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Intersections of essential minimal prime ideals

A. Taherifar

Abstract. Let Z(R) be the set of zero divisor elements of a commutative ring
R with identity and M be the space of minimal prime ideals of R with Zariski
topology. An ideal I of R is called strongly dense ideal or briefly sd-ideal if
I ⊆ Z(R) and I is contained in no minimal prime ideal. We denote by RK(M),

the set of all a ∈ R for which D(a) = M\ V (a) is compact. We show that R has
property (A) and M is compact if and only if R has no sd-ideal. It is proved that
RK(M) is an essential ideal (resp., sd-ideal) if and only if M is an almost locally
compact (resp., M is a locally compact non-compact) space. The intersection of
essential minimal prime ideals of a reduced ring R need not be an essential ideal.
We find an equivalent condition for which any (resp., any countable) intersection
of essential minimal prime ideals of a reduced ring R is an essential ideal. Also
it is proved that the intersection of essential minimal prime ideals of C(X) is

equal to the socle of C(X) (i.e., CF (X) = OβX\I(X)). Finally, we show that a
topological space X is pseudo-discrete if and only if I(X) = XL and CK(X) is
a pure ideal.

Keywords: essential ideals; sd-ideal; almost locally compact space; nowhere dense;
Zariski topology

Classification: 13A15, 54C40

1. Introduction

In this paper, R is assumed to be a commutative ring with identity, and M is
the space of minimal prime ideals of R. For a ∈ R let V (a) = {P ∈ M : a ∈ P}.
It is easy to see that for any R, the set {D(a) = M\ V (a) : a ∈ R} forms a basis
of open sets on M. This topology is called the Zariski topology. For A ⊆ R, we
use V (A) to denote the set of all P ∈ M where A ⊆ P (see [8]). For a subset
H of M we denote by H the closure points of H in M. The intersection of all
minimal prime ideals containing a is denoted by Pa. An ideal I of R is called a
z0-ideal, if Pb ⊆ Pa and a ∈ I implies b ∈ I (see [2] and [5]). For any subset S of
a ring R, ann(S) = {a ∈ R : aS = 0}.

We denote by C(X) the ring of real-valued, continuous functions on a com-
pletely regular Hausdorff space X , βX is the Stone-Čech compactification of
X and for any p ∈ βX , Op (resp., Mp) is the set of all f ∈ C(X) for which
p ∈ intβX clβXZ(f) (resp., p ∈ clβXZ(f)). Also, for A ⊆ βX , OA is the inter-
section of all Op where p ∈ A. It is well known that Op is the intersection of all
minimal prime ideals contained in Mp. We denote the socle of C(X) by CF (X); it
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is characterized in [12] as the set of all functions which vanish everywhere except
on a finite number of points of X. The known ideal CK(X) in C(X), is the set of
functions with compact support, and the generalization of this ideal is defined in
[16]. The reader is referred to [7] for undefined terms and notations.

A non-zero ideal in a commutative ring is said to be essential if it intersects
every non-zero ideal non-trivially, and the intersection of all essential ideals, or
the sum of all minimal ideals, is called the socle (see [14]).

We denote by RK(M) the set of all a ∈ R for which D(a) is compact as a
subspace of M. In Section 2, by algebraic properties of the ideal RK(M), we
find topological properties of the space M of minimal prime ideals of R, namely
locally compactness and almost locally compactness. Also we call I a strongly
dense ideal or briefly sd-ideal if I ⊆ Z(R) and I is contained in no minimal prime
ideal. We characterize commutative reduced rings R which have no sd-ideals. It
is proved that RK(M) is contained in the intersection of all strongly dense fd-
ideals (i.e., such ideals I that, if ann(F ) ⊆ ann(a) for some finite subset F of I
and a ∈ R, then a ∈ I).

In Section 3, we show that the intersection of essential minimal prime ideals
in any ring need not be an essential ideal. In a reduced ring R, we prove that
every intersection of essential minimal prime ideals is an essential ideal if and
only if the set of isolated points of M is dense in M. Also it is proved that
every countable intersection of essential minimal prime ideals of a reduced ring
R is an essential ideal if and only if every first category subset of M is nowhere
dense in M. We characterize the intersection of essential minimal prime ideals in
C(X), i.e., the intersection of essential minimal prime ideals of C(X) is equal to
the ideal CF (X) (i,e., the socle of C(X)). Finally, we prove that the intersection
of essential minimal prime ideals of C(X) is equal to the ideal CK(X) if and only

if I(X) = XL =
⋃

f∈CK(X)X \ Z(f), i.e., I(X) = XL and CK(X) is a pure ideal.

By this result and Theorem 4.5 in [3], we see that X is a pseudo-discrete space if
and only if I(X) = XL and CK(X) is a pure ideal.

2. RK(M) and strongly dense ideals

In this section we introduce the ideal RK(M) and the class of strongly dense
ideals as a subclass of dense ideals. We show that a reduced ring R has no sd-
ideal if and only if T (R) (i.e., the total quotient ring of R) is a von Neumann
regular ring. By this, we have C(X) has no sd-ideal if and only if X is a cozero-
complemented space. It is proved that RK(M) is an essential ideal (resp., sd-
ideal) if and only if M is an almost locally compact space (resp., locally compact
non-compact space).

Definition 2.1. Let R be a commutative ring with identity and D(a) be the set
of all prime ideals which do not contain a. We define the family RK(M) to be

the set of all a ∈ R for which D(a) is compact (as a subspace of M).

Example 2.2. If M is a discrete space, then RK(M) = {a ∈ R : D(a) is finite}.
For example, let R be the weak (discrete) direct sum of countably many copies of



Intersections of essential minimal prime ideals 123

the integers. R may be regarded as the ring of all sequences of integers that are
ultimately zero. Then M is a countable discrete space (see [8, 2.11]).

Lemma 2.3. (i) RK(M) is a z0-ideal of R.

(ii) RK(M) = R if and only if M is compact.

(iii) RK(M) = 0 if and only if M is nowhere compact (i.e., the interior of

every compact set is empty).

Proof: (i) For a, b ∈ RK(M), we have D(a+ b) ⊆ D(a) ∪ D(b), and if a ∈ R,

b ∈ RK(M), then D(ab) ⊆ D(b). Therefore RK(M) is an ideal of R. Now let

Pb ⊆ Pa and a ∈ RK(M). Then V (a) ⊆ V (b), hence D(b) ⊆ D(a) so D(b) is
compact, i.e., b ∈ RK(M).

(ii) By definition, it is obvious.
(iii) ⇒ Let K be compact subset of M and P ∈ int(K). Then there is a

non-zero element f ∈ R such that P ∈ D(f) ⊆ int(K), so f ∈ RK(M) = 0, i.e.,
D(f) = φ, which is a contradiction.

⇐ Suppose that f ∈ RK(M). Then D(f) is contained in the interior of D(f)
so D(f) = φ, i.e., f = 0. �

Definition 2.4. An ideal I of R is called a strongly dense ideal or briefly an
sd-ideal if I ⊆ Z(R) and I is contained in no minimal prime ideal (V (I) = φ).

Example 2.5. (i) Every prime ideal of a ring R which is not a minimal
prime and is contained in Z(R) is an sd-ideal.

(ii) For a set X , let R = R
X (i.e., the ring of real valued functions). Then we

can see that any element of R is an unit or a zero-divisor. So any ideal I
of R for which V (I) = φ is an sd-ideal.

(iii) Let p, q be two non-isolated points in an almost P -space X (i.e., every
zero-set has nonempty interior (see [13] and [17])). Then the ideal I =
Mp ∩Mq is an sd-ideal.

Recall that an ideal I of R is a dense ideal if ann(I) = 0. We observe that in
any commutative reduced ring R the ideal I ⊕ ann(I) is an essential ideal. Hence
an ideal I in a reduced ring R is an essential ideal if and only if it is a dense
ideal [14].

In the following, we see that a non-minimal prime ideal need not be an sd-ideal.

Remark 2.6. Every sd-ideal in a reduced ring R is a dense ideal (essential ideal),
but there is a dense ideal which is not sd-ideal. To see this, let I be an sd-ideal
and g ∈ ann(I). Then gf = 0 for each f ∈ I, therefore we have

⋂
f∈I V (gf) = M.

Hence V (g) ∪ (
⋂

f∈I V (f)) = M, i.e., V (g) = M, and we get g = 0. Now let

x be a non-isolated point in compact space X . Then by [4, Remark 3.2], the
ideal Ox is an essential ideal of C(X) which is not a minimal prime ideal. By [4,
Theorem 3.1], ann(Ox) = 0, i.e., Ox is dense ideal. However, this ideal is not an
sd-ideal. Because there is a minimal prime ideal in C(X) which contains Ox, i.e.,
V (Ox) 6= φ.
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We denote by Iz , the intersection of all z-ideals that contain I. An ideal I of
R is called a rez-ideal if there is an ideal J for which I 6⊆ J and Iz ∩ J ⊆ I. For
more see [2] and [5].

Proposition 2.7. Every ideal I in a reduced ring R is a rez-ideal or a dense

ideal.

Proof: Let I be a non-rez-ideal in R. By [2, Corollary 2.8], ann(I) = 0, so I is
a dense ideal. �

Lemma 2.8. Let R be a reduced ring.

(i)
⋂n

i=1 V (fi) = φ if and only if
⋂n

i=1 ann(fi) = 0.
(ii) If F is a finite subset of R, then V (F ) = M\ V (ann(F )).
(iii) If I ⊆ Z(R) is a finitely generated ideal, then I is an sd-ideal if and only

if I is a dense ideal.

(iv) If R has finitely many minimal prime ideals, then R has no sd-ideal.

Proof: Trivial. �

Recall that a ring R has property (A) (resp., property (a.c.)), if for every
finitely generated ideal I ⊆ Z(R), ann(I) 6= 0 (resp., for any finitely generated
ideal I of R there is c ∈ R such that ann(I) = ann(c)), see [8] and [11].

In the following theorem we characterize a class of reduced rings which have
no sd-ideal.

Theorem 2.9. Let R be a reduced ring with total quotient T (R). The following
conditions are equivalent.

(i) T (R) is a von Neumann regular ring.

(ii) R satisfies property (A) and M is compact.

(iii) R has no sd-ideal.
(iv) R satisfies property (a.c) and M is compact.

Proof: For (i)⇔(ii)⇔(iv), see [10, Theorem 4.5].
(ii)⇒(iii) Let I be an sd-ideal. Then I ⊆ Z(R) and

⋂
f∈I V (f) = φ. Hence

M =
⋃

f∈I D(f). Compactness of M implies that there are f1, . . . , fn ∈ I such

that
⋂n

i=1 V (fi) = φ. By Lemma 2.8, we have
⋂n

i=1 ann(fi) = ann(F ) = 0, where
F = {f1, . . . , fn}. This is a contradiction, for R has property (A) and F ⊆ Z(R).

(iii)⇒(ii) Suppose that I ⊆ Z(R) is a finitely generated ideal and ann(I) = 0.
Then by Lemma 2.8, I is an sd-ideal, which contradicts the hypothesis. Thus R
has property (A). Now, let M =

⋃
f∈S D(f) where S is a proper subset of R. If

(S) ⊆ Z(R), then
⋂

f∈(S) V (f) = φ implies that the ideal generated by S is an sd-

ideal, a contradiction. Hence (S) 6⊆ Z(R), so there is H = {f1, . . . , fn} ⊆ S such
that ann(H) = 0. By Lemma 2.8, V (H) =

⋂n

i=1 V (fi) = M \ V (ann(H)) = ∅,
thus M =

⋃n

i=1 D(fi), i.e., M is compact. �

Henriksen and Woods have introduced cozero complemented spaces. Such a
space X is defined by the property that, for every cozero-set V of X , there is
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a disjoint cozero-set V ′ of X such that V ∪ V ′ is a dense subset of X (see [9]).
In [8], they have proved that the space of minimal prime ideals of C(X) is compact
if and only if X is a cozero complemented space. Now by Theorem 2.9, and the
fact that C(X) satisfies property (a.c) we have the following corollary.

Corollary 2.10. C(X) has no sd-ideal if and only if X is a cozero complemented

space.

Recall that a ring R has property (c.a.c), if for any countably generated ideal
I of R, there exists c ∈ R such that ann(I) = ann(c), see [8]. If R is a ring with
property (c.a.c), then by [8, Theorem 4.9] M is countably compact. But in a ring
with property (A) this need not be true.

Proposition 2.11. Let R be a reduced ring. Then R satisfies property (A) and
M is countably compact if and only if R has no countably generated sd-ideal.

Proof: The proof is similar to that of Theorem 2.9 step by step. �

Recall that an ideal I of R is called an fd-ideal, if for each finite subset F of
I and x ∈ R, ann(F ) ⊆ ann(x) implies that x ∈ I. For more details see [15].

Proposition 2.12. Let R be a reduced ring.

(i) RK(M) is contained in the intersection of all strongly dense fd-ideals
in R.

(ii) RK(M) is an sd-ideal if and only if M is a locally compact non-compact

space.

Proof: (i) Let I be a strongly dense fd-ideal, f ∈ RK(M) and P ∈ D(f). Then

there is g ∈ I such that P ∈ D(g), and so D(f) ⊆
⋃

g∈I D(g). On the other hand,

D(f) is compact so there are g1, . . . , gn ∈ I such that D(f) ⊆
⋃n

i=1 D(gi). Hence
V (f) ⊇

⋂n

i=1 V (gi) = V ({g1, . . . , gn}). This implies that ann(F ) ⊆ ann(f) where
F = {g1, . . . , gn} ⊆ I. But I is a fd-ideal so f ∈ I.

(ii) Let RK(M) is an sd-ideal and P ∈ M. By definition, there is f ∈ RK(M)

such that P ∈ D(f) ⊆ D(f) so P has a compact neighborhood, i.e., M is a locally
compact space. On the other hand, M is not compact, since if M were compact,
then by Lemma 2.3, RK(M) = R, which is a contradiction.

Conversely, first, we see that RK(M) ⊆ Z(R). Otherwise, if f ∈ RK(M) and
ann(f) = 0, then D(f) = M is compact, which is a contradiction, by hypothesis.
Now for every P ∈ M there is a compact neighborhood K of P in M. So there
is f ∈ R such that P ∈ D(f) ⊆ intK ⊆ K, i.e., f ∈ RK(M), hence RK(M) is an
sd-ideal. �

A Hausdorff spaceX is said to be an almost locally compact space if every non-
empty open set of X contains a non-empty open set with compact closure (see
[3]). The next result is a topological characterization of RK(M) as an essential
ideal.

Theorem 2.13. Let R be a reduced ring. Then RK(M) is an essential ideal if

and only if M is an almost locally compact space.
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Proof: ⇒ Let RK(M) be an essential ideal and U be an open subset of M.
Then there exists a non-zero element f ∈ R such that D(f) ⊆ U . It is enough
to prove that D(f) contains D(g) for some g ∈ RK(M). If D(f) ∩D(g) = φ for
each g ∈ RK(M), then D(fg) = φ, so fg = 0, i.e., RK(M) ∩ (f) = 0, which is
a contradiction by essentiality of RK(M). Hence there is g ∈ RK(M) such that
D(fg) = D(f) ∩ D(g) 6= φ, but D(fg) ⊆ D(f), i.e., U contains an open subset
for which the closure is compact.

⇐ Let f be a non-zero element in R. It is enough to prove that RK(M)∩(f) 6=
φ. D(f) 6= φ is an open subset in X . By hypothesis there is an open subset
V ⊆ D(f) such that V is compact, so there is a non-zero element g ∈ R such that
D(g) ⊆ V ⊆ D(f), i.e., g ∈ RK(M). Now D(fg) = D(f) ∩ D(g) = D(g) 6= φ,
hence fg 6= 0 is an element of RK(M)∩ (f), i.e., RK(M) is an essential ideal. �

3. Intersections of essential minimal prime ideals

The intersection of essential minimal prime ideals of a reduced ring R need not
be an essential ideal. Even a countable intersection of essential minimal prime
ideals need not be an essential ideal. For example, the ideal Or for any rational
0 ≤ r ≤ 1 is an essential ideal in C(R), which is the intersection of minimal prime
ideals. Now for any 0 ≤ r ≤ 1 let Pr be a minimal prime ideal that contains Or.
Then any Pr is an essential ideal, but by [3, Theorem 3.1], the ideal I =

⋂
Pr is

not an essential ideal, for
⋂
Z[I] = [0, 1] and int[0, 1] 6= φ. In this section we give

a topological characterization of the intersection of essential minimal prime ideals
of a reduced ring R (resp., C(X)) which is an essential ideal.

For an open subset A of M, suppose that OA := {a ∈ R : A ⊆ V (a)}. Since
for any a, b ∈ R, V (a) ∩ V (b) ⊆ V (a − b) and for each r ∈ R, a ∈ OA, we have
V (a) ⊆ V (ra), thus OA is an ideal of R. It is easy to see that OA =

⋂
P∈A P and

V (OA) = A, where A is the cluster points of A in M.

We need the following lemmas which are easy to prove.

Lemma 3.1. Let R be a reduced ring. An ideal I of R is an essential ideal if

and only if intV (I) = φ.

Lemma 3.2. The intersection of all essential minimal prime ideals in a reduced

ring R is equal to the ideal O(M\I(M)), where I(M) is the set of isolated points

of M.

In [3], Corollary 2.3 and Theorem 2.4, Azarpanah showed that every intersec-
tion (resp., countable intersection) of essential ideals of C(X) is essential if and
only if the set of isolated points of X is dense in X (resp., every first category
subset of X is nowhere dense in X). Now, we generalize these results for the
essentiality of the intersection of essential minimal prime ideals in a reduced ring.

Proposition 3.3. Let R be a reduced ring. Every intersection of essential min-

imal prime ideals is an essential ideal if and only if the set of isolated points of

M is dense in M.
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Proof: Assume that every intersection of essential minimal prime ideals is an
essential ideal. Then Lemma 3.2 implies that O(M\I(M)) is an essential ideal. By
Lemma 3.1, intV (OM\I(M)) = φ. On the other hand, we have

V (OM\I(M)) = M\ I(M) = (M\ I(M)).

Therefore int(M\ I(M)) = int(V (OM\I(M))) = φ. This shows that I(M) = M.
Conversely, by hypothesis, int(V (OM\I(M))) = int(M \ I(M)) = φ. So by

Lemma 3.1, O(M\I(M)) is an essential ideal. Since O(M\I(M)) is contained in every
intersection of essential minimal prime ideals, so every intersection of essential
minimal prime ideals is an essential ideal. �

Theorem 3.4. Let R be a reduced ring. Every countable intersection of essential

minimal prime ideals of R is an essential ideal if and only if every first category

subset of M is nowhere dense in M.

Proof: ⇒ Let (Fn) be a sequence of nowhere dense subsets of M. Then by
Lemma 3.1, for each n ∈ N, the ideal OFn

=
⋂

P∈Fn
P , is an essential ideal. By

hypothesis, E =
⋂∞

n=1 OFn
= O(

⋃
∞

i=1
Fn) is an essential ideal. On the other hand

V (E) = (
⋃∞

i=1 Fn). So we must have int(
⋃∞

n=1 Fn) = φ, i.e.,
⋃∞

i=1 Fn is nowhere
dense.

⇐ Let (In) be a sequence of essential minimal prime ideals in R. Letting
{In} = Fn, then int(Fn) = intV (In) = φ, i.e., each Fn is a nowhere dense subset
of M. OFn

⊆ In implies that OA ⊆
⋂∞

n=1 In, where A =
⋃∞

n=1 Fn. Now we have

V (OA) = A, and since A is a first category subset, then int(A) = φ, i.e., OA is an
essential ideal. Thus

⋂∞
n=1 In is also an essential ideal. �

The following lemma is a characterization of the intersection of all essential
minimal prime ideals of C(X).

Lemma 3.5. The intersection of all essential minimal prime ideals of C(X) is

equal to OβX\I(X), where I(X) is the set of isolated points of topological space X .

Proof: Let P be an essential minimal prime ideal of C(X). Then by [4, Corol-
lary 3.3], there is p ∈ βX \ I(X) such that Op ⊆ P and so OβX\I(X) is contained
in the intersection of essential minimal prime ideals. Now let f be an element of
the intersection of essential minimal prime ideals and p ∈ βX \ I(X). Then by
[4, Theorem 3.1], Op is an essential ideal which is the intersection of some essen-
tial minimal prime ideals, therefore f ∈ Op. Hence the intersection of essential
minimal prime ideals is contained in OβX\I(X). �

An ideal I of R is called a pure ideal, if for any f ∈ I, there is a g ∈ I such that
f = fg (see [1]). The set of all points in a topological spaceX which have compact
neighborhoods is denoted by XL. It is easily seen that XL = coz(CK(X)) =⋃

f∈CK(X) coz(f). Since βX \X ⊆ βX \ I(X), we have, CF (X) ⊆ OβX\I(X) ⊆

CK(X), where CK(X) = OβX\X , see [7, 7.F]. In the following theorem we show
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that the intersection of essential minimal prime ideals in C(X) is equal to the
socle of C(X). However, it need not be equal to CK(X).

Theorem 3.6. (i) The intersection of all essential minimal prime ideals of

C(X) is equal to the socle of C(X) (i.e., CF (X)).
(ii) Every intersection of essential minimal prime ideals of C(X) is an essen-

tial ideal if and only if the set of isolated points of X is dense in X .

(iii) The intersection of all essential minimal prime ideals of C(X) is equal to

CK(X) if and only if I(X) = XL =
⋃

f∈CK(X) X \ Z(f), i.e., I(X) = XL

and CK(X) is a pure ideal.

Proof: (i) By Lemma 3.5, the intersection of essential minimal prime ideals is
OβX\I(X). Hence CF (X) ⊆ OβX\I(X). Now let f ∈ OβX\I(X). Then βX \
intβX clβXZ(f) ⊆ I(X). By [7, 6.9 d], any isolated point of X is isolated in βX ,
so βX \ intβX clβXZ(f) is a compact subset of βX consisting of some isolated
points. Therefore βX \ intβX clβXZ(f) is finite, which implies that X \ Z(f) is
finite. Thus f ∈ CF (X).

(ii) By (i), this is [3, Corollary 3.3].
(iii) Let CK(X) = OβX\I(X). It is easily seen that I(X) ⊆ XL. Now let

x ∈ XL, then there exists a compact subset U in X such that x ∈ intU , i.e.,
x /∈ X \ intU . By complete regularity of X there is f ∈ C(X) such that x ∈
X\Z(f) ⊆ U ⊆ clXU , hence x ∈ X\Z(f), where f ∈ CK(X). By hypothesis, X\
I(X) ⊆ Z(f) so x ∈ I(X). Therefore I(X) = XL, hence CK(X) = OβX\I(X) =

OβX\coz(CK(X)). By [1, Theorem 3.2], XL = coz(CK(X)) =
⋃

f∈CK(X) X \ Z(f).

Conversely, we have I(X) = XL =
⋃

f∈CK(X) X \ Z(f). By [1, Theorem 3.2],

CK(X) = OβX\coz(CK(X)) = OβX\XL = OβX\I(X). �

Recall that a completely regular space X is said to be a pseudo-discrete space if
every compact subset of X has finite interior. Clearly the class of pseudo-discrete
spaces contains the class of P-spaces (see [3]).

Corollary 3.7. A topological space X is pseudo-discrete if and only if I(X) =
XL and CK(X) is a pure ideal.

Proof: This is a consequence of Theorem 4.5 in [3] and Theorem 3.6. �

By using the above theorem, we give examples of topological spaces X for
which CK(X) is equal to the intersection of essential minimal prime ideals (i.e.,
X is a pseudo-discrete space).

Example 3.8. (i) If X is a locally compact space and CK(X) = OβX\I(X), then
X is a discrete space. For if X is a locally compact, then CK(X) is a pure ideal
and XL = X . Since CK(X) = OβX\I(X), then I(X) = XL = X , i.e., X is a
discrete space.

(ii) Let X be the set of rational numbers with the topology such that all points
have their usual neighborhoods except for x = 0 which is isolated point. Then
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XL = I(X) = {0} and CK(X) = {f ∈ C(X) : f = 0 except for x = 0} is a pure
ideal and so CK(X) = OβX\I(X).

In the following, we give an example of a space X for which CK(X) is not
equal to the intersection of essential minimal prime ideals.

Example 3.9. Let X = [−1, 1] with the topology in which x = 0 has the usual
neighborhoods and all other points are isolated. Then XL = X \ {0} = I(X)
but CK(X) is not equal to OβX\I(X), for CK(X) is not a pure ideal, see [1,
Example 3.3].

By Proposition 3.3 and Theorem 3.6, we have the following corollary.

Corollary 3.10. The set of isolated points of X is dense in X if and only if the

set of isolated points of M(C(X)) is dense in M(C(X)).

By [3, Theorem 2.4] and Theorem 3.4, we have the following corollary.

Corollary 3.11. Let X be a compact space. Every first category subset of X
is nowhere dense in X if and only if every first category subset of M(C(X)) is

nowhere dense in M(C(X)).

Question 3.12. (i) For R = C(X), determine X for which RK(M) =
CK(X). Note that in case X and M are compact or nowhere compact
we have RK(M) = CK(X).

(ii) When is the intersection of sd-ideals in a reduced ring R an sd-ideal?
(iii) When is the intersection of sd-ideals in C(X) an sd-ideal?
(iv) When is RK(M) equal to the intersection of all strongly dense fd-ideals?
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