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ARTINIAN COFINITE MODULES OVER COMPLETE

NOETHERIAN LOCAL RINGS

Behrouz Sadeghi, Marand, Kamal Bahmanpour, Jafar A’zami, Ardabil

(Received May 30, 2012)

Abstract. Let (R, m) be a complete Noetherian local ring, I an ideal of R andM a nonzero
Artinian R-module. In this paper it is shown that if p is a prime ideal of R such that
dimR/p = 1 and (0 :M p) is not finitely generated and for each i > 2 the R-module

ExtiR(M, R/p) is of finite length, then the R-module Ext1R(M, R/p) is not of finite length.
Using this result, it is shown that for all finitely generated R-modules N with Supp(N) ⊆

V (I) and for all integers i > 0, the R-modules ExtiR(N, M) are of finite length, if and only
if, for all finitely generated R-modules N with Supp(N) ⊆ V (I) and for all integers i > 0,

the R-modules ExtiR(M, N) are of finite length.
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1. Introduction

Throughout this paper, let R denote a commutative Noetherian local ring (with

identity) and I an ideal of R. For an R-module M , the ith local cohomology module

of M with respect to I is defined as

Hi
I(M) = lim−→

n>1

ExtiR(R/In, M).

We refer the reader to [7] or [4] for more details about local cohomology. In [8],

Hartshorne defined an R-module L to be I-cofinite if Supp(L) ⊆ V (I) and

Exti
R(R/I, L) is a finitely generated module for all i. The concept of cofinite

modules have been studied by several authors; see, for example, Hartshorne [8],
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Huneke and Koh [9], Delfino [5], Delfino and Marley [6], Yoshida [16], Bahmanpour

and Naghipour [2], Abazari and Bahmanpour [1], Kawasaki [11], [12], Bahmanpour,

Naghipour and Sedghi [3], Melkersson [15], [14]. More recently, using the main result

of [3], in [10] Irani and Bahmanpour have proved that for any ideal I of a Noethe-

rian ring R and any I-cofinite R-module M of dimension d 6 1, the R-modules

Exti
R(M, N) are finitely generated, for all integers i > 0 and all finitely generated

R-modules N with support in V (I). The main goal of this paper is to verify the

converse of this result. In this direction as the main result of this paper we shall

prove the following theorem:

Theorem 1.1. Let (R, m) be a complete Noetherian local ring and I an ideal of

R. Let M be an Artinian R-module. Then the following are equivalent:

(i) For all finitely generatedR-modulesN with Supp(N) ⊆ V (I) and for all integers

i > 0, the R-modules Exti
R(N, M) are of finite length.

(ii) For all finitely generatedR-modulesN with Supp(N) ⊆ V (I) and for all integers

i > 0, the R-modules Exti
R(M, N) are of finite length.

One of our tools for proving Theorem 1.1 is the following:

Theorem 1.2. Let (R, m) be a complete Noetherian local ring and M a nonzero

Artinian R-module. Let p be a prime ideal of R such that dimR/p = 1 and (0 :M p)

is not finitely generated. If for all i > 2 the R-module ExtiR(M, R/p) is of finite

length, then the R-module Ext1R(M, R/p) is not of finite length.

Throughout this paper, R will always be a commutative Noetherian ring with

nonzero identity and I will be an ideal of R. Recall that, for each R-module M , all

integers j > 0 and all prime ideals p of R, the jth Bass number of M with respect

to p is defined as µj(p, M) = dimk(p) Extj
Rp

(k(p), Mp), where k(p) := Rp/pRp. For

an Artinian R-module A we denote by AttR(A) the set of attached prime ideals

of A. For any ideal a of R we denote {p ∈ Spec R : p ⊇ a} by V (a). We denote the

support of each R-module M by Supp(M). Also, for each R-module M we denote

by AssR(M) the set of associated prime ideals of M . Moreover, for each R-module

M we denote by AnnR(M) the annihilator of M in R. Finally, for each R-module

M we denote by ER(M) the injective envelope (or injective hull) of M .
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2. The results

To prove the main results of this paper, we need the following lemmas.

Lemma 2.1. Let R be a Noetherian ring and p a prime ideal of R. Let M 6= 0

be an arbitrary R-module such that 0 6= µ0
R(p, M) = n < ∞. Then there exists an

exact sequence

0 →
n

⊕

i=1

R/p → M.

P r o o f. Let E := ER(M). Then we may assume E =
( n

⊕

i=1

ER(R/p)
)

⊕

E′ for

some injective R-module E′. Now for each 1 6 i 6 n, let Li =
( n

⊕

j=1

Li,j

)

⊕ 0, where

Li,i = R/p and Li,j = 0 for each j ∈ {1, . . . , n} \ {i}. Then as Li is a submodule of

E and E is an essential extension of M , it follows from the definition that for each

1 6 i 6 n we have Li ∩ M 6= 0. Therefore ∅ 6= AssR(Li ∩ M) ⊆ AssR(Li) = {p} and

hence AssR(Li ∩ M) = {p}. Therefore the R-module Li ∩ M has a submodule L′
i

such that L′
i
∼= R/p. Now it is easy to see that L′

1 + . . .+L′
n
∼=

n
⊕

i=1

R/p and obviously

L′
1 + . . . + L′

n is a submodule of M . This completes the proof. �

Lemma 2.2. Let R be a Noetherian ring, I a proper ideal of R and A a nonzero

Artinian I-cofinite R-module. Then for each nonzero finitely generated R-module N

with support in V (I), the R-modules ExtiR(A, N) have finite length for all integers

i > 0.

P r o o f. See [10, Theorem 2.3]. �

Corollary 2.3. Let (R, m) be a Noetherian local ring and A a nonzero Artinian

R-module. Then for each nonzero R-module N of finite length, the R-modules

Exti
R(A, N) have finite length for all integers i > 0.

P r o o f. Since each Artinian R-module is m-cofinite the assertion follows imme-

diately from Lemma 2.2. �

The following theorem is our main tool for the proof of the main result of this

paper.
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Theorem 2.4. Let (R, m) be a complete Noetherian local ring and M a nonzero

Artinian R-module. Let p be a prime ideal of R such that dimR/p = 1 and (0 :M p)

is not finitely generated. If for each i > 2 the R-module ExtiR(M, R/p) is of finite

length, then the R-module Ext1R(M, R/p) is not of finite length.

P r o o f. Let λ(p, M) = dimR/m((p + 0 :R M)/(0 :R M)⊗R R/m). We prove the

assertion by induction on λ(p, M). Let λ(p, M) = 0. In this case p ⊆ 0 :R M and so

pM = 0. Consider the following exact sequence:

(2.4.1) 0 → R/p → ER(R/p) → T → 0.

Since M is Artinian it follows from the definition that Supp(M) ⊆ {m} and so

HomR(M, R/p) = HomR(M, ER(R/p)) = HomR(M, T/Γm(T )) = 0. Now from the

exact sequence

(2.4.2) 0 → Γm(T ) → T → T/Γm(T ) → 0,

we conclude that HomR(M, T ) ≃ HomR(M, Γm(T )). Since the R-module ER(R/p)

is injective from the exact sequence (2.4.1) we have

Ext1R(M, R/p) ≃ HomR(M, T ) ≃ HomR(M, Γm(T )).

On the other hand,

Γm(ER(R/p)) = H1
m(ER(R/p)) = 0.

Therefore Γm(T ) ≃ H1
m(R/p) and consequently

Ext1R(M, R/p) ≃ HomR(M, H1
m(R/p)).

So it is enough to show that the R-module HomR(M, H1
m(R/p)) is not of fi-

nite length. Suppose that HomR(M, H1
m(R/p)) is of finite length. Set L :=

HomR(H1
m(R/p), ER(R/m)). In view of [4, Theorem 7.1.3] the R-module H1

m(R/p)

is Artinian. Since R is complete, it follows that L is a finitely generated R-module.

Moreover, by [4, Theorem 7.3.2] we have

AttR(H1
m(R/p)) = {p}.

Now, as R is a complete local ring, it follows from [4, Exercise 10.2.15(iii)] that

{p} = AttR(H1
m(R/p)) = AttR(0 :H1

m
(R/p) 0) = AssR(L/0L) = AssR(L).
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Therefore, L is a finitely generated R-module such that p ∈ AssR(L) and pL = 0.

Let µ0(p, L) = n. By Lemma 2.1 there is an exact sequence

(2.4.3) 0 →
n

⊕

i=1

R/p → L → B → 0,

which implies the following exact sequence:

(2.4.4) 0 →
n

⊕

i=1

Rp/pRp → Lp → Bp → 0.

From the assumption pL = 0 we conclude that

µ0(p, L) = dimRp/pRp
HomRp

(Rp/pRp, Lp)

= dimRp/pRp
(Lp) = n = dimRp/pRp

( n
⊕

i=1

Rp/pRp

)

.

Therefore from the exact sequence (2.4.4) we conclude that Bp = 0. Hence, we have

Supp(B) ⊆ V (p) \ {p} ⊆ V (m) = {m} and pB = 0. Since R is complete, applying

the exact functor D := HomR(−, ER(R/m)) to the exact sequence (2.4.3) we get the

exact sequence

(2.4.5) 0 → C → H1
m(R/p) →

n
⊕

i=1

ER/p(R/m) → 0,

where C := HomR(B, ER(R/m)) is an R-module of finite length and ER/p(R/m) ≃

HomR(R/p, ER(R/m)). Consider the exact sequence

(2.4.6) HomR(M, H1
m(R/p)) → HomR

(

M,

n
⊕

i=1

ER/p(R/m)

)

→ Ext1R(M, C).

By hypothesis the R-module HomR(M, H1
m(R/p)) is of finite length. Also by Corol-

lary 2.3 the R-module Ext1R(M, C) has finite length. Therefore the exact sequence

(2.4.6) implies that the R-module HomR(M,
n
⊕

i=1

ER/p(R/m)) is of finite length. On

the other hand,

HomR

(

M,

n
⊕

i=1

ER/p(R/m)

)

≃
n

⊕

i=1

HomR(M, ER(R/m)),

since pM = 0. Therefore the R-module HomR(M, ER(R/m)) is of finite length and

so the R-module M is of finite length, and so the R-module 0 :M p is of finite length
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which is a contradiction. Now suppose, inductively, that λ(p, M) = t > 1, and the

result has been proved for all values smaller than t. By an argument similar to

that in the first step it is enough to prove that the R-module HomR(M, H1
m(R/p))

is not of finite length. We suppose that the R-module HomR(M, H1
m(R/p)) is of

finite length and again look for a contradiction. Since pH1
m(R/p) = 0 it follows that

HomR(R/p, H1
m(R/p)) ≃ H1

m(R/p) and so we have

HomR(M, H1
m(R/p)) ≃ HomR(M, HomR(R/p, H1

m(R/p))

≃ HomR(M ⊗R R/p, H1
m(R/p)) ≃ HomR(M/pM, H1

m(R/p)).

The argument now proceeds like that used in the first step with the R-moduleM1 =

M/pM . Since pM1 = 0, so by a similar argument for M , the R-module

HomR(M1, H
1
m(R/p))

is of finite length, and consequently the R-module M1 is of finite length. By

[4, Corollary 7.2.12] and [4, Exercise 7.2.6], we deduce that AttR(M) ∩ V (p) =

AttR(M/pM) ⊆ {m}. In particular, p *
⋃

q∈AttR(M)\{m}

q. Now by assumption

λ(p, M) = t > 1, so there exist x1, . . . , xt in p such that

p + AnnRM/AnnRM = (x1, . . . , xt) + AnnRM/AnnRM.

Since p *
⋃

q∈AttR(M)\{m}

q,

p + AnnRM = (x1, . . . , xt) + AnnRM *
⋃

q∈AttR(M)\{m}

q,

and therefore using the fact that AnnRM ⊆
⋂

q∈AttR(M)\{m}

q, it follows that

(x1, . . . , xt) *
⋃

q∈AttR(M)\{m}

q.

Consequently, in view of [13, Exercise 16.8], there exists y1 ∈ (x2, . . . , xt) such

that z1 /∈
⋃

q∈AttR(M)\{m}

q, where z1 = x1 + y1. Clearly z1 ∈ p and (x1, . . . , xt) =

(z1, x2, . . . , xt), hence

p + AnnRM/AnnRM = (z1, x2, . . . , xt) + AnnRM/AnnRM.
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Now we have

AttR(M/z1M) ⊆ AttR(M) ∩ V (Rz1) ⊆ {m}.

By [4, Corollary 7.2.12] M/z1M is of finite length. The exact sequence

(2.4.7) 0 → z1M → M → M/z1M → 0

induces an exact sequence

ExtiR(M, R/p) → Exti
R(z1M, R/p) → Exti+1

R (M/z1M, R/p)

for each i > 2. By assumption, Exti
R(M, R/p) for all i > 2 is of finite length.

Also Exti+1
R (M/z1M, R/p) is of finite length and so for all i > 2 the R-module

Exti
R(z1M, R/p) is of finite length. The exact sequence

(2.4.8) 0 → 0 :M z1 → M → z1M → 0

induces an exact sequence

Exti
R(M, R/p) → ExtiR(0 :M z1, R/p) → Exti+1

R (z1M, R/p)

for each i > 2. This shows that for each i > 2, the R-module Exti
R(0 :M z1, R/p)

is of finite length. Since z1 ∈ p, it follows that 0 :(0:M z1) p = 0 :M p is not finitely

generated. Now Rz1 + (0 :R M) ⊆ 0 :R (0 :M z1), so λ(p, 0 :M z1) 6 λ(p, M) − 1 =

t − 1. Hence, by induction hypothesis the R-module Ext1R(0 :M z1, R/p) is not of

finite length. The exact sequence (2.4.8) induces an exact sequence

Ext1R(M, R/p) → Ext1R(0 :M z1, R/p) → Ext2R(z1M, R/p).

Consequently, as the R-module Ext2R(z1M, R/p) is of finite length it follows

that the R-module Ext1R(M, R/p) is not of finite length, hence the R-module

HomR(M, H1
m(R/p)) is not of finite length, which is a contradiction. �

An immediate consequence of Theorem 4.2 is the following theorem.

Theorem 2.5. Let (R, m) be a complete Noetherian local ring andM an Artinian

R-module. Let p be a prime ideal of R such that dim R/p = 1. Then the following

are equivalent:

(i) The R-module M is p-cofinite.

(ii) For all i > 0, the R-module ExtiR(M, R/p) has finite length.

P r o o f. (i) → (ii) Follows from Lemma 2.2.

(ii) → (i) Suppose that M is not p-cofinite. Then by [14, Proposition 4.1] the

R-module 0 :M p is not finitely generated. Now by Theorem 2.4 there exists i > 1

such that Exti
R(M, R/p) is not of finite length, which is a contradiction. �
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The following theorem is needed in the proof of the main result of this paper.

Theorem 2.6. Let (R, m) be a complete Noetherian local ring and I an ideal of

R. Let M be an Artinian R-module. Then the following are equivalent:

(i) The R-module M is I-cofinite.

(ii) For every finitely generated R-module N with Supp(N) ⊆ V (I) and for all

i > 0, the R-module Exti
R(M, N) is of finite length.

P r o o f. (i) → (ii) Follows from Lemma 2.2.

(ii)→ (i) Suppose thatM is not I-cofinite. Then by [15, Theorem 1.6] there exists

q ∈ AttR(M) such that dimR/I + q > 1. Therefore there exists p ∈ V (I + q) such

that dimR/p = 1. By [15, Theorem 1.6], M is not p-cofinite. So by Theorem 2.5

there exists i > 0 such that ExtiR(M, R/p) is not of finite length. But R/p is finitely

generated and Supp(R/p) ⊆ V (I), which is a contradiction. �

Now we are ready to state and to prove the main result of this paper.

Theorem 2.7. Let (R, m) be a complete Noetherian local ring and I an ideal of

R. Let M be an Artinian R-module. Then the following are equivalent:

(i) For all finitely generated R-modules N with Supp(N) ⊆ V (I) and all integers

i > 0, the R-modules Exti
R(N, M) are of finite length.

(ii) For all finitely generated R-modules N with Supp(N) ⊆ V (I) and all integers

i > 0, the R-modules Exti
R(M, N) are of finite length.

P r o o f. The assertion follows from Theorem 2.6 and [11, Lemma 1]. �
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