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Abstract. For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a con-
nected graph G, the ordered k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v,wk)) is called
the metric representation of v with respect to W , where d(x, y) is the distance between
vertices x and y. A set W is called a resolving set for G if distinct vertices of G have
distinct representations with respect to W . The minimum cardinality of a resolving set for
G is its metric dimension. In this paper, we characterize all graphs of order n with metric
dimension n− 3.
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1. Introduction

Throughout this paper G = (V,E) is a finite, simple, and connected graph of order

n(G). The distance between two vertices u and v, denoted by dG(u, v), is the length

of a shortest path between u and v in G. We write it simply d(u, v) when no confusion

can arise. Also, the diameter of G, max
{u,v}⊆V (G)

d(u, v), is denoted by diam(G). For

an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the k-vector

r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the metric representation of v

with respect to W . A set W is called a resolving set for G if distinct vertices have

different representations. In this case we say the set W resolves G. A resolving set

W for G with minimum cardinality is called a basis of G, and its cardinality is the

metric dimension of G, denoted by β(G).

The concepts of the metric dimension and the resolving set were independently

introduced by Slater [10] and Harary and Melter [5]. For more results related to

these concepts see [1], [3], [4], [8], [12]. The concept of a resolving set has various ap-
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plications in diverse areas including coin weighing problems [9], robot navigation [8],

mastermind game [1], and combinatorial search and optimization [9].

It is obvious that for every graph G of order n, 1 6 β(G) 6 n − 1. Khuller et al.

[8] improved this bound to β(G) 6 n − diam(G). Chartrand et al. [2] proved that

β(G) = 1 if and only if G is a path. Also, all graphs with metric dimension two were

characterized by Sudhakara and Hemanth Kumar [11]. Chartrand et al. [2] proved

that for n > 2, β(G) = n− 1 if and only if G is the complete graph Kn. They also

provided a characterization of graphs of order n and metric dimension n− 2. In [6]

the problem of characterization of all graphs of order n and metric dimension n− 3

was proposed. In this paper, we answer this question and characterize these graphs.

First, in the next section, we present some definitions and known results which are

necessary to prove the main theorem.

2. Preliminaries

In this section, we present some definitions and known and simple results which are

necessary to prove our main theorem. The symbols ∼ and ≁ denote the adjacency

and non-adjacency relations between two vertices. An edge with end vertices u and

v is denoted by uv. A path of order n, Pn, and a cycle of order n, Cn, are denoted

by (v1, v2, . . . , vn) and (v1, v2, . . . , vn, v1), respectively.

An ordered setW resolves a set T of vertices in G, if the representations of vertices

in T are distinct with respect to W . When W = {x}, we say a vertex x resolves

T . To see whether a given set W is a resolving set for G, it is sufficient to look at

the representations of vertices in V (G) \ W , because w ∈ W is the only vertex of

G with d(w,w) = 0. In [2] all graphs of order n with metric dimension n − 2 are

characterized as follows.

Theorem A [2]. If G is a graph of order n > 4, then β(G) = n− 2 if and only if

G = Ks,t (s, t > 1), G = Ks ∨Kt (s > 1, t > 2), or G = Ks ∨ (Kt ∪K1) (s, t > 1).

Here, ∨ and ∪ are used for the join and the disjoint union of graphs, respectively.

We say a set S of vertices is homogeneous if the subgraph induced by S in G, G[S],

is a complete or an empty subgraph of G. In this terminology, it is proved in [7] that

each vertex of G∗ is a homogeneous subset of V (G).

Proposition 1 [7]. If G 6= K1 is a graph, then diam(G∗) 6 diam(G). Moreover,

if u, v ∈ V (G) are not twin vertices of G, then dG∗(u∗, v∗) = dG(u, v).

For each vertex v ∈ V (G), let Γi(v) := {u ∈ V (G); d(u, v) = i}. Two distinct

vertices u, v are twins if Γ1(v)\{u} = Γ1(u)\{v}. Clearly, if vertices u, v are twins in
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a graph G and S resolves G, then u or v is in S. As in [7], we define u ≡ v if and only

if u = v or u, v are twins. In [7], it is proved that the relation ≡ is an equivalence

relation. The equivalence class of the vertex v is denoted by v∗. The twin graph

of G, denoted by G∗, is the graph with the vertex set V (G∗) := {v∗; v ∈ V (G)},

where u∗v∗ ∈ E(G∗) if and only if uv ∈ E(G). It is easy to see that u, v are adjacent

in G if and only if all vertices of u∗ are adjacent to all vertices of v∗, hence the

notion of G∗ is well defined. For each subset S ⊆ V (G), let S∗ denote the set

{v∗ ∈ V (G∗); v∗ ⊆ S}. By Proposition 1 Γi(v
∗) = (Γi(v))

∗, for i 6= 0. Furthermore,

we define R1(v) := {x ∈ Γ1(v); ∃y ∈ Γ2(v) : x ∼ y} and R2(v) := Γ1(v) \R1(v).

As in [7], we say that v∗ ∈ V (G∗) is of type (1) if |v∗| = 1, of type (K) if

G[v∗] ∼= Kr and r > 2, and of type (N) if G[v∗] ∼= Kr and r > 2. A vertex of G∗ is

of type (1K) if it is of type (1) or (K), of type (1N) if it is of type (1) or (N), and

of type (KN) if it is of type (K) or (N). We denote by α(G∗) the number of vertices

of G∗ of type (K) or (N). It is obvious that G is uniquely determined by G∗, and

the type and cardinality of each vertex of G∗. Hernando et al. [7] characterized all

graphs of order n, diameter d and metric dimension n− d by the following theorem.

Theorem B [7]. Let G be a graph of order n and diameter d > 3. If G∗ is the

twin graph of G, then β(G) = n− d if and only if G∗ is one of the following graphs:

1. G∗ ∼= Pd+1 and one of the following cases holds

(a) α(G∗) 6 1;

(b) α(G∗) = 2, the two vertices of G∗ not of type (1) are adjacent, and if one

is a leaf of type (K), then the other is also of type (K);

(c) α(G∗) = 2, the two vertices of G∗ not of type (1) are at distance 2 and

both are of type (N);

(d) α(G∗) = 3 and there is a vertex of type (KN) adjacent to two vertices of

type (N).

2. G∗ ∼= Pd+1,k (the path (u
∗
0, u

∗
1, . . . , u

∗
d) with one extra vertex adjacent to u

∗
k−1)

for some integer k ∈ [3, d − 1], the degree-3 vertex u∗
k−1 of G

∗ is of any type, each

neighbor of u∗
k−1 is of type (1N), and every other vertex is of type (1).

3. G∗ ∼= P ′
d+1,k (the path (u∗

0, u
∗
1, . . . , u

∗
d) with one extra vertex adjacent to u

∗
k−1

and u∗
k) for some integer k ∈ [2, d − 1], the three vertices in the cycle are of type

(1K), and every other vertex is of type (1).

A subgraph H of a graph G is an isometric subgraph if dH(u, v) = dG(u, v) for all

pairs of vertices inH . To prove our main theorem, we need the following observations

and propositions.
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Observation 1. If H is an isometric subgraph of G and β(H) = n(H)− t, then

β(G) 6 n(G)− t.

Corollary 1. If H is an induced subgraph of G, where diam(H) = 2, and

β(H) = n(H)− t, then β(G) 6 n(G)− t.

Corollary 2. If H is an induced subgraph of G, and G is an induced subgraph of

a graph R, where diam(H) = diam(G) = 2, β(R) = n(R)− t, and β(H) = n(H)− t,

then β(G) = n(G)− t.

Proposition 2. If β(G∗) = n(G∗)− t, then β(G) 6 n(G)− t.

P r o o f. Let S∗ be a basis of G∗ and T ∗ = V (G∗) \S∗. We choose a vertex v for

each v∗ ∈ T ∗ and let T = {v; v∗ ∈ T ∗}. Since S∗ is a basis of G∗, for each pair of

vertices u∗, v∗ ∈ T ∗ there exists x∗ ∈ S∗ such that dG∗(x∗, u∗) 6= dG∗(x∗, v∗). Note

that neither u nor v is a twin of x, for each x ∈ x∗. Therefore, by Proposition 1, we

have dG∗(x∗, u∗) = dG(x, u) and dG∗(x∗, v∗) = dG(x, v). Hence, dG(x, u) 6= dG(x, v),

which implies S =
⋃

v∗∈S∗

v∗ resolves T . Hence, V (G) \ T is a resolving set for G of

cardinality n(G)− t, thus β(G) 6 n(G)− t. �

Observation 2. If G is a graph and G∗ is the twin graph of G, then β(G) >

n(G)− n(G∗).

3. Main results

Let G be a connected graph of order n and metric dimension n− 3. Since n− 3 =

β(G) 6 n − diam(G), diam(G) 6 3. If diam(G) = 1, then G ∼= Kn, contrary

to β(G) = n − 3. If diam(G) = 3, then in Theorem B let d = 3, which yields

a characterization of graphs G with β(G) = n− 3, where diam(G) = 3 (note that in

this case the interval [3, 2] is empty, hence, Case 2 dose not occur). Therefore, it is

enough to consider the case diam(G) = 2. The following theorem is our main result,

which is a characterization of all graphs with metric dimension n−3 and diameter 2.

Theorem 1. If G is a graph of order n and diameter 2 and G∗ is the twin graph

of G, then β(G) = n− 3 if and only if G∗ has one of the following structures:

G1. G
∗ ∼= K3 and has at most one vertex of type (1K);

G2. G
∗ ∼= P3, a leaf is of type (K), the other leaf is of type (KN) or the degree-2

vertex is of type (N);
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G3. G
∗ is a paw (a triangle with a pendant edge), one of the degree-2 vertices is

of type (N), the other is of type (1K), and the leaf is of type (1N). Moreover,

a degree-2 vertex of type (K) yields the leaf and the degree-3 vertex are not of

type (N);

G4. G
∗ ∼= C5, and each vertex is of type (1);

G5. G
∗ is a house, the adjacent degree-2 vertices are of type (1) and the other

vertices are of type (1K);

G6. G
∗ ∼= P4∨K1, all vertices except the degree-4 vertex are of type (1K). Moreover,

two non-adjacent vertices are not of type (K), and two adjacent vertices are not

of different types (K) and (N);

G7. G
∗ is a kite with a pendant edge adjacent to a degree-3 vertex, the leaf is of

type (1), the degree-4 and degree-3 vertices are type (1K), one of the degree-2

vertices is of type (K) and the other is of type (1);

G8. G
∗ is a kite, one of the degree-2 vertices is of type (K), the other is of type (1),

one of the degree-3 vertices is of type (N), and the other is of type (1K);

G9. G
∗ ∼= C4, two adjacent vertices are of type (K) and the others are of type (1);

G10. G
∗ ∼= C4 ∨K1, two degree-3 adjacent vertices are of type (K), degree-4 vertex

is of type (1K), and others are of type (1).

In Figure 1 the scheme of the 10 above structures is shown.

G1

u∗

j∗

i∗

G2

u∗ i∗ p∗

G3

p∗

j∗

i∗

u∗

G4

j∗

i∗

u∗

q∗

p∗

G5
j∗

i∗

u∗

q∗

p∗

G6

j∗

i∗

u∗

q∗

p∗

G7

j∗

i∗

u∗

q∗

p∗

G8
j∗

i∗

u∗ p∗

G9
j∗

i∗

u∗ p∗

G10
c∗

i∗

u∗ p∗j∗

Figure 1. The twin graph of graphs with diameter 2 and metric dimension n− 3.
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3.1. Proof of sufficiency. In this section we prove that, if G is a graph of order

n and diam(G) = 2 such that G∗ has one of the structures G1 through G10 in

Theorem 3.1, then β(G) = n − 3. In the sequel we consider each structure G1 to

G10, as shown in Figure 1, separately. In each case, we assume that i ∈ i∗, j ∈ j∗,

c ∈ c∗, p ∈ p∗, q ∈ q∗, and u ∈ u∗.

G1. Since G
∗ has three vertices, by Observation 2, β(G) > n − 3. On the other

hand, by Theorem A, β(G) 6= n − 2, so G is not a complete graph. Therefore,

β(G) 6 n − 3. Hence β(G) = n − 3. For structure G2, similarly to the above, we

deduce β(G) = n− 3.

G3. Let H,H1, H2, and H3 be four families of graphs such that their twin graph

is the same as G3. Assume that in H∗ the vertex j∗ is of type (N) and the other

vertices are of type (1), in H∗
1 both i

∗ and u∗ are of type (K), j∗ is of type (N), and

p∗ is of type (1), in H∗
2 both j∗ and p∗ are of type (N), i∗ is of type (K), and u∗ is

of type (1), in H∗
3 , u

∗ is of type (1) and the other vertices are of type (N).

Thus, there exists a graph H ′ in the family H which is an induced subgraph of G

and there exists a graph H ′
t in the family Ht such that G is an induced subgraph

of H ′
t, for some t, 1 6 t 6 3. Now we get the metric dimension of H and Ht.

Since in H∗, the vertex j∗ is of type (N), each resolving set for H contains at least

|j∗| − 1 vertices of j∗. Moreover, r(u|j∗ \ {j}) = r(i|j∗ \ {j}), hence, j∗ \ {j} is

not a resolving set for H . It is easy to see that (j∗ \ {j}) ∪ {u} is a resolving

set, and so a basis of H . Thus, β(H) = n(H) − 3. Since in H∗
1 , vertices i

∗, j∗,

and u∗ are not of type (1), each resolving set for H1 contains at least |i∗| − 1,

|j∗| − 1, and |u∗| − 1 vertices of i∗, j∗, and u∗, respectively. On the other hand,

r(u|i∗ ∪ j∗ ∪ u∗ \ {i, j, u}) = r(i|i∗ ∪ j∗ ∪u∗ \ {i, j, u}), therefore i∗ ∪ j∗ ∪u∗ \ {i, j, u}

does not resolve H1. It is easy to see that i
∗ ∪ j∗ ∪ u∗ \ {j, u} resolves H1, hence,

it is a basis of H1, and so β(H1) = n(H1) − 3. By the same argument, we can see

β(Ht) = n(Ht)− 3, 2 6 t 6 3. Now, since diam(H) = diam(G) = 2, by Corollary 2,

we have β(G) = n− 3.

G4. It is clear that β(C5) = 2.

G5. Let H and R be two families of graphs such that their twin graph is the

same as G5, all vertices of H
∗ are of type (1) and in R∗ both the vertices p∗ and

q∗ are of type (1) and the other vertices are of type (K). Therefore, there exists

a graph H ′ in the family H which is an induced subgraph of G and there exists

a graph R′ in the family R such that G is an induced subgraph of R′. It is clear that

β(H) = 2 = n(H) − 3. Each resolving set for R contains at least |i∗| − 1, |j∗| − 1,

and |u∗| − 1 vertices from i∗, j∗, and u∗, respectively. If W = i∗ ∪ j∗ ∪ u∗ \ {i, j, u},

then r(i|W ) = r(j|W ) = r(u|W ). Hence, W is not a resolving set for R. Further,

adding one of vertices i, j, and u to W cannot provide a resolving set for R, because

{i, j, u} is a clique in R. Since diam(R) = 2, neither p nor q can resolve more than
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two vertices of {i, j, u}. Thus, β(R) > |W | + 2 = n(R) − 3. Since R is neither

a complete graph nor any of the graphs in Theorem A, β(R) 6 n(R) − 3. Hence,

β(R) = n(R)− 3. Since diam(H) = diam(G) = 2, Corollary 2 yields β(G) = n− 3.

G6. Let H,H1, H2, and H3 be four families of graphs with twin graphs the same

as G6. Assume that all vertices of H
∗ are of type (1), in H∗

1 the vertex i
∗ is of type

(N) and the other vertices are of type (1), in H∗
2 both p∗ and q∗ are of type (1) and

the other vertices are of type (K), in H∗
3 both p

∗ and u∗ are of type (1) and the other

vertices are of type (K). Hence, there exists a graph H ′ in the family H which is an

induced subgraph of G and there exists a graph H ′
t in the family Ht such that G is an

induced subgraph of H ′
t for some t, 1 6 t 6 3. It is clear that β(H) = 2 = n(H)− 3.

Each resolving set for H1 contains at least |i∗|−1 vertices from i∗. But r(u|i∗\{i}) =

r(j|i∗\{i}) = r(p|i∗\{i}) = r(q|i∗\{i}) and there is no vertex of {u, j, p, q} such that

adding it to i∗\{i} provides a resolving set forH1, hence β(H1) > |i∗|+1 = n(H1)−3.

Since H1 is not a complete graph, Theorem A gives β(H1) 6 n(H1) − 3, and so

β(H1) = n(H1)− 3. Each resolving set for H2 contains at least |i∗| − 1, |j∗| − 1, and

|u∗|− 1 vertices from i∗, j∗, and u∗, respectively. Assume W = i∗∪ j∗ ∪u∗ \ {i, j, u}.

It follows that r(i|W ) = r(j|W ) = r(u|W ), hence W does not resolve H2. It is easy

to see that to provide a resolving set for H2 we need to add at least two vertices

from V (H2) −W to W . Thus, β(H2) > |W | + 2 = n(H2) − 3. On the other hand,

Theorem A implies β(H2) 6 n(H2)−3, and so β(H2) = n(H2)−3. In the same way,

β(H3) = n(H3)−3. Since diam(H) = diam(G) = 2, Corollary 2 implies β(G) = n−3.

G7. Let H and R be two families of graphs such that their twin graph is the same

as G7. Assume that in H∗ the vertex u∗ is of type (K) and the other vertices are of

type (1), and in R∗ both vertices p∗ and q∗ are of type (1) and the other vertices are

of type (K). Therefore, there exists a graph H ′ in the family H which is an induced

subgraph of G and there exists a graph R′ in the family R such that G is an induced

subgraph of R′. It is clear that each resolving set for H contains at least |u∗| − 1

vertices of u∗. Moreover, r(u|u∗ \ {u}) = r(i|u∗ \ {u}) = r(j|u∗ \ {u}) and to provide

a resolving set for H , we must add at least two vertices from {u, i, j, p, q} to u∗ \{u},

hence β(H) > |u∗|+ 1 = n(H)− 3. Further, by Theorem A, β(H) 6 n(H)− 3, thus

β(H) = n(H) − 3. Since i∗, j∗, and u∗ are not of type (1) in R∗, each resolving

set for R contains at least |i∗| − 1, |j∗| − 1, and |u∗| − 1 vertices of i∗, j∗, and u∗,

respectively. ForW = i∗∪j∗∪u∗\{i, j, u} we have r(i|W ) = r(j|W ) = r(u|W ), hence

W is not a resolving set for R. To provide a resolving set forR, we need to add at least

two vertices from {u, i, j, p, q} toW , and so, β(R) > |W |+2 = n(R)−3. Theorem A

shows that β(R) 6 n(R)−3, hence β(R) = n(R)−3. Since diam(H) = diam(G) = 2,

Corollary 2 yields β(G) = n− 3.

G8. Let H and R be two families of graphs such that their twin graph is the

same as G8, where in H∗ both j∗ and p∗ are of type (1), u∗ is of type (K) and
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i∗ is of type (N), and in R∗ both vertices j∗ and u∗ are of type (K), i∗ is of type

(N) and p∗ is of type (1). Then G is in one of the families H or R. Theorem A

shows that β(H) 6 n(H) − 3 and β(R) 6 n(R) − 3. Note that each resolving set

for H contains at least |u∗| − 1 and |i∗| − 1 vertices from u∗ and i∗, respectively. If

S = (i∗ ∪ u∗) \ {i, u}, then r(u|S) = r(j|S). Therefore, β(H) > |S|+ 1 = n(H)− 3,

and so β(H) = n(H) − 3. It is clear that every resolving set for R contains at

least |i∗| − 1, |j∗| − 1, and |u∗| − 1 vertices of i∗, j∗, and u∗, respectively. If W =

i∗ ∪ j∗ ∪ u∗ \ {i, j, u}, then r(j|W ) = r(u|W ), hence W is not a resolving set for R,

and so β(R) > |W |+ 1 = n(R)− 3. It follows that β(R) = n(R)− 3. Consequently,

β(G) = n(G)− 3.

G9. Let G
∗ be as G9 in Figure 1, where i

∗ and u∗ are of type (K) in G∗, and

the other vertices are of type (1). Each resolving set for G contains at least |i∗| − 1

and |u∗| − 1 vertices of i∗ and u∗, respectively. For W = i∗ ∪ u∗ \ {i, u}, we have

r(i|W ) = r(u|W ), hence W is not a resolving set for G, and so β(G) > |W | + 1 =

n(G)− 3. Theorem A implies β(G) 6 n(G)− 3. Consequently, β(G) = n(G) − 3.

G10. Let H and R be two families of graphs such that their twin graph is the

same as G10. In H∗ both u∗ and c∗ are of type (K) and the other vertices are of

type (1), and in R∗ both vertices i∗ and p∗ are of type (1) and the other vertices

are of type (K). Then G is in one of the families H or R. Theorem A shows that

β(H) 6 n(H)− 3 and β(R) 6 n(R)− 3. Note that each resolving set for H contains

at least |u∗|−1 and |c∗|−1 vertices from u∗ and c∗, respectively. If S = c∗∪u∗\{c, u},

then r(u|S) = r(j|S) = r(c|S), therefore S does not resolveH . To provide a resolving

set for H , we need to add at least two vertices from the set {u, i, j, c, p} to S, and so

β(H) > |S|+ 2 = n(H)− 3, hence β(H) = n(H)− 3. It is clear that every resolving

set for R contains at least |u∗| − 1, |j∗| − 1, and |c∗| − 1 vertices from u∗, j∗, and c∗,

respectively. Let W = u∗ ∪ j∗ ∪ c∗ \ {u, j, c}. Hence, r(u|W ) = r(j|W ) = r(c|W ),

therefore W is not a resolving set for R. Clearly, to provide a resolving set for R,

we must add at least two vertices from the set {u, i, j, c, p} to W , hence β(R) >

|W |+ 2 = n(R)− 3, thus β(R) = n(R)− 3. Consequently, β(G) = n(G)− 3.

This completes the proof of sufficiency of Theorem 3.1. �

3.2. Proof of necessity. Throughout this section, G is a graph of order n, diame-

ter 2, metric dimension n−3, and G∗ is the twin graph of G. Note that Proposition 1

implies that diam(G∗) 6 2. Through a sequence of lemmas and propositions, we will

show that G∗ has one of the structures G1 through G10.

Proposition 3. If diam(G∗) = 1, then G∗ has the structure of G1.

P r o o f. Let u∗, v∗ be two vertices of G∗ of type (1K). Since G∗ is a complete

graph, every pair of vertices u ∈ u∗ and v ∈ v∗ of G are twins, thus u∗ = v∗. Hence,
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G∗ has at most one vertex of type (1K). If vertices v∗1 , v
∗
2 , v

∗
3 , and v∗4 of G

∗ (except

possibly v∗1) are of type (N), then we choose an arbitrary vertex vi ∈ v∗i for each

i, 1 6 i 6 4, and ui ∈ v∗i \ {vi} for each i, 2 6 i 6 4. If T = {u2, u3, u4}, then

r(v1|T ) = (1, 1, 1), r(v2|T ) = (2, 1, 1), r(v3|T ) = (1, 2, 1), and r(v4|T ) = (1, 1, 2).

Hence, the set V (G) \ {v1, v2, v3, v4} is a resolving set for G and β(G) 6 n− 4. This

contradicts our assumption β(G) = n− 3. Therefore, G∗ has at most three vertices.

Assume G∗ ∼= Kt for some integer t ∈ [1, 3]. If t = 1, then G ∼= Kn or G ∼= Kn.

If t = 2, then G ∼= Kr,s or G ∼= Kr ∨ Ks. Since β(G) = n − 3, these cases are

impossible. Consequently G∗ ∼= K3, which is the desired conclusion. �

The remainder of this section will be devoted to the case diam(G∗) = 2. It is clear

that in this case there exists v ∈ V (G) such that Γ2(v
∗) 6= ∅ and Γ2(v) 6= ∅.

Lemma 1. If Γ2(v
∗) 6= ∅ and v ∈ v∗, then

⋃

u∗∈Γi(v∗)

u∗ ⊆ Γi(v), where i ∈ {1, 2},

⋃

u∗∈(R2(v))∗
u∗ ⊆ R2(v), and

⋃

u∗∈(R1(v))∗
u∗ = R1(v). Moreover, if v

∗ is of type (1K),

then
⋃

u∗∈Γ2(v∗)

u∗ = Γ2(v), R1(v
∗) = (R1(v))

∗ and R2(v
∗) = (R2(v))

∗.

P r o o f. It is clear that a vertex in Γ1(v) is not twin with any vertex of Γ2(v).

Therefore, all twins of vertices in Γ1(v) are in the set Γ1(v) ∪ {v} and all twins of

vertices in Γ2(v) are in Γ2(v)∪{v}. This gives Γi(v)\v∗ =
⋃

u∗∈Γi(v∗)

u∗ for i ∈ {1, 2}.

Hence,
⋃

u∗∈Γi(v∗)

u∗ ⊆ Γi(v), when i ∈ {1, 2}. Note that all twins of vertices in R1(v)

are in R1(v), because each member of R1(v) is adjacent to v and has at least one

neighbor in Γ2(v) while the vertices in R2(v) ∪ {v} have not such neighbors. Thus
⋃

u∗∈(R1(v))∗
u∗ = R1(v). By the same argument, all twins of vertices in R2(v) are in

R2(v) ∪ {v}. Consequently,
⋃

u∗∈(R2(v))∗
u∗ = R2(v) \ v

∗ ⊆ R2(v).

Now let v∗ be of type (1K). Therefore, v can only be twin with vertices of R2(v).

Hence,
⋃

u∗∈Γ2(v∗)

u∗ = Γ2(v). It is clear that R1(v
∗) ⊆ (R1(v))

∗. If there exists

a vertex u∗ ∈ (R1(v))
∗\R1(v

∗), then u∗ ∈ R2(v
∗), because Γ1(v

∗) = R1(v
∗)∪R2(v

∗).

Since v∗ ⊆ R2(v)∪{v}, all neighbors of each u ∈ u∗ are in the set Γ1(v)∪{v}, which

contradicts the fact that u ∈ R1(v). Therefore, R1(v
∗) = (R1(v))

∗ and consequently,

R2(v
∗) = (R2(v))

∗. �

Lemma 2. For each v, where Γ2(v) 6= ∅, at least one of the sets Γ1(v) and Γ2(v)

is homogeneous.

P r o o f. Let Γ2(v) 6= ∅. On the contrary, suppose that neither Γ1(v) nor Γ2(v)

are homogeneous. Therefore, there exist vertices v1, v2, and v3 in Γ1(v), and vertices
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u1, u2, and u3 in Γ2(v) such that v1 ∼ v2, v2 ≁ v3 and u1 ∼ u2, u2 ≁ u3. If

W ′ = {v, v2, u2}, then r(v1|W
′) = (1, 1, ∗), r(v3|W

′) = (1, 2, ∗), r(u1|W
′) = (2, ∗, 1),

and r(u3|W ′) = (2, ∗, 2), where ∗ is 1 or 2. These representations are distinct, hence,

V (G)\{v1, v3, u1, u3} is a resolving set for G. Thus β(G) 6 n−4. This contradiction

implies that at least one of the sets Γ1(v) or Γ2(v) is homogeneous. �

For Lemma 2, to complete the proof of necessity, we need to consider the following

two cases.

Case 1. There exists a vertex v ∈ V (G) such that Γ2(v
∗) 6= ∅ and Γ1(v) is

homogeneous.

By the assumption of Case 1, the following results are obtained.

Fact 1. |R1(v
∗)| 6 2.

P r o o f. Since every vertex of R1(v
∗) has a neighbor in Γ2(v

∗) and Γ1(v) is

homogeneous, for distinct vertices x∗, y∗ ∈ R1(v
∗), the sets Γ1(x

∗)
⋂
Γ2(v

∗) and

Γ1(y
∗)

⋂
Γ2(v

∗) are distinct nonempty sets. Therefore, Γ2(v
∗) resolves vertices of

R1(v
∗) in G∗. Moreover, since every vertex of R1(v

∗) has a neighbor in Γ2(v
∗) and

v∗ has no such neighbor, the representation of each vertex in R1(v
∗) with respect

to Γ2(v
∗) has a coordinate 1 while all coordinates of r(v∗|Γ2(v

∗)) are 2. Therefore,

Γ2(v
∗) resolves R1(v

∗) ∪ {v∗} and consequently, V (G∗) \ (R1(v
∗) ∪ {v∗}) is a re-

solving set for G∗. Thus β(G∗) 6 n(G∗) − |R1(v
∗) ∪ {v∗}|. On the other hand,

by Propositions 2, β(G∗) > n(G∗) − 3. Hence, |R1(v
∗) ∪ {v∗}| 6 3, which yields

|R1(v
∗)| 6 2. �

Lemma 3. If Γ2(v) is not homogeneous, then R2(v) and R2(v
∗) are empty sets.

P r o o f. Note that |R1(v
∗)| > 1, otherwise Γ2(v

∗) = ∅. Since Γ2(v) is not

homogeneous, there exist vertices i, j, and k in Γ2 such that i ∼ j and j ≁ k.

If R2(v) 6= ∅, then let r1 ∈ R1(v) ∩ Γ1(j), r2 ∈ R2(v) and W0 = {v, j}. Thus,

r(i|W0) = (2, 1), r(k|W0) = (2, 2), r(r1|W0) = (1, 1) and r(r2|W0) = (1, 2), and so

β(G) 6 n− 4. This contradiction implies R2(v) = ∅.

If R2(v
∗) 6= ∅, then

⋃

u∗∈R2(v∗)

u∗ * R2(v) and hence, by Lemma 1, v
∗ is of

type (N). Therefore, there exist two adjacent vertices a, b ∈
⋃

u∗∈Γ2(v∗)

u∗, other-

wise Γ2(v) is homogeneous. Since diam(G∗) = 2, there exists r1 ∈
⋃

u∗∈R1(v∗)

u∗

such that r1 ∼ a. Now let v1, v2 ∈ v∗, r2 ∈
⋃

u∗∈R2(v∗)

u∗, and W = {v1, a}. Thus,

r(v2|W ) = (2, 2), r(r1|W ) = (1, 1), r(r2|W ) = (1, 2), and r(b|W ) = (2, 1). Therefore,

V (G) \ {v2, r1, r2, b} is a resolving set for G, which contradicts β(G) = n− 3. Con-

sequently R2(v
∗) = ∅. �
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Fact 2. |Γ2(v
∗)| 6 3.

P r o o f. If Γ2(v) is homogeneous, then since every vertex of Γ2(v
∗) has a neigh-

bor in R1(v
∗) and Γ2(v

∗) is homogeneous, for distinct vertices x∗, y∗ ∈ Γ2(v
∗) the

sets Γ1(x
∗)

⋂
R1(v

∗) and Γ1(y
∗)

⋂
R1(v

∗) are distinct nonempty sets. Therefore, for

each pair of vertices x∗, y∗ ∈ Γ2(v
∗) there exists r∗1 ∈ R1(v

∗) such that r∗1 resolves

x∗ and y∗ in G∗. Hence, R1(v
∗) resolves all vertices of Γ2(v

∗). This implies that

V (G∗) \Γ2(v
∗) is a resolving set for G∗, which yields β(G∗) 6 n(G∗)− |Γ2(v

∗)|. On

the other hand, by Propositions 2 we have β(G∗) > n(G∗)− 3. Thus, |Γ2(v
∗)| 6 3.

If Γ2(v) is not homogeneous, then by Fact 1, |R1(v
∗)| 6 2. If |R1(v

∗)| = 1,

let R1(v
∗) = {r∗1}, r1 ∈ r∗1 , and for each l ∈ Γ2(v), N1(l) = Γ1(l) ∩ Γ2(v) and

N2(l) = Γ2(l) ∩ Γ2(v). Since Γ2(v) is not homogeneous, there exists x ∈ Γ2(v) such

that both N1(x) and N2(x) are nonempty sets. Let a ∈ N1(x) and y ∈ N2(x). Note

that Γ2(v
∗) = {x∗} ∪N∗

1 (x) ∪N∗
2 (x), and x resolves a and y. Hence, if N1(x) is not

homogeneous, then there exist vertices i, j, k ∈ N1(x) such that i ∼ j and j ≁ k.

Thus, {v, x, j} resolves {i, k, y, r1}, and this contradiction yields that N1(x) is homo-

geneous. By a similar argument N2(x) is also homogeneous. Note that the vertices

outside of N∗
1 (x) that are adjacent to some but not all vertices in N∗

1 (x) are in the

set N∗
2 (x), because N1(x) is homogeneous and its vertices share their neighbors in

Γ1(v) ∪ {x}. Similarly, all vertices outside of N∗
2 (x) that are adjacent to some but

not all vertices in N∗
2 (x) are in N∗

1 (x), hence, N
∗
1 (x) and N∗

2 (x) resolve each other.

Now let W1 = N∗
2 (x) ∪ {x∗}. If each vertex of N∗

1 (x) has a non-neighbor vertex in

N∗
2 (x), then the representation of each vertex of N

∗
1 (x) with respect to N

∗
2 (x) has the

coordinate 2, all coordinates of r(r∗1 |N
∗
2 (x)) are 1, and r(v

∗|N∗
2 (x)) is again 2. Conse-

quently, W1 resolves N
∗
1 (x)∪{r∗1 , v

∗}. Thus, β(G) = n− 3 implies that |N∗
1 (x)| 6 1.

Moreover, if there exists a∗ ∈ N∗
1 (x) such that a

∗ is adjacent to all vertices of N∗
2 (x),

then N∗
1 (x) has at most two vertices. Otherwise, there are two distinct vertices

b∗, c∗ ∈ N∗
1 (x) such that they are different from a∗, and r(b∗|N∗

2 (x)) and r(c
∗|N∗

2 (x))

are not 1, and so W1 resolves {a∗, b∗, c∗, v∗}, contrary to β(G) = n − 3. Hence,

|N∗
1 (x)| 6 2. Furthermore, |N∗

1 (x)| = 2 yields that there exists a∗ ∈ N∗
1 (x) such

that a∗ is adjacent to all vertices of N∗
2 (x). In a similar way |N

∗
2 (x)| 6 2, moreover,

|N∗
2 (x)| = 2 only if there exists y∗ ∈ N∗

2 (x) such that y
∗ is non-adjacent to all vertices

of N∗
1 (x). Thus, at most one of the sets N

∗
1 (x) and N∗

2 (x) can have two vertices,

because it is impossible that there exist a pair of vertices a∗ ∈ N∗
1 (x), y

∗ ∈ N∗
2 (x)

such that a∗ is adjacent to all vertices of N∗
2 (x) and y

∗ is non-adjacent to all vertices

of N∗
1 (x). Consequently |Γ2(v

∗)| 6 4. We claim that |Γ2(v
∗)| = 4 is impossible.

If |Γ2(v
∗)| = 4, then one of the two cases below can occur.

1. |N∗
1 (x)| = 2 and |N∗

2 (x)| = 1. Let N∗
1 (x) = {a∗, b∗}, N∗

2 (x) = {y∗}, y∗ ∼ a∗,

v ∈ v∗, a ∈ a∗, b ∈ b∗, x ∈ x∗ and y ∈ y∗. If a∗ ∼ b∗, then x∗ and b∗ are twins,
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see Figure 2 (a). Since x∗ ∼ b∗, one of them is of type (N). Note that b∗ is not of

type (N), because N∗
1 (x) is homogeneous and a∗ ∼ b∗. Hence, b∗ is of type (1K)

and x∗ is of type (N). Thus, V (G) \ {r1, y, a, x} is a resolving set for G, which is

impossible. Therefore, a∗ ≁ b∗, thus V (G) \ {v, r1, x, a} is a resolving set for G,

which is a contradiction.

2. |N∗
1 (x)| = 1 and |N∗

2 (x)| = 2. Let N∗
1 (x) = {a∗}, N∗

2 (x) = {y∗, z∗}, z∗ ∼ a∗,

v ∈ v∗, a ∈ a∗, x ∈ x∗, y ∈ y∗, z ∈ z∗ and S = {x, y}. Thus, r(z|S) = (2, ∗),

r(a|S) = (1, 2), r(r1|S) = (1, 1) and r(v|S) = (2, 2), where ∗ is 1 or 2. Note that

β(G) = n−3 yields ∗ = 2, see Figure 2 (b). Therefore, x∗ and z∗ are twins. Since they

are non-adjacent vertices, one of them is of type (K). Clearly z∗ is not of type (K),

otherwise, since N∗
2 (x) is homogeneous, we would have ∗ = 1, which is impossible.

Consequently, x∗ is of type (K), which implies that the set (x∗ \{x})∪{z, y} resolves

{v, r1, a, x}.

v∗ v∗r∗1 r∗1

x∗ x∗

a∗ N∗

1 (x)N∗

1 (x)

N∗

2 (x)N∗

2 (x)

a∗

y∗ y∗

b∗

z∗

(a) (b)

Figure 2. Different cases of N∗
1 (x) and N∗

2 (x).

These contradictions yield, |Γ2(v
∗)| 6 3 when |R1(v

∗)| = 1.

To complete the proof we only need to consider the case |R1(v
∗)| = 2. In this case,

since the vertices outside of R1(v) that are adjacent to some but not all vertices in

R1(v) are in Γ2(v), |R1(v
∗)| = 2 implies that there exists a ∈ Γ2(v) such that

Γ2(a) ∩ R1(v) 6= ∅. Let T = Γ2(v) \ {a}. Since Γ2(v) is not homogeneous, it has at

least three vertices, hence |T | > 2. If T is not homogeneous, then there exists i ∈ T

such that i resolves two vertices of T . Moreover, we know that a resolves two vertices

of R1(v). Hence, {v, i, a} resolves at least four vertices of G, which is impossible.

Therefore, T is homogeneous.

If a is adjacent to a vertex in T , then a is adjacent to all vertices of T , otherwise

{a, v} resolves four vertices. If a vertex t ∈ T is not adjacent to some vertices of

R1(v), then similarly to the above, it can be seen that Γ2(v) \ {t} is homogeneous

and t is either adjacent or non-adjacent to all vertices of Γ2(v) \ {t}. This implies

that Γ2(v) is homogeneous, which is a contradiction to the assumption. Hence, every

vertex of T is adjacent to all vertices of R1(v). Therefore, all vertices of T are twins
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and form a vertex b∗ in G∗. Thus, Γ2(v
∗) consists of two vertices a∗ and b∗, where

a∗ is of type (1) and b∗ is of type (KN). �

By the proof of Fact 2, it is easy to see that N1(x) and N2(x) are homogeneous.

This will be used later.

Proposition 4. If |R1(v
∗)| = 1, then G∗ has one of the structures G2, G3, or G7.

P r o o f. Let R1(v
∗) = {r∗1}. If Γ2(v) is homogeneous, then every vertex of

Γ2(v
∗) is adjacent to r∗1 and all vertices of Γ2(v

∗) are twins. Consequently, since

Γ2(v) is homogeneous, all vertices of
⋃

u∗∈Γ2(v∗)

u∗ are twins. This gives |Γ2(v
∗)| = 1.

If R2(v
∗) = ∅, then G∗ ∼= P3 and α(G

∗) > 2, otherwise by Theorem B, β(G) = n−2.

It is easy to check that in both the cases α(G∗) = 2 and α(G∗) = 3, at least one of the

leaves is of type (K), otherwise by Theorem B, β(G) = n− 2. Let G∗ = (x∗
1, x

∗
2, x

∗
3)

and let x∗
1 be of type (K). If x

∗
2 is of type (1K) and x∗

3 is of type (1), then by

Theorem B, β(G) = n− 2. This contradiction implies that, if x∗
3 is of type (1), then

x∗
2 is of type (N). This implies G

∗ has the structure G2.

If R2(v
∗) 6= ∅, then all vertices of R2(v

∗) have a neighbor in R1(v
∗), otherwise

diam(G∗) > 3. Since Γ1(v) is homogeneous, every vertex of R2(v
∗) is adjacent to

every vertex of R1(v
∗). Hence, all vertices of R2(v

∗) are twins. This implies that

Γ1(v) is a clique, all vertices of
⋃

u∗∈R2(v∗)

u∗ are twins and so |R2(v
∗)| = 1. In this

case G∗ is a paw and one of the degree-2 vertices is v∗ and the other belongs to

Γ1(v
∗). Therefore, the structure of G∗ is as shown in Figure 3 (a). Hence, x∗ and

v∗ are adjacent twins. Since x∗ 6= v∗, one of them must be of type (N). Since

Γ1(v) is a clique, x
∗, y∗ are of type (1K). Thus, v∗ is of type (N). If z∗ is of type

(K), then we choose arbitrary fixed vertices x ∈ x∗, v1, v2 ∈ v∗, y ∈ y∗ and z1, z2 ∈

z∗. Hence, r(v1|{v2, z2}) = (2, 2), r(x|{v2, z2}) = (1, 2), r(y|{v2, z2}) = (1, 1), and

r(z1|{v2, z2}) = (2, 1). Thus, the set V (G) \ {x, y, z1, v1} is a resolving set for G,

a contradiction. Consequently, z∗ is of type (1N). Similarly, if x∗ is of type (K) or z∗

is of type (N), then V (G) \ {x, y, z1, v1} is a resolving set for G, which is impossible.

Hence, G∗ has the structure G3.

Now let Γ2(v) be not homogeneous. Using the same notation as in the proof of

Fact 2, we can see that vertices of N1(x) can only be twins with each other and x,

while vertices of N2(x) can only be twins with each other, x, and v. By Lemma 3,

we have R2(v
∗) = ∅. Hence, if |Γ2(v

∗)| = 1, then G∗ ∼= P3, all vertices of N2(x) are

twins with v, and all vertices of N1(x) are twins with x. Thus, x∗ is of type (K),

v∗ is of type (N), and r∗1 is of any type. In this case G
∗ has the structure of G2.

When |Γ2(v
∗)| = 2, there exist three cases.
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1. The vertex x and all vertices ofN1(x) are twins and there exist vertices in N2(x)

which are not twins with v but are twins by themselves. Thus, vertices of N2(x) \ v
∗

form exactly one vertex, y∗ in G∗. Hence, x∗ is of type (K) and x∗ ≁ y∗. Therefore,

y∗ and v∗ are twins. Since v∗ ≁ y∗, one of them is of type (K). Note that, if v∗ is of

type (K), then there exists u ∈ V (G) which is adjacent to all vertices of Γ1(v) ∪ {v}

and is not adjacent to any vertex of Γ2(v). Hence, u ∈ R2(v), which is impossible,

because by Lemma 3, R2(v) = ∅. Thus, y∗ is of type (K). If r1 ∈ r∗1 , y ∈ y∗, x ∈ x∗

and v ∈ v∗, then (x∗ \ {x}) ∪ (y∗ \ {y}) resolves {v, r1, x, y}, a contradiction.

2. There exist vertices of N2(x) which are twins with x while the rest are twins

with v, and all vertices of N1(x) are twins. Therefore, vertices of N1(x) create

a vertex a∗ in G∗, a∗ ∼ x∗, and x∗ is of type (N). Hence, G∗ is a paw, with the leaf

v∗, the degree-3 vertex r∗1 , and degree-2 vertices a
∗ and x∗. If a∗ is of type (N), then

V (G) \ {v, r1, x, a} is a resolving set for G, where r1 ∈ r∗1 , v ∈ v∗, x ∈ x∗ and a ∈ a∗.

This contradiction yields a∗ is of type (1K). Since R2(v) = ∅, v∗ is not of type (K).

Therefore, v∗ is of type (1N). By a method similar to that used before, we deduce

that, if a∗ is of type (K), then v∗ and r∗1 cannot be of type (N). Thus, G
∗ has the

structure of G3.

3. All vertices of N2(x) are twins with v, and there exist vertices in N1(x) which

are not twins with x. Hence, vertices of N1(x) \ x∗ form a unique vertex a∗ in G∗,

a∗ ∼ x∗, and consequently G∗ is a paw. Note that v∗ is the leaf and its type is (N),

the vertex r∗1 has degree 3, and x∗, a∗ are degree-2 vertices. Since x∗ and a∗ are

adjacent twins, one of them is of type (N). Also, since all vertices of N∗
2 (x) are twins

with v, x∗ is of type (1K), and so a∗ is of type (N). Therefore, G∗ has the structure

of G3.

Finally, if |Γ2(v
∗)| = 3, then we have the following three cases.

1. Every vertex of N2(x) is a twin with v or x, and N
∗
1 (x) has two vertices a

∗ and

b∗. In this case a∗ and b∗ are twins, hence a∗ = b∗, because N1(x) is homogeneous.

Thus, |Γ2(v
∗)| 6 2. Therefore this is not the case.

2. Every vertex of N1(x) is a twin with x, and N∗
2 (x) has two vertices y

∗ and z∗.

Hence, y∗ and z∗ are twins. Since N2(x) is homogeneous, y
∗ = z∗, which is a con-

tradiction to |Γ2(v
∗)| = 3.

3. There exist vertices inN1(x) which are not twins with x, also there exist vertices

in N2(x) which are twins neither with x nor v. In this case, each one of N∗
1 (x) and

N∗
2 (x) has exactly one vertex a∗ and y∗, respectively. If a∗ ≁ y∗, then v∗ and y∗

are non-adjacent twins. Hence one of them is of type (K). Since R2(v) = ∅, v∗ is

of type (1N), and so y∗ is of type (K). If v ∈ v∗, y ∈ y∗, a ∈ a∗, and x ∈ x∗, then

V (G) \ {y, x, r1, v} is a resolving set for G. This contradiction yields a∗ ∼ y∗, and in

consequence, G∗ is a kite with a pendant edge, adjacent to a degree-3 vertex. Thus,

y∗ and x∗ are non-adjacent twins, hence one of them is of type (K). By symmetry,
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we can assume x∗ is of type (K). Since R2(v) = ∅, v∗ is of type (1N). As observed

before, v∗, a∗, and r∗1 are not of type (N) and y∗ is not of type (KN). Therefore, G∗

has the structure of G7 and the proof is completed. �

v∗

Γ1(v
∗) Γ1(v

∗)Γ2(v
∗) Γ2(v

∗)

x∗

y∗ y∗

z∗ v∗

x∗ a∗

b∗

(a) (b)

Figure 3. |Γ2(v
∗)| = 1 and |Γ2(v

∗)| = 2.

Until now, we have considered the case |R1(v
∗)| = 1. Now we investigate the case

|R1(v
∗)| = 2.

Proposition 5. If |R1(v
∗)| = 2 and Γ2(v) is not homogeneous, then G∗ has the

structure of G7.

P r o o f. Using the same notation as in the proof of Fact 2, let Γ2(v
∗) = {a∗, b∗},

where a∗ is of type (1) and b∗ is of type (KN). Let R1(v
∗) = {x∗, y∗}. Since R1(v) has

a non-adjacent vertex to a, the vertex a∗ has exactly one neighbor in R1(v
∗). By the

proof of Fact 2, b∗ ∼ x∗ and b∗ ∼ y∗, thus G∗ is the 4-cycle, C4 = (v∗, x∗, b∗, y∗, v∗)

with the pendant edge x∗a∗ and possibly extra edges a∗b∗ and x∗y∗, see Figure 3 (b).

Because diam(G∗) = 2, at least one of the edges a∗b∗ and x∗y∗ exists. If a∗ ∼ b∗,

then b∗ is of type (N). Let v ∈ v∗, a ∈ a∗, b ∈ b∗, x ∈ x∗, and y ∈ y∗. Consequently,

the set a∗ ∪ (b∗ \ {b}) resolves {v, x, b, y}, since b∗ is of type (N). This contradiction

yields a∗ ≁ b∗, and so x∗ ∼ y∗, a∗ is of type (1), and b∗ is of type (K). Note that x∗

and y∗ are not of type (N), otherwise Γ1(v) is not homogeneous. Also, we can see

easily that v∗ is not of type (KN). Thus, G∗ has the structure of G7. �

Now, we only need to consider the case |R1(v
∗)| = 2 when Γ2(v) is homogeneous.

In this case, if |Γ2(v
∗)| = 1, then all vertices of R1(v) are twins and consequently,

|(R1(v))
∗| = 1, which contradicts |R1(v

∗)| = 2. Therefore, |Γ2(v
∗)| > 2.
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Lemma 4. If Γ2(v) is homogeneous and |R1(v
∗)| = 2, then R2(v

∗) = ∅.

P r o o f. By Fact 2 and the above argument, we have 2 6 |Γ2(v
∗)| 6 3. Suppose

on the contrary that R2(v
∗) 6= ∅. Since diam(G∗) = 2 and Γ1(v) is homogeneous,

every vertex of R2(v
∗) is adjacent to every vertex of R1(v

∗). In this way all vertices of

R2(v
∗) are twins, therefore all vertices of

⋃

u∗∈R2(v∗)

u∗ are twins, and so |R2(v
∗)| = 1.

Let R2(v
∗) = {r∗2}, R1(v

∗) = {x∗, y∗}, and {a∗, b∗} ⊆ Γ2(v
∗). Therefore, r∗2 is

adjacent to vertices v∗, x∗ and y∗. Note that Γ1(v) and Γ1(v
∗) are cliques, because

Γ1(v) is homogeneous and r∗2 is adjacent to x∗ and y∗. Thus, r∗2 , x
∗ and y∗ are of

type (1K). Since all neighbors of r∗2 and v
∗ are shared, r∗2 and v

∗ are adjacent twins.

Since r∗2 6= v∗, one of them is of type (N). Because r∗2 is of type (1K), v
∗ is of type

(N) and v∗ contains at least one additional vertex u beside v. This is a contradiction

since u ∈ Γ2(v) is adjacent to all vertices of R2(v). Hence R2(v
∗) = ∅. �

Lemma 5. If Γ2(v) is homogeneous and |Γ2(v
∗)| = 3, then there is exactly one

vertex a∗ ∈ Γ2(v
∗) such that a∗ is adjacent to all vertices of R1(v

∗).

P r o o f. Let |Γ2(v
∗)| = 3. Since the vertices outside of Γ2(v

∗) that are adjacent

to some but not all vertices in Γ2(v
∗) are in R1(v

∗), R1(v
∗) resolves the set Γ2(v

∗).

Suppose on the contrary that every vertex of Γ2(v
∗) is not adjacent to all vertices of

R1(v
∗). Hence, at least one coordinate of the representation of each vertex in Γ2(v

∗)

with respect to R1(v
∗) is 2, while every coordinate of r(v∗|R1(v

∗)) is 1. Therefore,

R1(v
∗) is a resolving set for G∗[R1(v

∗) ∪ Γ2(v
∗) ∪ {v∗}] with cardinality at most

n(G∗) − 4, since |Γ2(v
∗) ∪ {v∗}| = 4. It follows that β(G∗) 6 n(G∗) − 4, and

Proposition 2 implies that β(G) 6 n− 4, which is a contradiction. Therefore, there

exists a vertex a∗ ∈ Γ2(v
∗) adjacent to all vertices of R1(v

∗). If there exists another

vertex b∗ ∈ Γ2(v
∗) adjacent to all of R1(v

∗), then a∗ and b∗ are twins, since Γ2(v
∗) is

homogeneous. This implies that a∗ = b∗ while |Γ2(v
∗)| = 3. Therefore, such a vertex

in Γ2(v
∗) is unique. �

Lemma 6. If Γ2(v) is homogeneous and |R1(v
∗)| = 2, then |Γ2(v

∗)| 6 2.

P r o o f. On the contrary, suppose |Γ2(v
∗)| = 3. By Lemma 5, there exists ex-

actly one vertex a∗ ∈ Γ2(v
∗) such that a∗ is adjacent to all vertices of R1(v

∗). Let

R1(v
∗) = {x∗, y∗} and Γ2(v

∗) = {a∗, b∗, c∗}. Each of the vertices b∗ and c∗ has at

least one neighbor in R1(v
∗) and by Lemma 5, they have exactly one neighbor in

R1(v
∗). If their neighbors in R1(v

∗) are the same, then they are twins, since Γ2(v
∗) is

homogeneous. This implies that every pair of vertices b ∈ b∗ and c ∈ c∗ are twins (be-

cause Γ2(v) is homogeneous), consequently, b
∗ = c∗, which contradicts |Γ2(v

∗)| = 3.

Thus, one of them, say b∗, is (only) adjacent to x∗ and the other c∗, is (only) adjacent
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to y∗, see Figure 4 (a) (dotted edges may exist or not). Now r(v∗|{b∗, c∗}) = (2, 2),

r(x∗|{b∗, c∗}) = (1, 2), r(y∗|{b∗, c∗}) = (2, 1), and r(a∗|{b∗, c∗}) = (∗, ∗), where ∗

is 1 or 2. If ∗ = 1, then r(a∗|{b∗, c∗}) = (1, 1), and so V (G∗) \ {a∗, v∗, x∗, y∗} is

a resolving set for G∗; this contradiction yields ∗ = 2. Since Γ2(v) is homogeneous,

Γ2(v) and Γ2(v
∗) are independent sets.

Since R2(v
∗) = ∅ by Lemma 3, if v∗ is of type (1N), then v∗ and a∗ are twins

and every pair of vertices v ∈ v∗ and a ∈ a∗ are twins (because both a∗ and v∗

are of type (1N)), and so v∗ = a∗, a contradiction. Therefore, v∗ is of type (K).

For arbitrary fixed vertices v1, v2 ∈ v∗, x ∈ x∗, y ∈ y∗, a ∈ a∗, b ∈ b∗ and c ∈ c∗

and T = {v1, a, c} we have r(v2|T ) = (1, 2, 2), r(x|T ) = (1, 1, 2), r(y|T ) = (1, 1, 1),

and r(b|T ) = (2, 2, 2). Hence, V (G) \ {v2, x, y, b} is a resolving set for G. This

contradiction implies that |Γ2(v
∗)| 6 2. �

Γ2(v
∗) Γ2(v

∗)Γ1(v
∗)Γ1(v

∗)

v∗ v∗

x∗

y∗

b∗

a∗

c∗

x∗

y∗

a∗

b∗

(a) (b)

Figure 4. |Γ2(v
∗)| = |Γ1(v

∗)| = 3 and |Γ2(v
∗)| = |Γ1(v

∗)| = 2.

Corollary 3. If Γ2(v) is homogeneous and |R1(v
∗)| = 2, then |Γ2(v

∗)| = 2.

P r o o f. By Lemma 6, |Γ2(v
∗)| 6 2. If |Γ2(v

∗)| = 1, then |R1(v
∗)| = 1, because

Γ1(v) and Γ2(v) are homogeneous. This contradiction implies |Γ2(v
∗)| = 2. �

On account of the above results, we only need to assume that |Γ2(v
∗)| = |R1(v

∗)| =

2 and |R2(v
∗)| = 0.

Proposition 6. If |R1(v
∗)| = 2 and Γ2(v) is homogeneous, then G∗ has one of

the structures G4 through G7.

P r o o f. If R1(v
∗) = {x∗, y∗}, Γ2(v

∗) = {a∗, b∗}, then G∗ is as described in

Figure 4 (b). If a∗ ≁ b∗, then x∗ ∼ y∗ and x∗ ∼ b∗, otherwise diam(G∗) = 3,

a contradiction. Let G0 be the path (a∗, x∗, v∗, y∗, b∗). Thus, G∗ must be one

of the following five graphs: H∗
1 := G0 + a∗b∗, H∗

2 := G0 + a∗b∗ + x∗b∗, H∗
3 :=

G0 + a∗b∗ + x∗y∗, H∗
4 := G0 + a∗b∗ + x∗b∗ + x∗y∗, and H∗

5 := G0 + x∗b∗ + x∗y∗. We
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fix vertices v ∈ v∗, x ∈ x∗, y ∈ y∗, a ∈ a∗ and b ∈ b∗ in each H∗
i , 1 6 i 6 5. Note

that H∗
1
∼= C5. If G

∗ ∼= H∗
1 , then all vertices of H

∗
1 are of type (1), otherwise (by

a simple computation) β(G) 6 n− 4. In this case G∗ has the structure of G4.

If G∗ ∼= H∗
2 , then x∗ and y∗ are not of type (K), because Γ1(v) is homogeneous

and x∗ ≁ y∗. Similarly, a∗ and b∗ are not of type (N). If x∗ or y∗ is of type (N),

then V (G) \ {v, x, y, b} is a resolving set for G, with cardinality n− 4. Further, v∗ of

type (N) or (K) yields V (G) \ {v, x, y, b} or V (G) \ {v, x, a, b} is a resolving set for

G, respectively. These contradictions show that G∗ has the structure of G5.

Let G∗ ∼= H∗
3 . Since Γ1(v) and Γ2(v) are homogeneous, x

∗ ∼ y∗ and a∗ ∼ b∗ imply

that x∗, y∗, a∗, b∗ are not of type (N). If a∗ or b∗ is of type (K), then V (G)\{v, x, y, a}

or V (G)\{x, y, v, b} is a resolving set for G. Also, v∗ of type (N) yields the resolving

set, V (G) \ {x, y, v, b} for G. These contradictions imply that G∗ has the structure

of G5.

If G∗ ∼= H∗
4 and one of the vertices v

∗ or y∗ is of type (N), then the set V (G) \

{v, x, y, b} or V (G)\{x, y, a, b}, respectively, is a resolving set for G. Thus v∗ and y∗

are of type (1K). By symmetry, vertices a∗ and b∗ are of type (1K). If non-adjacent

vertices v∗ and b∗ are of type (K), then the set V (G) \ {v, x, y, b} is a resolving

set of size n − 4. Similarly, non-adjacent vertices a∗ and y∗ are not of type (K)

simultaneously. Also, if non-adjacent vertices a∗ and v∗ are of type (K), then V (G)\

{v, x, y, a} resolves G, which is impossible. Therefore, non-adjacent vertices are

not of the same type (K). Moreover, if x∗ is of type (N), and y∗ or v∗ is of type

(K), then V (G) \ {v, x, y, a} is a resolving set for G. By the same argument, if

x∗ is of type (N), then a∗ and b∗ are not of type (K). Thus, G∗ has the structure

of G6.

Finally, assume that G∗ ∼= H∗
5 . Since v

∗ 6= b∗ and these vertices are non-adjacent

twins in H∗
5 , at least one of them is of type (K). Hence, v

∗ is of type (K) and b∗ is

of type (1N), because Γ2(v) is homogeneous and a∗ ≁ b∗. If b∗ is of type (N), then

V (G) \ {v, x, y, b} resolves G, a contradiction. It follows that b∗ is of type (1). In

the way similar to the above, a∗ is of type (1), and both x∗ and y∗ are of type (1K),

and thus G∗ has the structure of G7. �

Case 2. For each vertex v ∈ V (G) with Γ2(v
∗) 6= ∅, Γ1(v) is not homogeneous.

We choose a fixed vertex v ∈ V (G) with Γ2(v
∗) 6= ∅. Lemma 2 concludes that in

this case, Γ2(v) is homogeneous. For each x ∈ Γ1(v), let M1(x) := Γ1(v) ∩ Γ1(x)

and M2(x) := Γ1(v) ∩ Γ2(x). Since M2(x) ⊆ Γ2(x) and Γ2(x) is homogeneous,

M2(x) is also homogeneous. If M1(x) is not homogeneous, then there exist vertices

i, j, and k in M1(x) such that i ∼ j and k ≁ j. Thus, for each pair of vertices

y ∈ M2(x) and c ∈ Γ2(v) we have r(i|{v, x, j}) = (1, 1, 1), r(k|{v, x, j}) = (1, 1, 2),

r(y|{v, x, j}) = (1, 2, ∗), r(c|{v, x, j}) = (2, ∗1, ∗2), where ∗, ∗1 and ∗2 are 1 or 2.
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However, these representations are distinct, which is a contradiction. Therefore,

M1(x) is homogeneous.

Proposition 7. If there exists x ∈ R2(v) with M2(x) 6= ∅, then G∗ has the

structure of G6.

P r o o f. Since x ∈ R2(v), we have Γ1(x) = M1(x)∪{v}. Note that v is adjacent

to all vertices ofM1(x). SinceM1(x) is homogeneous and Γ1(x) is not homogeneous,

we concludeM1(x) is an independent set and contains at least two vertices. Now let

m1 and m2 be two arbitrary vertices in M1(x). Thus, m1 resolves m2 and v, hence

m1 cannot resolve any pair of vertices in Γ2(x), otherwise the set {x,m1} resolves

at least four vertices. Therefore, m1 is either adjacent to all vertices of Γ2(x) or

non-adjacent to all of them. Since m1 is an arbitrary vertex of M1(x), all vertices of

Γ2(x) have the same neighbors in M1(x). Note that Γ2(x) = M2(x)∪Γ2(v), because

x ∈ R2(v). Moreover, all vertices ofM2(x) are adjacent to v, and all vertices of Γ2(v)

are not adjacent to v. Thus, every pair of vertices in M2(x) and also every pair of

vertices of Γ2(v) are twins. Let t
∗ = M2(x) and s∗ = Γ2(v) be the corresponding

vertices in G∗. Moreover, vertices of M1(x) that are adjacent to all of Γ2(x) are

twins and form a vertex y∗ in G∗, also the remaining vertices of M1(x) are twins

with each other and create a vertex z∗ in G∗. Therefore, G∗ has at most six vertices

v∗, x∗, y∗, z∗, t∗, and s∗, where x∗ is adjacent to v∗, z∗, and y∗. Also, v∗ and y∗ are

adjacent to all vertices except s∗ and z∗, respectively. There is no other edge in G∗

except possibly s∗t∗, see Figure 5 (a).

Γ2(v
∗) Γ2(v

∗)Γ1(v
∗) Γ1(v

∗)

v
∗

v
∗

z
∗

x
∗

y
∗

t
∗

s
∗

r
∗y

∗

z
∗

s
∗

(a) (b)

Figure 5. |Γ1(v
∗)| = 4 and |Γ1(v

∗)| = 2 in Case 2.

If all of these six vertices exist, then d(z∗, s∗) = 3, which contradicts diam(G∗) = 2.

Since s∗ = Γ2(v), the vertex z∗ does not exist. It is clear that y∗ is of type (N),

because M1(x) is an independent set of size at least two. Let v ∈ v∗, x ∈ x∗,

y1, y2 ∈ y∗, s ∈ s∗, and t ∈ t∗. If s∗ ≁ t∗, then v∗ ∪ x∗ ∪ t∗ ⊆ Γ2(s). But the set
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v∗ ∪x∗ ∪ t∗ is not homogeneous, and so Γ2(s) is not homogeneous; this contradiction

yields s∗ ∼ t∗. Thus, since s∗ ∪ t∗ ⊆ Γ2(x), the adjacent vertices s
∗ and t∗ are of

type (1K). Moreover, x∗ ∪ v∗ ⊆ Γ2(s) and x
∗ ∼ v∗ yields x∗ and v∗ are of type (1K).

But as observed before, when y∗ is of type (N) the other vertices cannot be of type

(K), hence they must be of type (1); also, two non-adjacent vertices are not of the

same type (K). Therefore, G∗ has the structure of G6. �

Now let for each u ∈ R2(v) one of the sets M1(u) and M2(u) be empty. Note

that every vertex of R2(v) has a neighbor in R1(v), otherwise diam(G) > 3. Hence,

M1(u) 6= ∅. Consequently, M2(u) = ∅ for each u ∈ R2(v) and M1(u) = Γ1(v) \ {u}.

Therefore, every vertex of R2(v) is adjacent to all vertices of R1(v), R2(v) is a clique,

and |R2(v
∗)| 6 1. We consider the cases R1(v) is homogeneous or not homogeneous

separately.

Proposition 8. If for each u ∈ R2(v), the set M2(u) is empty and R1(v) is

homogeneous, then G∗ has the structure of G2.

P r o o f. If R2(v) = ∅, then Γ1(v) = R1(v) is homogeneous, which is a contra-

diction. Thus, R2(v) 6= ∅. Hence, R2(v) is a clique and all its vertices are adjacent

to all vertices of R1(v). Therefore v
∗ = {v} ∪ R2(v), R1(v) = x∗ and Γ2(v) 6= ∅.

Hence G∗ has a leaf of type (K). Moreover, x∗ is of type (N) since Γ1(v) is not

homogeneous. Also, since Γ2(v) is homogeneous, there is only one additional vertex

a∗ = Γ2(v) in G∗, which completes the proof. �

We investigate the case R1(v) is not homogeneous for two possibilities, |Γ2(v
∗)| > 2

and |Γ2(v
∗)| = 1, separately.

Proposition 9. If for each u ∈ R2(v) the set M2(u) = ∅, R1(v) is not homoge-

neous, and |Γ2(v
∗)| > 2, then G∗ has the structure of G6.

P r o o f. Since |Γ2(v
∗)| > 2 and all neighbors of Γ2(v

∗) are in R1(v
∗) and Γ2(v)

is homogeneous, there exist vertices z∗ ∈ R1(v
∗) and t∗ ∈ Γ2(v

∗) such that z∗ ≁ t∗.

If z ∈ z∗, then z ≁ t for each t ∈ t∗. Since z has a neighbor t′ ∈ Γ2(v), z is

either adjacent to all vertices of R1(v) \ {z} or not adjacent to all these vertices,

otherwise the set {v, z} resolves four vertices of G. Moreover, if R1(v) \ {z} is not

homogeneous, then there exist three vertices i, j, k ∈ R1(v) \ {z} such that j resolves

{i, k}, and so {v, z, j} resolves {i, k, t, t′}, which is impossible. Thus, R1(v) \ {z} is

homogeneous. Therefore, G[R1(v)] ∼= K1 ∨Kl or K1 ∪Kl for some positive integer

l > 2, because R1(v) is not homogeneous. It follows that all vertices of R1(v) \ {z}

have a neighbor and a non-neighbor vertex inR1(v). Hence, each vertex ofR1(v)\{z}

is either adjacent or non-adjacent to all vertices of Γ2(v), since β(G) = n − 3. But

20



by definition of R1(v), each vertex of R1(v) has a neighbor in Γ2(v). Consequently,

each vertex of R1(v) \ {z} is adjacent to all vertices of Γ2(v). Thus, all vertices of

R1(v) \ {z} are twins, and consequently they form a vertex y∗ of type (KN) in G∗,

and z∗ is a vertex of type (1) in G∗. Therefore, |R1(v
∗)| = 2 and y∗ is adjacent to

all vertices of Γ2(v
∗). Therefore, |Γ2(v

∗)|, because Γ2(v
∗) is homogenous and z∗ can

devide vertices of Γ2(v
∗) to two classes, its neighbors and non-neighbors.

Since for each u ∈ R2(v) the setM2(u) is empty, v
∗ = {v}∪R2(v) is of type (1K).

Let Γ2(v
∗) = {r∗, s∗}. Hence G∗[V (G∗) \ R2(v

∗)] is as in Figure 5 (b). If neither

the edge y∗z∗ nor r∗s∗ exist, then d(r∗, z∗) = 3, which contradicts diam(G∗) = 2,

therefore one of them exists. Let y ∈ y∗, r ∈ r∗, s ∈ s∗. If y∗ ∼ z∗ and r∗ ≁ s∗, then

y∗ is of type (N), since Γ1(v) is not homogeneous. Also, r
∗ is of type (K), otherwise

Γ1(r) = y∗ is an independent set, which is impossible. Thus, V (G) \ {v, y, z, r} is

a resolving set for G. This contradiction shows that r∗ ∼ s∗ in G∗. If y∗ ≁ z∗,

then y∗ is of type (K), since Γ1(v) is not homogeneous. Moreover, s
∗ and r∗ are of

type (1K), since Γ2(v) is homogeneous. However, Γ1(r) is a clique, this contradiction

showing that both the edges r∗s∗ and y∗z∗ exist in G∗. Therefore, y∗ is of type (N),

since Γ1(v) is not homogeneous. Furthermore, r
∗ and s∗ are of type (1K), because

Γ2(v) is homogeneous. Also, since Γ2(v) is a clique, v
∗ is of type (1K). It is easy to

see that if y∗ is of type (N), then the other vertices of G∗ are of type (1). Moreover,

two non-adjacent vertices are not of the same type (K). Consequently, G∗ has the

structure of G6. �

Proposition 10. If for each u ∈ R2(v) the set M2(u) is empty, R1(v) is not

homogeneous, and |Γ2(v
∗)| = 1, then G∗ has one of the structures G8 through G10.

P r o o f. Let Γ2(v
∗) = {w∗}. It is clear that v∗ = {v} ∪R2(v), because for each

u ∈ R2(v),M2(u) = ∅. Hence v∗ and w∗ are twins in G∗ and so at least one of them is

of type (K), say v∗. Since R1(v) is not homogeneous, there exists x ∈ R1(v) such that

M2(x) 6= ∅. Let y ∈ M1(x) ∩R1(v). Note that M1(x) ∩R1(v) is not an independent

set; otherwise V (G) \ {v, y, w, z} is a resolving set for G, where z ∈ M2(x) ∩R1(v).

If there exist vertices z1, z2 ∈ M2(x) ∩ R1(v) such that y ∼ z1 and y ≁ z2, then

V (G) \ {v, z1, z2, w} is a resolving set for G, which is a contradiction. Therefore

each vertex of M1(x) ∩ R1(v) is either adjacent to all vertices in M2(x) ∩ R1(v) or

non-adjacent to all of them. That is, all vertices of M2(x) ∩ R1(v) are twins. Now,

one of the following cases can occur.

1. All vertices in M1(x) ∩R1(v) are adjacent to all vertices in M2(x) ∩R1(v). In

this case, if M2(x)∩R1(v) is an independent set, then x
∗ = {x}∪ (M2(x)∩R1(v)) is

of type (N) and y∗ = M1(x)∩R1(v) is of type (1K). Also, β(G) = n− 3 implies that

w∗ is of type (1). Therefore G∗ has the structure of G8. If M2(x)∩R1(v) is a clique

of size at least 2, then y∗ = M1(x) ∩ R1(v) is of type (1k) and z∗ = M2(x) ∩ R1(v)
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is of type (K). Also, β(G) = n− 3 implies that w∗ is of type (1). Hence G∗ has the

structure of G10.

2. There is no edge between M1(x) ∩ R1(v) and M2(x) ∩ R1(v). In this case,

x∗ = {x} ∪ (M1(x) ∩ R1(v)) is of type (K) and z∗ = M2(x) ∩ R1(v). Also, β(G) =

n− 3 implies that z∗ and w∗ are of type (1). Therefore G∗ has the structure of G9.

3. There exists a non-empty subset S ⊂ M1(x) ∩ R1(v) such that all vertices

in S are adjacent to all vertices in M2(x) ∩ R1(v) and there is no edge between

M1(x)∩R1(v)\S andM2(x)∩R1(v). In this case, x
∗ = {x}∪ (M1(x)∩R1(v)\S) is

of type (K) and s∗ = S. Also, β(G) = n− 3 implies that z∗ and w∗ are of type (1).

Therefore G∗ has the structure of G10. �

The proof of necessity is completed. �
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