.2

]
.

The comparison about the maximal allowable upper bounds of the neutral delay τ for
given the various values on retarded delay h, and the comparison about the maximal
allowable upper bounds of the retarded delay h for different values on the neutral delay
τ for systems (23) can be derived based on Theorem 3 in this paper and Theorem 2
in [4] are listed in Table 1 and Table 2, respectively. It is easily seen from Table 1
and Table 2 that the conservatism of Theorem 3 is reduced as the m increases and
Theorem 3 is obviously better than Theorem 2 in [4]. When τ = 1.5713 and h = 3.5,
Figure 1 displays the behavior of the solution x(t) = [xT

1 (t) xT
2 (t)]T to systems (23).

h 1.5 2.0 2.5 3.0 3.5
[4] 1.6009 1.4937 1.3731 1.2455 1.1173

m = 1 1.6009 1.4937 1.3731 1.2455 1.1173
m = 2 2.0118 1.8883 1.7545 1.6163 1.4767
m = 4 2.1206 1.9934 1.8571 1.7158 1.5713

Tab. 1. The maximal allowable upper bounds on the neutral delay τ

for different values on the retarded delay h for systems (23).

τ 1.5 2.0 2.5 3.0 3.5
[4] 1.9729 1.2541 1.2541 1.2541 1.2541

m = 1 1.9729 1.2541 1.2541 1.2541 1.2541
m = 2 3.4161 1.5507 1.2541 1.2541 1.2541
m = 4 3.7455 1.9751 1.2541 1.2541 1.2541

Tab. 2. The maximal allowable upper bounds on the retarded delay

h for different value on the neutral delay τ for systems (23).

4. CONCLUSION

In this paper, with a new augmented Lyapunov–Krasovskii functional (LKF) defined
and the delay-decomposition method utilized, the delay-dependent exponential stability
criterion for neutral stochastic linear systems with delays is derived in forms of linear
matrix inequalities (LMIs), which involves fewer matrix variables and has less conser-
vatism. Finally, an illustrative numerical example is provided to show the effectiveness
of the obtained result.
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Fig. 1. The behavior of the solution x(t) to systems (23).

Here, we mainly concentrate on the stability analysis for neutral stochastic systems
with mixed constant delays. Recently, in [8, 16], the stability of linear systems with
time-varying delay and the stability of neutral linear systems with distributed delay
have been considered by using the delay decomposition method, respectively. Since the
existence of the stochastic perturbation and the presence of the neutral item can make
the problem be complicated, the problems on the stability analysis for neutral stochastic
systems with time-varying delay and the stability analysis for neutral stochastic systems
with distributed delay will be very interesting, which will be considered in our later
works. Besides, as pointed out in Remark 4, the controllability for neutral stochastic
linear systems with delay will be also worthy of being investigated.
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