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When every flat ideal is projective

Fatima Cheniour, Najib Mahdou

Abstract. In this paper, we study the class of rings in which every flat ideal is pro-
jective. We investigate the stability of this property under homomorphic image,
and its transfer to various contexts of constructions such as direct products, and
trivial ring extensions. Our results generate examples which enrich the current
literature with new and original families of rings that satisfy this property.
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1. Introduction

All rings considered in this paper are assumed to be commutative with identity
elements and all modules are unitary.

Let R be a ring and let M be an R-module. As usual, we use pdR(M) and
fdR(M) to denote the usual projective and flat dimensions of M , respectively. If
R is an integral domain, we denote its quotient field by qf(R). In this paper, we
are interested in those rings in which every flat ideal is projective and which will
be called FP-rings. In particular, perfect rings, hereditary rings and Noetherian
rings are examples of FP-rings. Also, every local ring (R,M) with M2 = 0 is
an FP-ring by [24, Lemma 2.1]. In [25, Corollary 4], the author showed that flat
ideals in a Mori domain are invertible. So, Mori domains are FP-domains. In
particular, Krull domains and UFDs are FP-domains.

Let A be a ring and E an A-module. The trivial ring extension of A by E
(also called the idealization of E over A) is the ring R = A ∝ E whose underlying
group is A × E with multiplication given by (a, e)(a′, e′) = (aa′, ae′ + a′e). For
the reader’s convenience, recall that if I is an ideal of A and E′ is a submodule of
E such that IE ⊆ E′, then J = I ∝ E′ is an ideal of R. However, prime (resp.,
maximal) ideals of R have the form p ∝ E, where p is a prime (resp., maximal)
ideal of A [2, Theorem 3.2]. Suitable background on commutative trivial ring
extensions is [2], [15], [18].

The purpose of this paper is to give some simple methods in order to construct
FP-rings. For this, we investigate the stability of the FP-property under homo-
morphic image, and its transfer to various contexts of constructions such as direct
products, pullback rings and trivial ring extensions. Our results generate original
examples which enrich the current literature with new families of non-Noetherian
rings satisfying the FP-property.
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2. Main results

Recall that R is called semi-hereditary if every finitely generated ideal of R is
projective and is said to has weak global dimension ≤ 1 if every finitely generated
ideal of R is flat. A semi-hereditary ring R has wdim(R) ≤ 1. In the domain
context, all these forms coincide with the definition of a Prüfer domain. Glaz [14,
Example 3.2.1] provides an example of non-semi-hereditary ring of wdim ≤ 1.
See for instance [3], [4], [14].

We start with examples of non-FP-rings.

Proposition 2.1. Any non-hereditary ring R of wdim(R) ≤ 1 is a non-FP-ring.

Proof: Let R be a non-hereditary ring with wdimR ≤ 1. Then, there exists an
ideal I of R which is not projective. On the other hand, I is flat since wdimR ≤ 1.
Hence, R is a non-FP-ring, as desired. �

Now, we give a new class of FP-rings.

Recall that R is called FF-ring if every flat ideal of R is finitely generated. See
for instance [12].

Proposition 2.2. Any FF-ring is an FP-ring.

Proof: By [12, Remark 2.4]. �

The converse does not generally hold as the following example shows.

Example 2.3. LetR be a non-Noetherian hereditary ring [6, Example 2.7]. Then:

(1) R is an FP-ring;
(2) R is not an FF-ring.

In the domain context, the FP notion coincides with the FF one since in an
integral domain, a flat ideal is finitely generated if and only if it is projective.

The FP-property descends into a faithfully flat domain homomorphism.

Proposition 2.4. Let R and S be two domains and f : R −→ S be a ring

homomorphism making S a faithfully flat R-module. If S is an FP-ring, then so

is R.

Proof: Let I be a flat ideal of R. Then, I ⊗R S = IS is a flat ideal of S and so
I ⊗R S is a projective ideal of S since S is an FP-ring. Then, I ⊗R S is a finitely
generated ideal of S since S is a domain. Hence, I is a finitely generated ideal of
A (since S is faithfully flat R-module) and so I is a projective ideal of A (since A
is a domain). Therefore, A is an FP-ring. �

We combine this proposition with [24, Theorem 4.1] to get the following corol-
lary.

Corollary 2.5. Let R be a domain and let X be an indeterminate over R. The

following statements are equivalent.

(1) R is an FP-ring.
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(2) R[X ] is an FP-ring.

(3) R[[X ]] is an FP-ring.

Now, we study the transfer of a FP-property between a ring A and A ∝ E,
the trivial ring extension of A by E, where E is an A-module. The main result
(Theorem 2.6) enriches the literature with original examples of FP-rings. Recall
that if E is an A-module, then Z(E) = {a ∈ A such that ae = 0 for some
e(6= 0) ∈ E}.

Theorem 2.6. Let A be a ring, E be an A-module and let R = A ∝ E be the

trivial ring extension of A by E.

(1) Assume that E is a flat A-module or an ideal of A. If R is an FP-ring,

then so is A.
(2) Assume that A is a domain, E is a K-vector space, where K = qf(A).

Then R is an FP-ring if and only if so is A.
(3) Assume that (A,M) is a local ring such that ME = 0. Then R = A ∝ E

is an FP-ring if and only if so is A.

Before proving Theorem 2.6, we establish the following lemmas.

Lemma 2.7 ([1, Theorem 8]). Let A be a ring, E be an A-module and let

R = A ∝ E be the trivial ring extension of A by E.

(1) If J = I ∝ E (where I is a non-zero ideal of A) is a flat ideal of R, then

I is a flat ideal of A. The converse is true if E is flat.

(2) If J = I ∝ E (where I is a non-zero ideal of A) is a projective ideal of

R, then I is a projective ideal of A. The converse is true if E is flat.

An R-module M is called P -flat if, for any (s, x) ∈ R ×M such that sx = 0,
x ∈ (0 : s)M . If M is flat, then M is naturally P -flat. In the domain case P -flat
is equivalent to torsion-free and when R is an arithmetical ring (i.e., such that
the lattice formed by its ideals is distributive), then any P -flat module is flat (by
[7, p. 236]). Also, every P -flat cyclic module is flat (by [7, Proposition 1(2)]).

Before proving Theorem 2.6, we also need the following lemma of independent
interest.

Lemma 2.8. Let A be a domain, E be an A-module, F (6= 0) be a sub-module

of E and R = A ∝ E be the trivial ring extension of A by E. Then 0 ∝ F is not

a P -flat R-module.

Proof: Let F (6= 0) be a submodule of E. Two cases are possible then.

Case 1: Z(F ) = 0. Let (0, f) (6= (0, 0)), (0, e) (6= (0, 0)) ∈ 0 ∝ F . Then,
(0, f)(0, e) = (0, 0) and (0 : (0, e)) = 0 ∝ E since Z(F ) = 0. Then (0, f) /∈ (0 :
(0, e))(0 ∝ F ) = (0 ∝ E)(0 ∝ F ) = 0. Thus 0 ∝ F is not a P -flat R-module.

Case 2: Z(F ) 6= 0. Let d(6= 0) ∈ Z(F ) and f(6= 0) ∈ F such that df = 0. Hence,
(d, 0)(0, f) = (0, 0) and (0 : (d, 0)) ⊆ 0 ∝ E and so (0, f) /∈ (0 : (d, 0))(0 ∝ F ) = 0.
Therefore, 0 ∝ F is not a P -flat R-module, as desired. �
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Proof of Theorem 2.6: 1) Assume that R is an FP-ring and E is an ideal of
A or E is a flat A-module. Let I be a flat ideal of A. Then I ⊗A R = I ∝
(I ⊗A E) = I ∝ IE is a flat ideal of R and so it is a projective since R is an
FP-ring. Therefore, I is a projective ideal of A by Lemma 2.7 and so R is an
FP-ring.

2) Assume that A is a domain and E is a K-vector space, where K = qf(A).
Let J be a nonzero flat ideal of R, we need to prove that J is projective. By
[2, Corollary 3.4], J = I ∝ E or J = 0 ∝ E′ for some ideal I of R or some
submodule E′ of E. As 0 ∝ E′ is not flat (since it is not P -flat by Lemma 2.8),
then J = I ∝ E. Hence, I is a flat ideal of A (by Lemma 2.7) and so it is
projective (since A is an FP-ring). Therefore I ∝ E is projective, by Lemma 2.7.
The converse holds by 1, as desired.

3) Let (A,M) be a local FP-ring, R = A ∝ E be the trivial ring extension
of A by an A-module E such that ME = 0 and let J be a flat ideal of R. By
[24, Lemma 2.1], we may assume that J(M ∝ E) = J . Then J = J(M ∝ E) ⊆
(M ∝ E)(M ∝ E) = M2 ∝ 0. Hence, J = I ∝ 0 for some ideal I of A. We have
J ⊗R A ∼= J ⊗R R/(0 ∝ E) ∼= J/J(0 ∝ E) ∼= I ∝ 0/(I ∝ 0)(0 ∝ E) = I ∝ 0. So,
I is a flat ideal of A since J is a flat ideal of R. Hence, I is a projective ideal of
A since A is an FP-ring. We claim that J is a projective ideal of R.

Indeed, since I is a projective ideal of A and J = (I ∝ 0) ∼= I, then J is a
projective A-module. Therefore, J = (J ⊗A R) is a projective ideal of R.

Conversely, let I be a flat ideal of A. Since (I ∝ 0) ∼= I, then J is a flat
A-module. Hence, J = (J ⊗A R) is a flat ideal of R and so it is projective since
R is an FP-ring. Therefore, I is projective by Lemma 2.7, and this completes the
proof of Theorem 2.6. �

Theorem 2.6 generates new and original examples of FP-rings.

Example 2.9. Let Z be the ring of integers, Q = qf(Z), R be the field of reals
numbers, and let S = Z ∝ R, and T = Z ∝ Q[X ]. Then

(1) S and T are FP-rings by Theorem 2.6;
(2) S and T are not coherent by [18, Theorem 2.8]. In particular S and T

are not Noetherian.

Example 2.10. Let (A,M) be a local FP-ring and let R = A ∝ (A/M)Λ be the
trivial ring extension of A by the A-module (A/M)Λ, where Λ is an infinite set.
Then

(1) R is an FP-ring by Theorem 2.6;
(2) R is not coherent by [20, Theorem 2.1]. In particular R is non-Noetherian.

Now, we study the transfer of the FP-property in the D + M constructions.
We adopt the following notations: T is a ring of the form T = K +M , where K
is a field and M is a nonzero maximal ideal of T , D is a subring of K such that
qf(D) = K, and R = D + M . Then, T = S−1R with S = D − {0} and R is a
faithfully flat D-module.
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Theorem 2.11. Let T and R be as above such that T is an FP-ring. Then, R
is an FP-ring if and only if for every flat ideal J of R, the D-module J/JM is

projective.

The proof of this theorem involves the following lemma.

Lemma 2.12 ([15, Theorem 5.1.1]). Let f : R −→ S be an injective ring homo-

morphism satisfying the fact that there is an ideal M of R such that MS = M .

Then, an R-module E is projective if and only if E⊗RS is a projective S-module

and E/ME is a projective R/M -module.

Proof of Theorem 2.11: Let J be a flat ideal of R. Then J ⊗R T = JT is a
flat ideal of T and so J ⊗R T is a projective T -module since T is an FP-ring. By
Lemma 2.12, J is a projective ideal of R, as desired. �

Proposition 2.13. Let R be a ring. Then, if R is an FP-ring, then so is RP for

every P ∈ Spec(R)

Proof: Let P ∈ Spec(R) and let IP be a flat ideal of RP . Then I is a flat ideal of
R and so is projective since R is an FP-ring. Hence, IP = I ⊗R RP is projective.
Thus RP is an FP-ring. �

The converse does not generally hold as the following example shows.

Example 2.14. Let R be a non-hereditary von Neumann regular ring. Then:

(1) R is not an FP-ring;
(2) RP is an FP-ring for each prime ideal P of R (since RP is a field).

Our next result establishes the transfer of FP property to a particular homo-
morphic image.

Proposition 2.15. Let R be a ring and let I be a pure ideal of R. If R is an

FP-ring, then so is R/I.

Proof: Let R be an FP-ring and let J/I be a flat ideal of R/I. Then J is a flat
ideal of R (using the exact sequence: 0 −→ I −→ J −→ J/I −→ 0 where I and
J/I are flat R-modules since I is a pure ideal of R). Therefore, J is a projective
ideal of R and so J ⊗A R/I = J/I is a projective ideal of R/I. Hence, R/I is an
FP-ring. �

Next, we study the transfer of the FP-property to direct products.

Theorem 2.16. Let (Ri)i=1,...,n be a family of commutative rings. Then R =∏n

i=1
Ri is an FP-ring if and only if so is Ri for each i = 1, . . . , n.

The proof of the theorem involves the following lemma.

Lemma 2.17. Let (Ri)i=1,2 be a family of rings and (Ei)i=1,2 be an Ri module

for i = 1, 2. Then

(1) fdR1×R2
(E1 × E2) = sup{fdR1

(E1), fdR2
(E2)};

(2) pdR1×R2
(E1 × E2) = sup{pdR1

(E1), pdR2
(E2)}.
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Proof: By [19, Lemma 2.5]. �

Proof of Theorem 2.16: The proof is done by induction on n and it suffices
to check it for n = 2. Assume that (R1 ×R2) is an FP-ring and we must to show
that Ri is an FP-ring for i = 1, 2.

Let I1 be a flat ideal of R1. Then, fdR1×R2
(I1 × R2) = fdR1

(I1) = 0 (by
Lemma 2.17) and so I1 ×R2 is a flat ideal of R1 ×R2 which is an FP-ring. Thus,
I1 ×R2 is projective. We have pdR1

(I1) = pdR1×R2
(I1 ×R2) = 0 by Lemma 2.17.

Then, I1 is a projective ideal of R1 and so R1 is an FP-ring. We have also that
R2 is an FP-ring by the same argument.

Conversely, let R1 and R2 be two FP-rings and let I = I1 × I2 be a flat ideal
of R1 × R2, where Ii is an ideal of Ri for each i = 1, 2. Hence, fdRi

(Ii) = 0
and so pdRi

(Ii) = 0 since Ri is an FP-ring. Therefore, pdR1×R2
(I1 × I2) =

sup{pdRi
(Ii), i = 1, 2} = 0 and this completes the proof of the theorem. �

Now, we construct a new example of non-FP-rings.

Example 2.18. Let R1 be a non-FP-ring, R2 be any ring and let R = R1 ×R2.
Then R is not an FP-ring.

Acknowledgment. The authors would like to express their sincere thanks to the
referee for his/her helpful suggestions and comments, which have greatly improved
this paper.
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