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UNIVERSALLY TYPICAL SETS
FOR ERGODIC SOURCES OF MULTIDIMENSIONAL DATA

Tyll Krüger, Guido Montúfar, Ruedi Seiler,
and Rainer Siegmund-Schultze

We lift important results about universally typical sets, typically sampled sets, and empirical
entropy estimation in the theory of samplings of discrete ergodic information sources from
the usual one-dimensional discrete-time setting to a multidimensional lattice setting. We use
techniques of packings and coverings with multidimensional windows to construct sequences
of multidimensional array sets which in the limit build the generated samples of any ergodic
source of entropy rate below an h0 with probability one and whose cardinality grows at most
at exponential rate h0.

Keywords: universal codes, typical sampling sets, entropy estimation, asymptotic equipar-
tition property, ergodic theory

Classification: 94A24, 62D05, 94A08

1. INTRODUCTION

An entropy-typical set is defined as a set of nearly full measure consisting of output
sequences the negative log-probability of which is close to the entropy of the source
distribution. The scope of this definition is revealed by the asymptotic equipartition
property (AEP), which was introduced by McMillan [6] as the convergence in probabil-
ity of the sequence − 1

n log µ(xn
1 ) to a constant h, namely, the Shannon entropy rate of

the process µ [9]. Many processes have the AEP, as has been shown, e. g., in [1, 2, 6, 7].
In particular, for stationary discrete-time ergodic processes, this property is guaranteed
by the Shannon–McMillan (SM) theorem [6] and in the stronger form of almost-sure
convergence by the Shannon–McMillan–Breiman (SMB) theorem [2]. These two the-
orems have been extended from discrete-time to amenable groups, including Zd as a
special case, by Kieffer [3] and Ornstein–Weiss [7], respectively.

Roughly speaking, the AEP implies that the output sequences of a random process
are typically confined to a ‘small’ set of events which have all approximately the same
probability of being realized, in contrast to the much larger set of all possible output
sequences. This means that individual outcomes with much higher or smaller probability
than e−nh will rarely be observed. By the AEP, the entropy-typical sets have total
probability close to one and their cardinality is fairly minimal among all sets with this
property. This way, entropy-typical sets provide an important theoretical framework for
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communication theory. Lossless source coding is a type of algorithm which performs data
compression while ensuring that the exact reconstruction of the original data is possible
from the compressed data. Lossless data compression can be achieved by encoding the
typical set of a stochastic source with fixed length block codes of length nh. By the AEP,
this length nh is also the average length needed. Hence compression at an asymptotic
rate equal to the entropy rate is possible. This rate is optimal, in view of Shannon’s
source coding theorem [9].

In universal source coding, the aim is to find codes which efficiently compress down
to the theoretical limit, i. e., the entropy rate, for any ergodic source without a need
to be adapted to the specific source. We emphasize here that codes of that type are
optimal data compressors for any stationary source, since by the ergodic decomposition
theorem (see, e. g., [10]) any stationary source is a convex mixture of ergodic sources.
Moreover, any asymptotically optimal universal compression scheme defines sequences
of universally typical sets: for given ε, the set of all n-blocks such that their compression
needs at most (h + ε)n bits, is universally typical for all sources with entropy rate h or
less. Vice versa, any constructive solution to the problem of finding universally typical
sets yields an universal compression scheme, since the index in the universally typical
set is an optimal code for the block. As will turn out, our approach for multidimensional
sources is constructive. But one has to admit that such an ad hoc algorithm is, generally
speaking, not very useful in practice, because determining the index should be very time
consuming.

Many formats for lossless data compression, like ZIP, are based on the implementa-
tion of the algorithms proposed by Lempel and Ziv (LZ) [13] and [14], or variants of
them, like the Welch modification [12]. The LZ algorithms allow to construct universally
typical libraries. However, they are designed for text compression, i. e., for compression
of 1-dimensional data sources. Lempel and Ziv [4] showed that universal coding of im-
ages is possible by first transforming the image to a 1-dimensional stream (scanning the
image with a Peano–Hilbert curve, a special type of Hamilton path) and then applying
the 1-dimensional algorithm LZ78 from [14]. The idea behind that approach is that the
Peano–Hilbert curve scans hierarchically complete blocks before leaving them, main-
taining most local correlations that way. In contrast, a simple row-by-row scan only
preserves horizontal correlations. But with the Peano curve approach, while preserving
local correlations in all directions, these correlations are much encrypted due to the
inevitably fractal nature of that space-filling curve.

We take the point of view that the techniques of packing and counting can be better
exploited in data compression with unknown distributions if, instead of transforming the
‘image’ into a 1-dimensional stream by scanning it with a curve, the multidimensional
block structure is left untouched. This will allow to take more advantage of multidimen-
sional correlations between neighbouring parts of the data, speed up the convergence of
the counting statistics, and in turn fasten estimation and compression. This approach
will be carried out in a forthcoming paper. The idea of the present paper is to extend
theoretical results about typical sampling sets and universally typical sets to a truly
multidimensional sampling-window setting. The proofs of these extensions are guided
by the discussion of the 1-dimensional situation in Shields’ monograph [11].
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2. SETTINGS

We consider the d-dimensional lattice Zd and the quadrant Zd
+. Consider a finite al-

phabet A, |A| < ∞ and the set of arrays with that alphabet: Σ = AZd

, Σ+ = AZd
+ .

We define the set of n-words as the set of n × · · · × n arrays Σn := AΛn for the n-
box Λn :=

{
(i1, . . . , id) ∈ Zd

+ : 0 ≤ ij ≤ n− 1, j ∈ {1, . . . , d}
}
. An element xn ∈ Σn has

elements xn(i) ∈ A for i ∈ Λn.
Let AZd

denote the σ-algebra of subsets of Σ generated by cylinder sets, i. e., sets of
the following kind:

[y] := {x ∈ Σ : x(i) = y(i), i ∈Λ} , y ∈ AΛ, |Λ| < ∞.

If C is a subset of AΛ, we will use the notation [C] for ∪y∈C [y].
We denote by σr the natural lattice translation by the vector r ∈ Zd acting on Σ

by σrx(i) := x(i + r). We use the same notation σr to denote the induced action on
the set P of probability measures ν over (Σ,AZd

): σrν(E) := ν(σ−1
r E). The set of

all stationary (translation-invariant) elements of P is denoted by Pstat, i. e., ν ∈ Pstat if
σrν = ν for each r ∈ Zd. Those ν ∈ Pstat which cannot be decomposed as a proper convex
combination ν = λ1ν1+λ2ν2, with ν1 6= ν 6= ν2 and ν1, ν2 ∈ Pstat are called ergodic. The
corresponding subset of Pstat is denoted by Perg. Throughout this paper µ will denote
an ergodic A-process on Σ. By νn we denote the restriction of the measure ν to the
block Λn, obtained by the projection Πn : x ∈ Σ → xn ∈ Σn with xn(i) = x(i), i ∈ Λn.
We use the same notation Πk to denote the projections from Σn to Σk, n ≥ k, defined
in the same obvious way. The measurable map Πn transforms the given probability
measure ν to the probability measure denoted by νn.

The entropy rate of a stationary probability measure ν is defined as limit of the scaled
n-word entropies:

H(νn) :=−
∑

x∈Σn

νn({x}) log νn({x})

h(ν) := lim
n→∞

1
nd

H(νn).

Here and in the following we write log for the dyadic logarithm log2.
For a shift p ∈ Λk we consider the following partition of Zd into k-blocks:

Zd =
⋃

r∈k·Zd

(Λk + r + p),

and in general we use the following notation:
The regular k-block partitions of a subset M ⊂ Zd are the families of sets defined by

RM,k := {RM,k(p) : p ∈ Λk} , RM,k(p) := {(Λk + p + r) ∩M}r∈k·Zd .

Clearly, for any p the elements of RM,k(p) are disjoint and their union gives M .
In the case M = Λn, given a sample xn ∈ Σn, such a partition yields a parsing of

xn in elements of A(Λk+r+p)∩Λn , r ∈ k · Zd. We call those elements the words of the
parsing of xn induced by the partition RΛn,k(p). With exception of those r, for which
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Λk + r + p crosses the boundary of Λn, these are cubic k-words. Forgetting about their
r-position, we may identify ΠΛk

x ∼ ΠΛk+rσ−rx ∈ AΛk+r ∼= AΛk .
For k, n ∈ N, k < n, any element x ∈ Σ gives rise to a probability distribution

defined by the relative frequency of the different k-words in a given parsing of xn. Let
us introduce the following expression for these frequency counts:

Zp,k,n
x (a) :=

∑
r∈×d

i=1{0,...,b(n−pi)/kc−1}

1[a](σk·r+px), (1)

n ∈ N, k ≤ n, a ∈ AΛk , p = (p1, . . . , pd) ∈ Λk.

For regular k-block parsings, the non-overlapping empirical k-block distribution gen-
erated by x ∈ Σ in the box Λn is the probability distribution on Σk given by:

µ̃k,n
x ({a}) :=

1

bn/kcd
Z0,k,n

x (a) for a ∈ AΛk . (2)

Similarly, for any p = (p1, . . . , pd) ∈ Λk the shifted regular k-block partition gives a
non-overlapping empirical k-block distribution:

µ̃p,k,n
x ({a}) :=

1∏d
i=1 b(n− pi)/kc

Zp,k,n
x (a). (3)

We will also use the overlapping empirical k-block distribution, in which all k-words
present in x are considered:

µ̃k,n
x,overl({a}) :=

1
(n− k + 1)d

∑
r∈Λn−k+1

1[a](σrx) for a ∈ AΛk . (4)

3. RESULTS

The main contribution of this paper is the following:

Theorem 3.1. (Universally typical sets) For any given 0 < h0 ≤ log |A| there is a
sequence of subsets {Tn(h0) ⊂ Σn}n such that for all µ ∈ Perg with h(µ) < h0 the
following holds:

a) lim
n→∞

µn (Tn(h0)) = 1 and, in fact, xn ∈ Tn(h0) eventually µ-almost surely.

b) lim
n→∞

log |Tn(h0)|
nd

= h0.

For each n, a possible choice of Tn(h0) is the set of arrays with empirical k-block

distributions of per-site entropies not larger than h0, where k =
⌊

d

√
1
2 log|A| nd

⌋
.

Furthermore, for any sequence {Un ⊂ Σn}n with lim inf
n→∞

1
nd log |Un| < h0, there exists a

µ ∈ Perg with h(µ) < h0 which satisfies:

c) lim inf
n→∞

µn (Un) = 0.
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In fact, when lim sup
n→∞

1
nd log |Un| < h0, then xn 6∈ Un eventually µ-almost surely.

The proof of Theorem 3.1 is based on other assertions following now. Although
the 1-dimensional special case of the theorem can be inferred from the existence of
universal codes for the class of ergodic processes on Z and the non-existence of too-good
codes, to our knowledge it has not been formulated explicitly before. The strategy of
our proof is guided by the discussion of 1-dimensional universal codes contained in [11,
Theorem II.1.1, Theorem II.1.2, and Section II.3.d].

We start lifting the packing lemma [11, Lemma I.3.3]. We show that if a set of words
C ⊂ Σm is typical among all m-blocks present in a sample xk ∈ Σk, k ≥ m, i. e., C has
large probability in the overlapping empirical m-block distribution, then the sample xk

can be parsed into non-overlapping blocks in such a way that nearly all words belong
to C. The following lemma asserts that a parsing with many matchings and only few
‘holes’ can be realized by a regular partition; i. e., C receives large probability in the
non-overlapping empirical distribution of some shift of x.

Lemma 3.2. (Packing lemma) For any 0 < δ ≤ 1 let k and m be integers satisfying
k ≥ d ·m/δ. Let C ⊂ Σm and let x ∈ Σ be such that µ̃m,k

x,overl(C) ≥ 1− δ. Then there is
a p ∈ Λm such that a) µ̃p,m,k

x (C) ≥ 1− 2δ, and b) |Zp,m,k
x (C)| ≥ (1− 4δ)(

⌊
k
m

⌋
+ 2)d.

The condition on the array x means that
∑

r∈Λk−m+1
1[C](σrx) ≥ (1−δ)(k−m+1)d.

The first statement a) means that there exists a regular m-block partition RΛk,m(p) ∈
RΛk,m that parses xk in such a way that at least a (1− 2δ)-fraction of the m-words are
elements of C. When δ = 0 and k ≥ m this statement is trivial. The second statement
b) implies that at least a (1− 4δ)-fraction of the total number of words are elements of
C (this total number including non-cubical words at the boundary).

P r o o f . (Proof of Lemma 3.2) Denote by Ξ the set of vectors {r ∈ Λk−m+1 : σrx is in
[C]}. For any p ∈ Λm denote by λ(p) the number of those r ∈ Ξ satisfying r = pmod(m).
Clearly, λ(p) = |Zp,m,k

x (C)| is the number of cubic blocks in the p-shifted regular
m-block partition of Λk which belong to C. Then we have

∑
r∈Λk−m+1

1[C](σrx) =∑
p∈Λm

λ(p) ≥ (1 − δ)(k − m + 1)d, by assumption. Hence, there is at least one

p′ ∈ Λm for which λ(p′) ≥ (1−δ)(k−m+1)d

md . It is easy to see that (1 − δ) (k−m+1)d

md ≥
(1 − δ)kd−dmkd−1

md ≥ (1 − δ)2 kd

md ≥ (1 − 2δ) kd

md . Since the maximal number of m-
blocks that can occur in RΛk,m(p′) is ( k

m )d, this completes the proof of a). For b)
observe that the total number of partition elements of the regular partition (including
the non-cubic at the boundary) is upper bounded by

(⌊
k
m

⌋
+ 2
)d ≤ 1

md (k + 2m)d ≤
1

md

(
kd + (k + 2m)d−12dm

)
≤ 1

md

∑d
j=0 kd−j(2dm)j ≤ kd

md

1−(2δ)d+1

1−2δ . Here for the sec-
ond inequality we used the estimate 1 − (d − 1)y ≤ 1/(1 + y)d−1, y ≥ 0 and for the
third one the estimate

(
d−1

j

)
≤ dj . On the other hand, from the first part we have

λ(p′) = |Zp,m,k
x (C)| ≥ (1 − 2δ) kd

md and 1 − 2δ ≥ 1−4δ
1−2δ ≥ (1 − 4δ) 1−(2δ)d+1

1−2δ . This com-
pletes the proof. �
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p

RΛk,m
(p) ∈ RΛk,m

m

k

m

k

n

Fig. 1. Left: A p-shifted regular m-block parsing of an array

xk ∈ T µ
k (δ, m), for d = 2. The shaded blocks contain m-arrays from

Cµ
m and fill at least a (1− δ)-fraction of the total volume k2. For

k � m the boundary blocks have a negligible volume. Right:

A k-block parsing of an array xn showing possible regular m-block

parsings of the resulting k-blocks.

We need two definitions before we continue formulating the results:

Definition 3.3. (Entropy-typical sets) Let δ ∈ (0, 1
2 ). For some µ with entropy rate

h(µ) the entropy-typical sets are defined as:

Cµ
m(δ) :=

{
x ∈ Σm : 2−md(h(µ)+δ) ≤ µm({x}) ≤ 2−md(h(µ)−δ)

}
. (5)

We use these sets to define the following typical sampling sets. See Figure 1.

Definition 3.4. (Typical sampling sets) For some µ, δ ∈ (0, 1
2 ), and k ≥ m, we define

a typical sampling set T µ
k (δ,m) as the set of elements in Σk that have a regular m-block

partition such that the resulting words belonging to the µ-entropy typical set Cµ
m =

Cµ
m(δ) contribute at least a (1−δ)-fraction to the (slightly modified) number of partition

elements in that regular m-block partition.

T µ
k (δ,m) :=

{
x ∈ Σk :

∑
r∈m·Zd:

(Λm+r+p)⊆Λk

1[Cµ
m](σr+px) ≥ (1− δ)

(
k

m

)d

for some p ∈ Λm

}
.

We fix some α > 0 and assume δ < α/(log |A|+1). In the following we will choose m

depending on k such that m
k→∞−−−−→ ∞ and limk→∞

m
k = 0. As it turns out, a sequence
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T µ
k (δ,m) satisfying these conditions, denoted Tk(α), is a sequence of ‘small’ libraries

from which the realizations of the ergodic process µ can be constructed asymptotically
almost surely. This is the statement of Theorem 3.5, which generalizes a previous result
by Ornstein and Weiss [8, Section 2, Theorem 2] (see [11, Theorem II.3.1]).

Theorem 3.5. Let µ ∈ Perg and α ∈ (0, 1
2 ). Then:

a) For all k larger than some k0 = k0(α) there is a set Tk(α) ⊂ Σk satisfying

log |Tk(α)|
kd

≤ h(µ) + α,

and such that for µ-a.e. x the following holds:

µ̃k,n
x (Tk(α)) > 1− α,

for all n and k with k
n < ε for some ε = ε(α) > 0 and n larger than some n0(x).

b) Let {T̃k,n(x)}k,n>0 be a family of double-sequences of subsets of Σk, depending
measurably on x ∈ Σ, with cardinality |T̃k,n(x)| ≤ 2kd(h(µ)−α). Then there exists
a k1(α) ≥ k0(α) and for µ-a.e. x there exists an n0(x) such that

µ̃k,n
x (T̃k,n(x)) ≤ α,

whenever k > k1(α), n > n0(x), and 2kd(h(µ)+α) ≤ nd.

Using Theorem 3.5 we will prove the following Theorem 3.6, which states that the
entropy of the non-overlapping empirical distribution of a sample converges almost surely
to the true entropy of the process as the size of the parsing blocks grows to infinity
without exceeding a logarithmic bound with respect to the size of the sampled region.
In particular, this result describes a procedure to estimate entropies from samples. In
fact, the inspiring 1-dimensional result [11, Theorem II.3.5] is called entropy-estimation
theorem. We will use the alternative name empirical-entropy theorem, referring to its
resemblance to the SMB or entropy theorem. This result will be a central ingredient in
proving the existence of small universally typical libraries (Theorem 3.1).

Theorem 3.6. (Empirical-entropy theorem) Let µ ∈ Perg. Then for any sequence
{kn}n with kn

n→∞−−−−→∞ and kd
n(h(µ) + α) ≤ log nd (for some α > 0) we have

lim
n→∞

1
kd

n

H(µ̃kn,n
x ) = h(µ) µ-almost surely.

This concludes the section of results. Below we provide the proofs.
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4. PROOFS

P r o o f . (Proof of Theorem 3.5 a)) We show that the claim holds choosing Tk(α) as
typical sampling sets T µ

k (δ,m) from Definition 3.4 with δ < α
log |A|+1 , m

k→∞−−−−→ ∞, and
limk→∞

m
k = 0.

Cardinality. We estimate the cardinality of the sets T µ
k (δ,m). For a given m, there

are md possible values of p. There are at most
(

k
m

)d
cubic boxes in any m-block partition

of Λk. Therefore, the number of choices for the contents of all blocks which belong to

Cµ
m is at most |Cµ

m|(
k
m )d

. By the definition of T µ
k (δ,m), the number of lattice sites not

belonging to the regular partition is at most δkd. There are |A|δkd

possible values for
these sites. Let K =

⌊
k
m

⌋
+2. The maximal number of blocks in the partition, including

non-cubic ones, is Kd. For m
k small enough, not more than a 2δ ≤ α < 1

2 fraction of all
these blocks have contents not in Cµ

m. Taking into account that the binomial coefficients(
K
l

)
do not decrease in l while l ≤ 1

2K, we get the following bound:

|T µ
k (δ,m)| ≤ md

∑
0≤l≤2δKd

(
Kd

l

)
|A|δkd

|Cµ
m|(

k
m )d

≤ mdKd

(
Kd⌊
1
2Kd

⌋)|A|δkd

|Cµ
m|(

k
m )d

.

We apply Stirling’s formula N ! '
√

2πN(N
e )N , taking into account that the multi-

plicative error for positive N is uniformly bounded from below and above. A coarse
bound will suffice. In the following estimate we make use of the relation |Cµ

m| ≤
2md(h(µ)+δ), following immediately from the definition of Cµ

m. For some positive con-
stants c, c′, and c′′ we have

log |T µ
k (δ,m)| ≤ log cmdKd

(
Kd⌊
1
2Kd

⌋)Kd √
Kd⌊

1
2Kd

⌋2 |A|δkd

|Cµ
m|(

k
m )d

≤ log c′md3Kd

Kd/2|A|δkd

|Cµ
m|(

k
m )d

≤ log c′′kd3( k
m +2)d

2(h(µ)+δ+δ log|A|)kd

≤ kd

(
h(µ) + δ(log |A|+ 1) +

2d

md
log 3 +

log kd + log c′′

kd

)
.

In the last line we used 1/m + 2/k ≤ 2/m, which holds when k/m is large enough.
When δ < α

log |A|+1 , and m as well as k are large enough (depending on α), this yields
log |Tk(α)| ≤ kd(h(µ) + α).

Probability bound. Ornstein and Weiss’ extension [7] of the SMB theorem shows1:

lim
m→∞

− 1
md

log µm(Πmx) = h(µ) µ-almost surely.

1Here, in fact, we only need the convergence in probability [3], which ensures µ(Cµ
m)

m→∞−−−−→ 1.
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Thus, by the definition of Cµ
m (Definition 3.3), there exists an m0(δ) such that

µm (Cµ
m) ≥ 1 − δ2/5 for all m ≥ m0(δ). We fix such an m. The individual ergodic

theorem [5] asserts that the following limit exists for µ-almost every x ∈ Σ:

lim
n→∞

1
nd

∑
r∈Λn

1[Cµ
m] (σrx) =

∫
1[Cµ

m](x) dµ(x) = µm(Cµ
m),

and therefore,∑
r∈Λn−m+1

1[Cµ
m](σrx) ≥ (1− δ2/4)(n−m + 1)d > (1− δ2/3)nd (6)

holds eventually almost surely, i. e., for µ-almost every x, choosing n large enough de-
pending on x, n ≥ n0(x).

Take an x ∈ Σ and an n ∈ Z+ for which this is the case and eq. (6) is satisfied.
Choose a k with m < k < n. Consider the unshifted regular k-block partition of the
n-block Λn:

Λn =
⋃

r∈k·Zd

(Λk + r) ∩ Λn.

In the following we deduce from eq. (6) that if k/m and n/k are large enough, at least
a (1 − 2δ)-fraction of the k-blocks in this regular k-block parsing of Πnx (those which
count for the empirical distribution µ̃k,n

x ) satisfy

1
(k −m + 1)d

∑
s∈Λk−m+1

1[Cµ
m](σs+rx) ≥ (1− δ/4). (7)

This is because if more than the specified 2δ-fraction of the k-blocks had more than a
δ/4-fraction of ‘bad’ m-blocks, then the total number of ‘bad’ m-blocks in Πnx would
be larger than

2δ
⌊n

k

⌋d

· δ

4
(k −m + 1)d ≥ δ2

2

((
1− k

n

)(
1− m

k

))d

nd >
δ2

3
nd,

for k
n and m

k small enough, contradicting eq. (6). While n had to be chosen large enough
depending on x, we see that k has to be chosen such that k

n and m
k are both small enough.

By Lemma 3.2, if k ≥ 4dm/δ, the k-blocks which satisfy eq. (7) have a regular m-block
partition with at least a (1− δ)-fraction of all partition members in Cµ

m. Hence, at least
a (1 − 2δ)-fraction of all k-blocks in Λn counting for the empirical distribution, belong
to T µ

k (δ,m). For 2δ ≤ α we get the probability bound:

µ̃k,n
x (T µ

k (δ,m)) ≥ 1− α. (8)

This completes the proof of Theorem 3.5 a). �

P r o o f . (Proof of Theorem 3.5 b)) The statement is trivial for h(µ) = 0. Let h(µ) > 0.
For a fixed δ < α consider the sets En(δ) of all x in Σ with

µ̃k,n
x (Tk(δ)) ≥ 1− δ for all k ≥ k0(δ), 2kd(h(µ)+α) ≤ nd,
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where k0 = k0(δ) is chosen large enough as in the first part of the theorem. Consider
the sets Dn(α, δ) of all x in Σ with

µ̃k,n
x (T̃k,n(x)) > α for some k with k ≥ k0(δ), 2kd(h(µ)+α) ≤ nd,

and let
Fn(δ, α) = [Cµ

n(δ)] ∩Dn(α, δ) ∩ En(δ).

The restriction Πnx of any x ∈ Dn(α, δ) ∩ En(δ) can be described as follows.

1. First we specify a k with k ≥ k0(δ), 2kd(h(µ)+α) ≤ nd as in the definition of Dn(α, δ).

2. Next, for each of the
⌊

n
k

⌋d blocks counting for the empirical distribution, we specify
whether this block belongs to T̃k,n(x), to Tk(δ)\T̃k,n(x) or to Σk \(Tk(δ)∪T̃k,n(x)).

3. Then we specify for each such block its contents, pointing either to a list containing
all elements of T̃k,n(x), or to a list containing Tk(δ) \ T̃k,n(x) or, in the last case,
listing all elements of that block.

4. Finally, we list all boundary elements not covered by the empirical distribution.

In order to specify k we need at most log n bits (in fact, much less, due to the bound
on k). We need at most 2

⌊
n
k

⌋d bits to specify which of the cases under 2. is valid for
each of the blocks. For 3. we need the two lists for the given k. This needs at most(
2kd(h(µ)+δ) + 2kd(h(µ)−α)

)
kd(log |A|+ 1) bits. According to the definitions of Dn(α, δ)

and En(δ), to specify the contents of all k-blocks, we need at most(n

k
+ 1
)d

kd (α(h(µ)− α) + (1− α)(h(µ) + δ) + δ(log |A|+ 1))

bits. For 4. we need at most (nd −
⌊

n
k

⌋d
kd)(log |A| + 1) bits. Hence the cardinality of

ΠnFn(δ, α) can be estimated by

log |ΠnFn(δ, α)|

≤ log n + 2
nd

kd
1(α)

+nd
(
n−d(1− h(µ)+δ

h(µ)+α ) + n−d(1−h(µ)−α
h(µ)+α )

) d log n

h(µ) + α
(log |A|+ 1)

+nd

(
1 +

1
n

d

√
d log n

(h(µ) + α)

)d (
h(µ)− α2 + δ(log |A|+ 2)

)
+nd

1−

(
1− 1

n
d

√
d log n

h(µ) + α

)d
 (log |A|+ 1)

≤ nd(h(µ)− α2/2 + δ(log |A|+ 2))
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bits, supposed n is large enough and k1(α) is chosen sufficiently large. Now, since
ΠnFn(δ, α) ⊂ Cµ

n(δ), we get

µ(Fn(δ, α)) = µn(ΠnFn(δ, α)) ≤ 2−nd(α2/2−δ(log |A|+3)).

Making δ small enough from the beginning, the exponent here is negative. Hence, by the
Borel–Cantelli-lemma, only finitely many of the events x ∈ Fn(δ, α) may occur, almost
surely. But we know from the first part of the theorem that x ∈ En(δ) eventually almost
surely (observe that the condition 2kd(h(µ)+α) ≤ nd implies k

n < ε(δ) as supposed there,
for n large enough). And we know from the Ornstein–Weiss-theorem that Πnx ∈ Cµ

n(δ)
eventually almost surely. Hence x ∈ (Σ \ Fn(δ, α)) ∩ En(δ) ∩ [Cµ

n(δ)] ⊂ Σ \ Dn(δ, α)
eventually almost surely. This is the assertion b) of the theorem. �

P r o o f . (Proof of Theorem 3.6) The proof follows the ideas of the proof of the
1-dimensional statement [11, Theorem II.3.5].

Let α < 1
4 and consider the sets Tk(α) from Theorem 3.5. Consider the sets Uk,n(x) :=

{a ∈ Tk(α) : µ̃k,n
x (a) < 2−kd(h(µ)+2α)}. Since |Tk(α)| ≤ 2kd(h(µ)+α), also µ̃k,n

x (Uk,n(x)) ≤
2−kdα, for any x.

Consider also the sets Vk,n(x) := {a ∈ Tk(α) : µ̃k,n
x (a) > 2−kd(h(µ)−2α)}. Obviously

|Vk,n(x)| ≤ 2kd(h(µ)−2α). Now, by the second part of Theorem 3.5, for µ-almost every
x there exists an n0(x) with µ̃k,n

x (Vk,n(x)) ≤ 2α whenever n > n0(x), k > k1(2α), and
2kd(h(µ)+2α) ≤ nd.

We conclude that, for µ-a.e. x, the sets Mk,n(x) := Tk(α) \ (Uk,n(x)∪Vk,n(x)) satisfy

µ̃k,n
x (Mk,n(x)) ≥ 1− 4α,

where we assume that n > n0(x), k > k2(2α), 2kd(h(µ)+2α) ≤ nd, and k2(α) ≥ k1(α) is
chosen such that 2−k2(α)dα < α.

Consider now the Shannon entropy of the empirical distribution µ̃k,n
x ,

H(µ̃k,n
x ) = −

∑
a∈Σk

µ̃k,n
x (a) log µ̃k,n

x (a)

= −
∑

Σk\Mk,n

. . .

︸ ︷︷ ︸
Ξk,n

−
∑
Mk,n

. . .

︸ ︷︷ ︸
χk,n

. (9)

Let Bk,n(x) := Σk \Mk,n(x). For the first sum in eq. (9) an upper bound is given by2

Ξk,n ≤ µ̃k,n
x (Bk,n(x))kd log |A| − µ̃k,n

x (Bk,n(x)) log µ̃k,n
x (Bk,n(x)),

and hence lim sup
n→∞

1
kd

n
Ξk(n),n ≤ 4α log |A| holds µ-a.s. under the theorem’s assumptions.

2Note that
P

a∈B p(a) log p(a) ≤ p(B) log |B| − p(B) log p(B).
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For the second sum in eq. (9), note that the elements a from Mk,n(x) satisfy

kd(h(µ)− 2α) ≤ − log µ̃k,n
x (a) ≤ kd(h(µ) + 2α),

and thus

1
kd

n

χk,n ≥
∑

a∈Mk,n(x)

µ̃k,n
x (a)(h(µ)− 2α) ≥ (1− 4α)(h(µ)− 2α)

1
kd

n

χk,n ≤
∑

a∈Mk,n(x)

µ̃k,n
x (a)(h(µ) + 2α) ≤ h(µ) + 2α.

Therefore we have the following holding µ-a.s.:

(1− 4α)(h(µ)− 2α) ≤ lim inf
n→∞

1
kd

n

H(µ̃k(n),n
x )

≤ lim sup
n→∞

1
kd

n

H(µ̃k(n),n
x )

≤ h(µ) + α(2 + 4 log |A|).

Finally, note that a sequence kn satisfying the two assumptions of the theorem for
some α > 0 in fact satisfies them for any smaller α too. This completes the proof. �

P r o o f . (Proof of Theorem 3.1) When h0 = log |A|, the first two items are proven by
choosing Tn(h0) = Σn. In the following we assume h0 < log |A|.

1. Each x ∈ Σ gives rise to a family of empirical distributions
{
µ̃k,n

x

}
k≤n

. For each n

we define the set Tn(h0) as the set of elements in Σn having empirical k-block entropy
per symbol not larger than h0:

Tn(h0) := Πn

{
x ∈ Σ : H

(
µ̃k,n

x

)
≤ kdh0

}
. (10)

Here we have to choose k depending on n (how exactly will be specified later).
The number of all non-overlapping empirical k-block distributions in Σn is upper

bounded by
((

n
k

)d)|A|kd

, since
⌊

n
k

⌋d is the maximal count of any particular k-block in

the parsing of an element of Σn and |A|k
d

is the number of elements in Σk.
For the number of elements xn ∈ Σn with the same empirical distribution (µ̃k,n

x ) we
find an upper bound which depends only on the entropy of that empirical distribution:
For a given n with bn/kc = n/k, we consider the product measure P = (µ̃k,n

x )⊗(n/k)d

on
Σn: P (yn) =

∏
r∈k·Zd

Λk+r⊂Λn

µ̃k,n
x (Πk(σry)), which yields

P (yn) =
∏

a∈Σk

(
µ̃k,n

x (a)
)(n/k)dµ̃k,n

x (a)
= 2−(n/k)dH(µ̃k,n

x ), ∀y : µ̃k,n
y = µ̃k,n

x , (11)

and thus |{y ∈ Σn : µ̃k,n
y = µ̃k,n

x }| ≤ 2(n/k)H(µ̃k,n
x ).
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For a general n : bn/kc 6= n/k, the entries in the positions Λn\Λk·bn/kc may be
occupied arbitrarily, giving the following bound:

|{y ∈ Σn : µ̃k,n
y = µ̃k,n

x }| ≤ 2bn/kcdH(µ̃k,n
x ) · |A|n

d−(n−k)d

. (12)

Now we are able to give an upper estimate for the number |Tn(h0)| of all configura-
tions in Λn which produce an empirical distribution with entropy at most kdh0:

|Tn(h0)| ≤ 2h0kd(n
k )d

|A|n
d−(n−k)d

((n

k

)d
)|A|kd

,

log |Tn(h0)| ≤ ndh0 + (nd − (n− k)d) log |A|+ |A|k
d

d log
n

k
.

Introducing the restriction kd ≤ 1
1+ε log|A| nd = log nd

(1+ε) log |A| , with ε > 0 arbitrary, we

conclude that |Tn(h0)| ≤ 2ndh0+o(nd) (uniformly in k under the restriction). This yields
lim sup

n→∞

log |Tn(h0)|
nd ≤ h0.

2. Next we have to prove that such a sequence of sets, with k = k(n) suitably
specified, is asymptotically typical for all µ ∈ Perg with h(µ) < h0. Given any µ with
h(µ) < h0, Theorem 3.6 states that for µ-a.e. x the k-block empirical entropy 1

kH(µ̃k,n
x )

converges to h(µ), provided k = k(n) is a sequence with k(n) →∞ and kd(n) ≤ log nd

h(µ)+α ,
where α > 0 can be chosen arbitrarily. Since any µ satisfies h(µ) ≤ log |A|, choosing
kd(n) ≤ log nd

(1+ε) log |A| with ε > 0 yields assertion a) by the definition of Tn(h0), eq. (10).

3. Consider a sequence {Un ⊂ Σn}n with lim infn→∞
1

nd log |Un| = h1 < h0. One can
find an ergodic µ with h(µ) = h2 and h1 < h2 < h0. We know that µn is asymptotically
confined to the entropy typical subsets

Cµ
n(δ) =

{
a ∈ Σn : 2−nd(h2+δ) ≤ µn({a}) ≤ 2−nd(h2−δ)

}
,

and therefore

lim inf
n→∞

µ(Un) = lim inf
n→∞

µ(Un ∩ Cµ
n(δ)) ≤ lim inf

n→∞
|Un|2−nd(h2−δ) = lim

n→∞
2nd(h1−h2+δ).

Choosing δ small enough this limit is zero. The previous analysis, together with the
Borel–Cantelli-lemma, shows that on any subsequence with lim supn′→∞

1
n′d

log |Un′ | <
h0, only finitely many of the events xn′ ∈ Un′ may occur, almost surely. This proves c).
Combining c) and a), we get lim inf

n→∞
1

nd log |Tn(h0)| ≥ h0. In the first part of the proof

we showed lim sup
n→∞

1
nd log |Tn(h0)| ≤ h0. Thus b) is verified as well. �

5. CONCLUSIONS

We prove multidimensional extensions of theoretical results about samplings of ergodic
sources which are important in the design of universal source coding schemes. Our results
provide a truly multidimensional mathematical framework for the optimal compression
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of multidimensional data. We show that the set of n × · · · × n arrays with empiri-
cal k-block distributions of per-site entropy not larger than h0, defined in eq. (10), is
asymptotically typical for all ergodic A-processes of entropy rate smaller than h0, where
k =

⌊
d

√
c log|A| nd

⌋
, 0 < c < 1. In other words, for all A-processes of entropy rate

smaller than h0, the probability of the corresponding cylinder set tends to 1 as n →∞.
These sets have a log cardinality of order ndh0.
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