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DYNAMICS OF SYSTEMS WITH PREISACH MEMORY

NEAR EQUILIBRIA

Stephen McCarthy, Cork, Dmitrii Rachinskii, Dallas

(Received August 12, 2012)

Abstract. We consider autonomous systems where two scalar differential equations are
coupled with the input-output relationship of the Preisach hysteresis operator, which has
an infinite-dimensional memory. A prototype system of this type is an LCR electric circuit
where the inductive element has a ferromagnetic core with a hysteretic relationship between
the magnetic field and the magnetization. Further examples of such systems include lumped
hydrological models with two soil layers; they can also appear as a component of the recently
proposed models of population dynamics. We study dynamics of such systems near an
equilibrium point. In particular, we show and examine a similarity in the behaviour of
trajectories between the system with the Preisach memory operator and a planar slow-fast
ordinary differential equation. The nonsmooth Preisach operator introduces a singularity
into the system. Furthermore, we classify the robust equilibrium points according to their
stability properties. Conditions for stability, instability and partial stability are presented.
A robust partially stable point simultaneously attracts many trajectories and repels many
trajectories (a behaviour which is not generic for smooth ordinary differential equations).
We discuss implications of such local dynamics for the excitability properties of the system.

Keywords: return-point memory; Preisach operator; oscillator with memory; hysteresis;
operator-differential equation; stability of equilibrium; partial stability; slow-fast system;
switching line; excitability
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1. Introduction

Hysteresis effects underpin modern magnetic recording technologies and should be

taken into account in microelectromechanical systems (MEMS) engineering. They

can also manifest themselves through undesirable energy losses in electronic circuits,

This publication has emanated from research conducted with the financial support of the
Alexander von Humboldt Foundation, Germany and the Russian Foundation for Basic
Research, grant 10-01-93112.

39



mechanical and other systems, where hysteresis can be a primary or significant source

of energy dissipation. Mathematical models of systems with hysteretic components

help design power electronic systems [57]; implement real time hysteresis compensa-

tion in controllers and actuators [40], [59], [19], [31]; design smart materials [9], [4],

[23]; model and predict dynamics of earthquakes faults [18] and phase transitions

[54], [5]; understand dynamics of complex networks [27], [10].
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Figure 1. (a) Hysteresis loops in relationship between external magnetic field H and mag-
netic induction B of a ferromagnetic material. (b) Input-output diagram of the
non-ideal relay with thresholds α, β.

A hysteretic constitutive relationship between variables, such as the relationship

between a magnetic field H and magnetic induction B in ferromagnetic materials

presented by nested hysteresis loops on H-B diagrams, see Figure 1 (a), or the con-

stitutive relationship between stress and strain variables in elastoplastic materials,

is described by an operator in mathematical terms [43], [34]. Such operators share

a number of common basic properties including the property of rate-independence,

which is often used as the definition of a hysteresis operator1 [58], causality, semi-

group property and nonsmoothness. Hence, modelling of systems which involve

components with a hysteretic relationship between input and output naturally leads

to differential equations coupled with an operator relationship between some of the

variables. This rather general approach to modelling such systems2 can be illus-

trated by an electrical circuit where an inductance element contains a ferromagnetic

core (for example, a transformer). Kirchhoff’s laws (or Maxwell’s equations) lead

to differential rate equations for voltages and currents; those are complemented by

constitutive relationships, which, in case of a hysteretic ferromagnetic core, include

an operator relationship between the fields H and B in the core where H is propor-

1 It is the property of rate-independence that underpins a familiar description of hysteresis
in terms of input-output diagrams such as in Figure 1 (a).

2Alternative models of systems with hysteresis include differential inclusions, variational
inequalities and other models based on the variational approach.

40



tional to the current and B is proportional to the rate of change of the voltage [57],

[36], [24].

As a prototypical example consider the LCR circuit where the inductance element

has a ferromagnetic core. If there is no hysteresis effect, or this effect can be neglected,

then, in the simplest case, B is proportional to H in the core and the emf in the

inductor can be expressed as

(1.1) Eind = Lj′

where prime denotes the time derivative and j is the current through the inductor.

Hence the dynamics of the current j and the drop of the voltage u across the capacitor

are described by the system

(1.2) Lj′ = −Rj + u, Cu′ = −j.

However, if the hysteresis effect is substantial, then the constitutive relationship be-

tween B and H is not only nonlinear, but the instantaneous value of B depends both

on the simultaneous value of H and some previous values of H . The Preisach oper-

ator is a widely used model of hysteretic constitutive relationship in ferromagnetic

materials [30], [44]. Adopting this model of the relationship between the magnetiza-

tion M and the magnetic field H results in the equation

(1.3) B = νH + P (H)

with ν > 0 where the Preisach input-output operator P maps the time series of the

magnetic field H(t) to the time series of the magnetization M(t) = (P (H))(t) of the

core. This leads to a similar expression for the emf induced in the inductor

(1.4) Eind = (Lj + P (j))′

where the Preisach operator density function is properly rescaled when we pass from

(1.3) to (1.4). When the linear functional relationship (1.1) is replaced with (1.4),

system (1.2) changes accordingly to the system of differential equations

(1.5) (Lj + P (j))′ = −Rj + u, Cu′ = −j

involving the Preisach hysteresis operator P .

System (1.5) is a functional differential equation with an infinite dimensional phase

space as the rates of change of the variables depend both on the simultaneous values

of the variables and, through the operator P , on their values in the past. Impor-

tantly, the rate-independence property of the operator P distinguishes the memory
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in this system from other types of memory such as in delay differential equations

or convolution operators. Rate-independence implies that shock values of the vari-

able j have permanent effect on the output in the future, accounting for the fact that

the ferromagnetic material remains permanently magnetized even after the magnetic

field H , which has created the magnetization, has been removed. More precisely, the

memory stack of system (1.5) at any time t consists of a sequence of certain ex-

tremum values of j achieved prior to the instant t (the so-called sequence of main

extremum values of j). Equations (1.5) define how the rates j′, u′ depend on the

simultaneous values of j, u and the first element of the memory stack which changes

each time the memory gets updated; this memory element defines the B-H curve

followed by the system at a given time from infinitely many possible curves passing

through each point of the input-output diagram in Figure 1 (a). The memory stack

is dynamically updated (a) at turning points of j where j′ changes sign; and, (b)

whenever j reaches the value of the second element of the memory stack. Either of

these events causes the system to switch to another B-H branch on the input-output

diagram; more details will be given in the next section.

As oscillating contours and elements, including those with hysteretic components,

are a common feature of various electrical circuits, mechanical systems and MEMS,

several prototypical second order differential models of oscillators with the Preisach

operator have been proposed and studied in engineering and mathematical literature.

In particular, various aspects of dynamics of forced oscillators have been studied in

[39], [22], [6], [41], [42], [32], [55], [60], [56], [7], including applications to accurate

modelling and optimization of parameters of power electronics systems in the pres-

ence of the ferroresonance phenomenon [57] and input-to-state stability of control

systems. Cycles stemming from the Hopf bifurcation in a model of Van der Pol type

oscillator, a network of such oscillators and other systems with hysteresis were stud-

ied in [1], [3], [33], [20], [21]. In the electrical circuitry context, this model describes

a circuit consisting of an LCR contour and a negative feedback loop (which can be

implemented, for instance, by using tunnel diodes) and involving a ferromagnetic

core in the inductor. The model equations

(1.6) (Lj + P (j))′ = −Rj + u, Cu′ = −j + σ1u− σ2u
3,

when compared to (1.5), include additionally the current-voltage characteristic jd =

−σ1u+ σ2u
3 of the negative feedback element with σ1 > 0 and σ2 > 0.

In this paper, we consider a general class of second order systems of differential

equations

(1.7) (Px)′ = f(x, y),

y′ = g(x, y)
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with the Preisach operator P . We focus on dynamics of the system near an equi-

librium point such as, for example, the zero equilibrium of system (1.5) or system

(1.6). In the context of this local problem, it is important that systems (1.5) and

(1.6) have the form (1.7) for L = 0. This corresponds to the physical approximation

Lj ≪ P (j) which is typical of the inductors where almost all the magnetic flux is

concentrated in the ferromagnetic core. Thus, we consider system (1.7) as a natural

approximation of electrical circuit models such as (1.5) and (1.6). Further examples

motivating the analysis of system (1.7) and its extensions in the context of hydrology

and other applications will be presented in Section 3. Mathematically, the term Lj′

with L > 0 in equations (1.5), (1.6) has a smoothing effect, see [37], [38].

The goal of this paper is to study local stability of an equilibrium of system

(1.7). Although the system is infinite-dimensional, the projection of dynamics on

the (x, y) plane plays the main role for stability analysis. From the two memory

effects mentioned above, the turning points of the x component of a solution affect

the dynamics near an equilibrium substantially; the effect of points where the x

component crosses its previous extremum values is either not there at all or less

important. As the turning points are located on the line f(x, y) = 0, it plays an

important role, which is somewhat similar to the role of a switching line in control

systems theory. We will see that system (1.7) has a singularity on the line f = 0 due

to the fact that the memory stack is updated each time the projection of a trajectory

on the (x, y) plane crosses this line.

The paper is organized as follows. In the next section, we discuss the Preisach

operator and some properties of the Cauchy problem for system (1.7). Section 3

contains main results. Theorems 3.1–3.4 describe trajectories which cross the line

f = 0 near an equilibrium of system (1.7). Such trajectories can follow the line f = 0

to, or from, the equilibrium, or escape its neighbourhood along the x-direction. This

behaviour is somewhat similar to that of a slow-fast ordinary differential system with

the fast variable x. We discuss the singularity of system (1.7) on the line f = 0, which

is the origin of this similarity, and present numerical examples. Theorems 3.2–3.4

are used later to analyse the stability of the equilibrium point. Stability results are

summarised in Theorem 3.5. In particular, system (1.7) can have a robust equilib-

rium point, which we call partially stable. Such an equilibrium is characterized by

the property that it, simultaneously, attracts many trajectories and repels many tra-

jectories; a rigorous definition will be presented. This property can potentially result

in the excitable behaviour of the system if the global dynamics can glue repelled

and attracted trajectories [35], [29]. We discuss this possibility; however, an explicit

example remains an open problem, as global dynamics is beyond the scope of this

paper. Finally, we briefly discuss possible extensions of Theorems 3.2–3.4 to systems

with n > 2 phase variables obtained by a singular perturbation of equations (1.7).
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Proofs are presented in Section 4. For simplicity, in the formulations and proofs of

the stability results we restrict ourselves to a certain natural class of initial states of

the Preisach operator.

2. Preliminaries

2.1. Preisach memory model. The Preisach operator is a classical model

of complex hysteretic constitutive relationships in magnetism, plasticity, sorption,

piezoelectricity, phase transitions and other physics disciplines; more recently, it

has found applications in macroeconomic, epidemiological and ecological modelling.

Here the wording ‘complex hysteresis’ means that an oscillating input of any small

amplitude generates a hysteresis loop (which, in the context of physics problems,

is associated with energy dissipation). The Preisach model is based on simple phe-

nomenology describing the input-output relationship in terms of its decomposition

into elementary two-state memory operators, the so-called non-ideal relays.

The non-ideal relay (also known as non-ideal switch, lazy switch, or Schmidt trig-

ger) is the simplest hysteretic transducer, characterized by threshold values α, β

where α < β. The input of this transducer is a continuous scalar function x(t);

the output r(t), at any moment in time, can take one of the two values, 0 (the

relay is ‘off’) or 1 (the relay is ‘on’). Moreover, the input-output pair (x(t), r(t))

always belongs to the union of the two thick black lines Ω = {(x, r) : x < β,

r = 0} ∪ {(x, r) : x > α, r = 1} in Figure 1 (b). If at some moment t the out-
put is r(t) = 0 (hence, x(t) < β), then the output will remain zero until the first

moment t′ > t when the input reaches the threshold value x(t′) = β. At this moment,

the output switches to the value r(t′) = 1. Similarly, if r(t) = 1 (hence, x(t) > α)

at a moment t, then the output remains equal to 1 till the first moment t′ > t when

the input reaches the threshold value x(t′) = α; at this moment, the output switches

to the value r(t′) = 0. Given a continuous input x(t), t > t0 and an initial value of

the input r(t0) = r0 such that (x(t0), r(t0)) ∈ Ω, these two simple rules define the

binary output r(t), t > t0 of the non-ideal relay. We will denote this output by

(2.1) r(t) = (Rα,β [r0]x)(t).

Note that if α < x(t0) < β, then each of the two initial conditions r0 = 0, 1 is

possible, and they define different outputs for the same input.

In the formalism of the Preisach model, one considers a collection of non-ideal

relays, which all respond independently to the same continuous input x(t), t > t0.

The outputs of the relays are then weighted to obtain the output of the system. Each

relay is identified by a different pair of thresholds (α, β), which ranges over a subset
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Π of the half-plane α < β (the so-called Preisach half-plane). For our purposes, it is

convenient to define Π to be a strip Π = {(α, β) : α 6 β 6 α + d}. Given an initial
value r0(α, β) ∈ {0, 1} for each (α, β) ∈ Π, formula (2.1) defines the output

(2.2) r(t;α, β) = (Rα,β [r0(α, β)]x)(t), t > t0

of each relay contributing to the system. The output of the whole system is then

defined by the integral

(2.3) p(t) =

∫

Π

µ(α, β)r(t;α, β) dα dβ =

∫

Π

µ(α, β)(Rα,β [r0(α, β)]x)(t) dα dβ

over all the relays, where the nonnegative weighting function µ : Π → R is called

the Preisach density function; it is assumed to be continuous, uniformly bounded

and integrable over the strip Π. Although the outputs of individual relays (2.2) are

binary and hence, generically, discontinuous, the output p(t), t > t0 of the Preisach

model is continuous due to weighting [5], [34], [43].

2.2. Evolution of states. The function r(t; ·, ·) : Π → {0, 1}, describing the
outputs of all the relays at a moment t, is called the state of the Preisach model at

this moment. In particular, r(t0; ·, ·) = r0(·, ·) is an initial state. Thus, equation (2.3)
defines the evolution of the state in time for given input and initial state. However,

this evolution can be described in simpler geometrical terms [34], [43].

From all the possible states of the Preisach model, we will consider a smaller

natural class of states of a special form, see Figure 2. Here, there is a staircase

polyline S that divides the strip Π on the (α, β) plane into two parts. The state

r(α, β) of the Preisach model equals 1 below the polyline S and equals 0 above the

polyline S. The polyline S consists of either a final or countable number of vertical

and horizontal segments; in the latter case, the only accumulation point of the corners

of the polyline is its end located at the bisector α = β.

The polyline S = S(t), separating the domain where r(t;α, β) = 1 (the area shaded

dark in Figure 2) from the domain where r(t;α, β) = 0 (white) on the Preisach half-

plane, changes in response to the variation of the input x(t). Formula (2.2) defines

the following rules of evolution of S = S(t). The right end of S at the bisector

α = β always has the coordinates equal to x(t). Imagine that the input x = x(t)

moves along the horizontal axis and controls the right end (x(t), x(t)) of S(t) on the

diagonal α = β. When x(t) increases, the point (x(t), x(t)) on the diagonal drags the

horizontal line and colors the domain below this line and above the diagonal. For

instance, if, in Figure 2 (a), x increases from the value x0 to the value x̃, the colored

area is increased by the lightly shaded triangle. When x(t) decreases, the diagonal
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Figure 2. Evolution of a varying state of the Preisach model. In the colored domain Ω(S(t))
the relays are on, in the white domain they are off. The output p(t) of the model
is the area of the colored domain with respect to the density µ.

point drags the vertical line, and colors in white everything to the right of this line

and above the diagonal as in Figure 2 (b), where the coloured area decreases by the

lightly shaded trapezium as the input x decreases from the value x0 to x̃.

If we denote by Ω(S(t)) the part of the strip Π below (to the left of) the polyline

S(t), that is the domain where r(t;α, β) = 1, then the output (2.3) of the Preisach

model is the area of Ω(S(t)) with respect to the density µ,

(2.4) p(t) =

∫

Ω(S(t))

µ(α, β) dα dβ.

In what follows, the polyline S = S(t) is referred to as the staircase state (or, just

the state) of the Preisach model at the moment t, as it defines the output p(t) of the

model according to formula (2.4), and the outputs r(t;α, β) of the individual relays.

We will use the notation P for the Preisach operator that maps a pair (x(t), S0),

where x(t) is a continuous input defined on a time interval [t0, t1) (or, [t0, t1]) and

S0 = S(t0) is an initial staircase state of the Preisach model, to the continuous

output (2.4) defined on the same time interval as the input,

(2.5) p(t) = (P [S0]x)(t).

This is the operator (2.3) when we restrict our attention to the staircase states. If

we introduce the Hausdorff metric ̺(·, ·) between the staircase polylines S and the
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uniform metric in the spaces of inputs and output, then the Preisach operator is

globally Lipschitz continuous,

‖p1 − p2‖C[t0,t1] 6 K(‖x1 − x2‖C[t0,t1] + ̺(S1(t0), S2(t0)))

where pi(t) = (P [Si(t0)]xi)(t) and the Lipschitz constant K is the same for any

time interval [t0, t1]. A similar estimate, with the same right hand side, holds for

the maximal distance max
t06t6t1

̺(S1(t), S2(t)) between the staircase states varying in

response to the variation of the inputs xi. The domain of the Preisach operator (2.5)

consists of pairs (x(t), S(t0)) such that the right end of the staircase state S0, which

is situated on the bisector α = β, is placed at the point (x(t0), x(t0)). We will always

assume that this compatibility between the initial staircase state and the initial value

of the input is respected, meaning by ‘any initial state’ an arbitrary state with the

right end at the point (x(t0), x(t0)).

An important notice for the following is that if the input x(t) strictly increases

on any time interval [τ0, τ1], then the staircase state S(τ1) at the moment τ1 has

a finite number of corners and links, and the link connecting the right end of the

polyline S(τ1) to the next corner is horizontal. We call this link the initial link, or

the initial segment, of the staircase state, see Figure 2. Furthermore, if the input

x(t) strictly decreases on any time interval [τ0, τ1], then the staircase state S(τ1)

also has a finite number of corners and links, but the initial segment is vertical. In

particular, for any piecewise monotone input, S(t) has a finite number of corners and

links at any moment. For an input x(t), which strictly increases on a time interval

[τ0, τ1], the initial link of the state S(τ1) is the horizontal segment connecting the

point (x(τ1), x(τ1)) with the staircase state S(τ0). That is, setting S0 = S(τ0), x0 =

x(τ0), x̃ = x(τ1) and denoting by (α̃S0
(x̃), x̃) the most right intersection point of

the horizontal line β = x̃ with the staircase polyline S0 (or, in case they do not

intersect, defining (α̃S0
(x̃), x̃) as the intersection point of the line β = x̃ with the

upper boundary of the strip Π), the initial horizontal segment of the state S(τ1) is

Γhor = {(α, β) : α̃S0
(x̃) 6 α 6 x̃, β = x̃}, x̃ > x0,

see Figure 2. Similarly, for an input x(t), which strictly decreases on a time interval

[τ0, τ1], the initial vertical link of the state S(τ1) connects the point (x(τ1), x(τ1)) =

(x̃, x̃) to the staircase S0 = S(τ0). That is, denoting by (β̃S0
(x̃), x̃) the lowest inter-

section point of the vertical line α = x̃ with the staircase polyline S0 (or, if they do

not intersect, the intersection point of the line α = x̃ with the upper boundary of

the strip Π), the initial vertical segment of the state S(τ1) is

Γver = {(α, β) : x̃ 6 β 6 β̃S0
(x̃), α = x̃}, x̃ 6 x0.
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For analysis of system (1.7), the integral of the Preisach density function over the

initial segment of the staircase state plays an important role. The reason for this is

that the above law of evolution of the staircase state S(t) and the formula (2.4) for

the output lead to the relationship

(2.6) p′(t) = LS0
(x(t))x′(t),

where the function LS0
: R → R is defined by

(2.7) LS0
(x̃) =






∫ x̃

αS0
(x̃)

µ(α, x̃) dα, x̃ > x0,

∫ βS0
(x̃)

x̃

µ(x̃, β) dβ, x̃ 6 x0.

More precisely, if S(τ0) = S0, x(τ0) = x0, the input x(t) is monotone on a time

interval [τ0, t], the derivative x
′ is defined at the moment t, and x̃ = x(t) is a point

of continuity of the function (2.7), then the output p is differentiable at the moment

t and its derivative is defined by the formula (2.6). The function LS0
= LS0

(x̃) is

continuous except for points x̃ where x̃ equals either an abscissa or an ordinate of

a corner of the staircase polyline S0; at each discontinuity point, LS0
makes a finite

jump. Further discussion of the Preisach operator can be found, for example, in [5].

2.3. Differential system with Preisach memory. In the framework of dy-

namical systems theory, a solution has three components, (x(t), y(t), S(t)). That is,

the phase space of system (1.7) is the space of triplets (x, y, S). In particular, the

Cauchy problem for equation (1.7) consists in finding a solution satisfying a given

initial condition (x(t0), y(t0), S(t0)) = (x0, y0, S0). Due to the semigroup property of

the Preisach operator [34], one can merge two solutions defined on consecutive time

intervals [t0, t1] and [t1, t2] to form a solution on the time interval [t0, t2] if the final

point (x(t1), y(t1), S(t1)) of the solution defined on the interval [t0, t1] coincides with

the initial point of the solution defined on the interval [t1, t2]. In this way, the usual

continuation procedure works for system (1.7). We note the rate-independence prop-

erty of the Preisach operator implies that this operator commutes with the group of

translations of time. Therefore, system (1.7) is autonomous.

In what follows, we will use the term solution in relation to a triplet (x(t), y(t), S0)

or, whenever an initial state S0 is either fixed or can be chosen arbitrarily from the

set of all admissible initial states of the Preisach operator, to the pair (x(t), y(t)). We

note that the evolution of the state S(t) of the Preisach operator is uniquely defined

by the initial state S0 and the input x(t) of this operator according to the definition of

the previous section, hence it is legitimate to consider triplets (x(t), y(t), S0) instead

48



of (x(t), y(t), S(t)).3 The projection of solutions on the (x, y)-plane plays the main

role for the results presented below.

For a given initial state S0, a pair (x(t), y(t)), t ∈ [t0, t1) is a solution of system

(1.7) if the output p(t) = (P [S0]x)(t) of the Preisach operator and the component

y(t) are continuously differentiable, the component x(t) is continuous, and equations

(1.7) are satisfied at all points of the interval [t0, t1).

A stationary solution of system (1.7) is a solution satisfying (x(t), y(t)) ≡ (x0, y0).

As the Preisach operator maps a constant input to a constant output, the component

S(t) of a stationary solution and the output p(t) = (P [S0]x)(t) of the Preisach

operator are also constant, S(t) ≡ S0, p(t) ≡ p0. Therefore, as in the case of

ordinary differential equations, for any stationary solution (x(t), y(t)) ≡ (x0, y0),

(2.8) f(x0, y0) = g(x0, y0) = 0.

Moreover, relations (2.8) imply that (x(t), y(t)) ≡ (x0, y0) is a stationary solution

of system (1.7) for any initial state S0 of the Preisach operator. Hence, we call

a solution (x0, y0) of equations (2.8) an equilibrium of system (1.7).

Our focus will be on the dynamics near an isolated equilibrium. Without loss of

generality, we assume that the equilibrium is placed at the origin. Results will be

formulated in terms of the Jacobian matrix

(2.9) Q =

(
fx(0, 0) fy(0, 0)

gx(0, 0) gy(0, 0)

)

evaluated at the zero equilibrium, where fx, fy, gx, gy are the partial derivatives

of the functions f and g, which are assumed to be continuously differentiable. We

assume the non-degeneracy condition

(2.10) j0 = detQ 6= 0,

which ensures that the zero equilibrium (x0, y0) = (0, 0) is isolated.

2.4. Cauchy problem. The properties of the Cauchy problem for system (1.7)

depend on the properties of the Preisach density function µ. We will assume that

the continuous nonnegative function µ is positive on the line α = β. In this case, for

any given initial state S0, the Preisach operator P [S0] maps the space of all inputs

x ∈ C[t0, t1] satisfying an initial condition x(t0) = x0 to an open subsetD of the space

of continuous outputs p ∈ C[t0, t1] satisfying the initial condition p(t0) = p0, where

p0 = p0(S0) is defined by S0, and we use the uniform norm in the spaces of inputs

3 In applications, S is typically not an observable variable.
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and outputs. Moreover, this operator has a continuous inverse P−1[S0] defined on D.

The existence of this inverse operator ensures the local existence of a solution to the

Cauchy problem. That is, for any initial data (x(t0), y(t0), S(t0)) = (x0, y0, S0),

system (1.7) has a solution on a sufficiently small interval [t0, t1]. The existence can

be proved by replacing (1.7) with the equivalent system

p′(t) = f((P−1[S0]p)(t), y(t)),

y′(t) = g((P−1[S0]p)(t), y(t)),

p(t0) = p0, y(t0) = y0

where p(t) = (P [S0]x)(t), and then passing to the integral equation equivalent to

this system. The Schauder fixed point principle ensures the existence of a solution

to the integral equation on a sufficiently small time interval [t0, t1] in a standard way

(details can be found, for example, in [6]). As the continuation argument applies to

solutions of system (1.7), every solution can be extended from an interval [t0, t1] to

a maximal interval of existence [t0, T ) where T 6 ∞. Moreover, a standard argument
can be adapted from the theory of ordinary differential equations to show that if the

interval [t0, T ) is finite, then |x|+ |y| → ∞ as t → T−.
Uniqueness of solutions is a more complicated problem. First, we note that, given

initial data (x(t0), y(t0), S(t0)) = (x0, y0, S0), a solution of the Cauchy problem may

be unique on a time interval [t0, t1], but it cannot be uniquely extended in backward

time. This is an effect of the memory in the system. Indeed, given a state S0 of

the Preisach operator at a moment t0 and an input x(t) on a time interval [t−, t0]

preceding the moment t0, the state and output of the Preisach operator are not

uniquely defined on any time interval [τ, t0]. As a consequence, one can show that

an attempt to extend a solution of system (1.7) in backward time from a point

(x(t0), y(t0), S(t0)) in the phase space leads to non-uniqueness at every point t < t0.

Therefore, a solution of the Cauchy problem is considered for t > t0 only.

Next, let us show the forward uniqueness of solutions in the domain where

f(x, y) 6= 0. If a solution satisfies f(x(t), y(t)) > 0 on some interval (t0, t1) (or,

[t0, t1)), then the output p(t) = (P [S(t0)]x)(t) and the input x(t) = (P−1[S(t0)]p)(t)

of the Preisach operator both strictly increase on this time interval, as p′(t) =

f(x(t), y(t)) > 0. Therefore, on any subinterval [τ, τ +∆] of this time interval, the

initial segment of the state S(t) is horizontal and the function L(x̃) = LS(t0)(x̃)

defined by (2.7) is positive, separated from zero, piecewise continuous, and contin-

uously differentiable between its discontinuity points x̃k at which L(x̃) has finite

jumps (where x̃k are the ordinates of the corners of the state S(t0)). Hence, the

relation p′ = L(x)x′ implies that the solution of system (1.7) satisfies the ordinary
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differential system

(2.11) L(x)x′ = f(x, y),

y′ = g(x, y)

on the interval [τ, τ +∆]. Due to the above properties of the function L, a solution

of system (2.11) with any initial data from the domain f(x, y) > 0 is uniquely

extendable in forward time as long as it remains in this domain (details can be

found in [37]). Hence, if f(x0, y0) > 0 and the initial state S0 has a horizontal

initial segment, then the solution of the Cauchy problem for equation (1.7) with the

initial data (x(t0), y(t0), S(t0)) = (x0, y0, S0) is uniquely extendable in forward time

as long as the point (x(t), y(t)) remains in the domain f(x, y) > 0 of positivity of

f . A similar argument proves the forward uniqueness of solutions of system (1.7)

in the domain f(x, y) < 0 provided that f(x(t0), y(t0)) < 0 and the initial segment

of the initial state S(t0) is now vertical. Such a solution also satisfies the ordinary

differential system (2.11).

Thus, the potential locus of forward non-uniqueness is the line f(x, y) = 0. The

following example shows that the non-uniqueness is indeed possible.

E x am p l e 1. Consider the system

(2.12) (Px)′ = x, y′ = −y

where the equations are decoupled. The forward non-uniqueness is due to the x-

equation; the second equation can be replaced by any equation y′ = g(x, y).

Consider an initial data set x(t0) = 0, y(t0) = y0, S(t0) = S0, where the equality

x(t0) = 0 ensures that the initial point lies on the line f = 0. The Cauchy problem

with this initial data has a solution x(t) = 0, y(t) = y0e
−(t−t0), S(t) = S0, t > t0

with the stationary x-component and the stationary Preisach operator state. At the

same time, if we assume that the Preisach operator density function is constant,

µ(α, β) = µ0 = 1, in some neighbourhood of the point α = β = 0 and that the initial

state S0 has a nonzero vertical initial segment, then the function L in (2.11) equals

L(x) = x in some right neighbourhood of the point x = 0. Hence, the ordinary

differential system (2.11) reads

xx′ = x, y′ = −y

for x > 0, and its solution x = t − t0, y = y0e
−(t−t0) is, simultaneously, another

solution of the same Cauchy problem for system (1.7) for t > t0. Combining the
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two solutions, we obtain a continuum of solutions of this Cauchy problem for system

(1.7), which all have the same y-component, but different x-component

x(t) = 0 for t0 6 t 6 t0 +∆; x(t) = t− t0 −∆ for t > t0 +∆

with an arbitrary ∆ > 0. A similar argument shows that, if the initial state S0 has

a nonzero horizontal initial segment, then the same Cauchy problem has a continuum

of solutions with the x-component

x(t) = 0 for t0 6 t 6 t0 +∆; x(t) = −(t− t0 −∆) for t > t0 +∆.

Note that the initial point in this example can be the zero equilibrium x0 = y0 = 0

of the system.

E x am p l e 2. The backward non-uniqueness means that solutions of system

(1.7) starting from different initial conditions at t = t0 can merge at t > t0. It is

easy to show the backward non-uniqueness of solutions in the domain f(x, y) > 0

(or, f(x, y) < 0). Here we consider an example where a solution merges with the

equilibrium after infinitely many crossings of the line f = 0.

Let us consider the system

(2.13) (Px)′ = −y, y′ = x

where the Preisach operator density function is constant, µ = µ0 > 0, in a neighbour-

hood of the point α = β = 0. Assume the initial conditions x(0) = x0 > 0, y0 = 0

and the horizontal initial state S0 of the Preisach model. A trajectory of equations

(2.13) on the (x, y)-plane, which starts from these initial conditions, can be found

explicitly from equations (2.11). This is a spiral which consists of infinitely many

arcs ln, n > 1, converging to the zero equilibrium, where each arc ln is a trajectory

of the system

(2.14) (−1)n−1(xn−1 − x)µ0x
′ = −y, y′ = x,

connecting points (xn−1, 0) and (xn, 0) of the x-axis. Excluding time, one obtains

the equation µ0(−1)n−1(xn−1 − x)xdx+ y dy = 0 for ln, which leads to the solution

(2.15) l1 =

{
(x, y) : y = (x0 − x)

√
µ0

3
(x0 + 2x), −x0

2
6 x 6 x0

}
,

ln+1 = Bln, xn = −xn−1

2
, n > 1,
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where B = − 1
2I and I is the identity matrix. Combining the first equation of system

(2.14) with relations (2.15) results in the differential equation

x′ = (−1)n

√
(−1)n−1

3µ0
(xn−1 + 2x)

describing the evolution of x between the time moments tn−1 and tn when the trajec-

tory passes through the end points (xn−1, 0) and (xn, 0) of the arc ln. This equation

has the explicit solution

√
3µ0

(√
(−1)n−13xn−1 −

√
(−1)n−1(xn−1 + 2x)

)
= t− tn−1

for tn−1 6 t 6 tn, n > 1, which in particular implies tn−tn−1 = 3
√
µ0x0/2n−1. Sum-

ming this differences over n and taking into account that (x(tn), y(tn)) = (xn, 0) → 0

as n → ∞, we see that the trajectory reaches the zero equilibrium in finite time
T = 3

√
2µ0x0/(

√
2− 1), proving the backward non-uniqueness of solutions.

The uniqueness problem for the scalar equation (Px)′ = f(t, x) has been studied in

[37], [2]. This equation can have isolated points of forward non-uniqueness, which are

identified in [37] in terms of a system of equalities and inequalities for the derivatives

of the function f . In natural situations, the conditions for forward uniqueness are

satisfied everywhere [38], [50], [2], [11]. In this paper, we restrict the analysis of

uniqueness for system (1.7) to the above discussion. A complete analysis remains an

open problem. We note that Example 1 is ‘exotic’ in the sense that if a solution of

system (2.12) does not start from the line x = 0 (that is, the line f(x, y) = 0), then

the solution never reaches this line, as x(t) increases if x(t0) > 0 and x(t) decreases

if x(t0) < 0. Hence, all such solutions have the forward uniqueness property.

3. Main results

3.1. Behaviour of solutions near the curve f = 0. As discussed in Section 2.4,

for any solution of system (1.7) defined for t > t0, the state S(t) at a moment t > t0

has a nonzero initial horizontal segment whenever f(x(t), y(t)) > 0, and an initial

nonzero vertical segment whenever f(x(t), y(t)) < 0. By this reason, and due to the

special role of the line f = 0 highlighted in the previous section, we will consider only

initial data (x(t0), y(t0), S(t0)) = (x0, y0, S0) satisfying f(x0, y0) 6= 0, where S0 has

a nonzero initial horizontal segment if f(x0, y0) > 0, and a nonzero initial vertical

segment if f(x0, y0) < 0. Such data will be called admissible.

In what follows, we assume relations (2.8) at the origin x0 = y0 = 0 and the

nondegeneracy condition (2.10).
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Theorem 3.1. Assume that fy(0, 0) 6= 0. The set of the moments tk when

a trajectory of a solution (x(t), y(t)) of system (1.7) intersects the line f = 0 away

from the origin consists (if nonempty) of isolated points. Each point tk is a local

extremum point of the component x(t), which is strictly monotone to the left and

right of tk. The derivative of x(t) has a jump at each point tk: the left derivative

D−x(tk) is zero, while the right derivative is defined by the formula

(3.1) D+x(tk) =
sign(fyg)

2µ0

(
fx +

√
(fx)2 + 4µ0|fyg|

)

where fx, fy, g are evaluated at the point (x(tk), y(tk)) and µ0 = µ(x(tk), x(tk)).

According to this theorem, any trajectory has a corner point when it crosses the

line f = 0 away from the origin. It approaches and leaves the line f = 0 transversally

passing to the other side of the line and changing the direction at the crossing point.

A trajectory always approaches the line f = 0 vertically; for the intersections near

the origin, it leaves the line f = 0 almost horizontally in case fx(0, 0) > 0, and

almost parallelly to the line f = 0 in case fx(0, 0) < 0.

Theorem 3.1 implies that a trajectory of equation (1.7) either has at most finite

number of intersections with the line f = 0 on any finite time interval and never

reaches the origin, or a trajectory reaches the zero equilibrium in finite time making

infinitely many intersections with the line f = 0. In the latter case, the intersection

moments t1 < t2 < t3 < . . . < ∞ converge to the moment when the trajectory

reaches the origin as illustrated by the example of Subsection 2.4.

3.2. Systems with fx(0, 0) > 0.

Theorem 3.2. Let fx(0, 0) > 0. There is a function ϕ = ϕ(δ) satisfying 0 <

ϕ(δ) < δ such that if, at some moment τ , a trajectory of system (1.7) hits the line

f = 0 at a point (x, y) with 0 < |x| < ϕ(δ) for a sufficiently small δ, then the

trajectory escapes the strip |x| < δ. The x-component of the trajectory is strictly

monotone between the moment τ and the moment τe > τ when the trajectory first

hits one of the lines x = ±δ (hence, the trajectory does not intersect the line f = 0

for τ < t < τe). Moreover, there is a function ϕ = ϕ(δ) > 0 satisfying ϕ(δ) → 0 as

δ → 0 such that |dy/dx| < ϕ(δ) for τ < t < τe as long as 0 < |x| < ϕ(δ).

According to this theorem, a trajectory, which hits the line f = 0 sufficiently close

to the zero equilibrium, continues almost horizontally until it escapes some fixed

vicinity of zero. Figure 3 (a) presents a numerical solution of system (Px)′ = x− y,

y′ = x+ y satisfying the conditions of Theorem 3.2.
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Figure 3. Numerical solution of systems (a) (Px)′ = x−y, y′ = x+y; (b) (Px)′ = −2x+y,
y′ = −x+ y; (c) (Px)′ = −x+ y, y′ = −2x− y. The line with the arrow shows
the trajectory of a solution. The other line is f(x, y) = 0. The Preisach density
function is µ(α, β) = 1. The initial state of the Preisach operator is a single
horizontal line connected to the edge of the strip Π for panels (a) and (c); for
panel (b), it includes an initial vertical line connected to a horizontal line which
goes to the edge of the strip Π.

3.3. Systems with fx(0, 0) < 0.

Theorem 3.3. Let fx(0, 0) < 0, j0 < 0 and fy(0, 0) 6= 0. There is a function ϕ =

ϕ(δ) satisfying 0 < ϕ(δ) < δ such that if, at some moment τ , a trajectory of system

(1.7) hits the line f = 0 at a point (x, y) with 0 < |x| < ϕ(δ) for a sufficiently small

δ, then the trajectory escapes the strip |x| < δ. The x-component of the trajectory is

strictly monotone between the moment τ and the moment τe > τ when the trajectory

first hits one of the lines x = ±δ (hence, the trajectory does not intersect the line

f = 0 for τ < t < τe). Moreover, there is a function ϕ = ϕ(δ) > 0 satisfying ϕ(δ) → 0

as δ → 0 such that a trajectory lies in the angle |fx(0, 0)x+ fy(0, 0)y| < ϕ(δ)|x| for
τ < t < τe whenever it hits the line f = 0 at a point (x, y) with 0 < |x| < ϕ(δ).

Under the conditions of this theorem, a trajectory, which hits the line f = 0

sufficiently close to the zero equilibrium, continues along the line f = 0 until it

escapes some fixed vicinity of zero. Figure 3 (b) illustrates Theorem 3.3 for system

(Px)′ = −2x+ y, y′ = −x+ y.

Theorem 3.4. Let fx(0, 0) < 0, j0 > 0 and fy(0, 0) 6= 0. Then any trajectory

of system (1.7) that hits the line f = 0 sufficiently close to the zero equilibrium
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at some moment τ , converges to the zero equilibrium, but never reaches it. The x-

component of the trajectory is strictly monotone for t > τ (hence, the trajectory does

not intersect the line f = 0 for t > τ). Moreover, there is a function ϕ = ϕ(δ) > 0

satisfying ϕ(δ) → 0 as δ → 0 such that |fx(0, 0)x+fy(0, 0)y| < ϕ(|x(τ)|)|x| for t > τ .

As in Theorem 3.3, the assumption fx(0, 0) < 0 ensures that a trajectory that hits

the line f = 0 sufficiently close to the zero equilibrium then continues along the line

f = 0. Under the condition j0 > 0 of Theorem 3.4 the trajectory moves along the line

f = 0 towards the zero equilibrium, while under the condition j0 < 0 of Theorem 3.3

the trajectory moves away from zero. Figure 3 (c) illustrates Theorem 3.4 for system

(Px)′ = −x+ y, y′ = −2x− y.

A trajectory cannot hit the line f = 0 exactly at the zero equilibrium point

without having made a sequence of previous intersections with this line at some

points (xk, yk) → (0, 0). Indeed, as long as a trajectory does not hit the line f = 0,

it is a solution of the smooth ordinary differential system of equations (2.11) with

L(x) > 0 separated from zero. Such a solution cannot reach the zero equilibrium

due to the uniqueness property.

The condition fy(0, 0) 6= 0 of Theorems 3.3, 3.4 is technical and can be omitted.

3.4. Similarity with slow-fast systems. The behaviour of trajectories of sys-

tem (1.7) described in Theorems 3.2–3.4 after a trajectory hits the line f = 0 near

the zero equilibrium is similar to that of the slow-fast system

(3.2) εx′ = f(x, y),

y′ = g(x, y)

with 0 < ε ≪ 1. The reason for this similarity is that the factor L(x) in equation

(2.11) equivalent to system (1.7) is small after the trajectory intersects the line

f = 0. Some difference is due to the fact that, when a trajectory moves away

from the line f = 0 after having hit this line, the value of L(x) increases from zero

to positive values, hence it is first smaller than any ε and later it becomes larger

than a sufficiently small ε. For the three examples illustrating Theorems 3.2–3.4 in

the previous subsection, we replace (Px)′ with εx′ and present trajectories of the

resulting linear systems in Figure 4. We note that if a trajectory of system (1.7)

approaches a neighbourhood of the zero equilibrium from a distance without hitting

the line f = 0, then L(x) is not small and therefore this part of the trajectory is not

similar to trajectories of system (3.2).

3.5. Stability and effect of small impulse perturbations. Now, we use The-

orems 3.2–3.4 to analyze stability of the zero equilibrium of system (1.7). In order
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Figure 4. A trajectory of the slow-fast ordinary differential system εx′ = x− y, y′ = x+ y

(left) is similar to the trajectory of system (Px)′ = x − y, y′ = x + y shown
in Figure 3 (a) after the trajectories cross the line x − y = 0. Trajectories of
the system εx′ = −2x + y, y′ = −x + y (center) and system εx′ = −x + y,
y′ = −2x − y (right) are similar to those shown in Figures 3 (b) and 3 (c),
respectively. The initial conditions used for these solutions are the same as those
used in the corresponding system with the Preisach operator.

to simplify the analysis, we restrict ourselves to the class Σν , ν > 0, of initial states

S0 of the Preisach operator, which satisfy the following properties:

A staircase S0 ∈ Σν either consists of one segment; or, it consists of two segments

and the length of the initial segment is larger than d− ν where d is the width of the

stripe Π on the Preisach plane; or, the length of the initial segment and the length

of the second segment is larger than ν, see Figure 5.

Definition. The zero equilibrium is ν-asymptotically stable if for any ε > 0

there is a δ > 0 such that the relations |x0| + |y0| < δ and S0 ∈ Σν ensure that

a solution of system (1.7) with the initial data x(t0) = x0, y(t0) = y0 and S0 satisfies

|x(t)| + |y(t)| < ε for all t > t0 and x(t), y(t) → 0 as t → ∞.

Definition. The zero equilibrium is ν-partially asymptotically stable if (a) for

any ε > 0 there is an open ball in the product of the (x, y) phase plane and the

set Σν of the state space of the Preisach operator such that any solution of system

(1.7) with initial data from this ball satisfies |x(t)| + |y(t)| < ε for all t > t0 and

x(t), y(t) → 0 as t → ∞; and, at the same time, (b) there is an ε > 0 such that for

every δ > 0 there is an open ball in the product of the disc |x| + |y| < δ and the
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Figure 5. States S0 of the Preisach operator from the set Σν .

set Σν of states of the Preisach operator such that any solution of system (1.7) with

initial data from this ball satisfies |x(t)| + |y(t)| > ε at some moment t > t0.

Definition. The zero equilibrium is ν-completely unstable if there is an ε > 0

such that, given any sufficiently small x0, any initial state S0 ∈ Σν of the Preisach

operator and any sufficiently small y0 (except for one value of y0 for every given

x0 and S0), if x(t0) = x0, y(t0) = y0, S(t0) = S0 are admissible initial data and

|x0| + |y0| > 0, then the solution of system (1.7) with these initial data satisfies

|x(t)| + |y(t)| > ε at some moment t > t0.

In the last definition, we exclude a small set of initial data (namely, one value of

y0 for each given x0 and S0), as a ν-completely unstable equilibrium of system (1.7)

is, typically, of the saddle type (see the proof of Theorem 3.5 below). Trajectories

starting from this small set can converge to the equilibrium.

Define

Lmax = max

{∫ d

0

µ(α, 0) dα,

∫ d

0

µ(0, β) dβ

}
,

Lν
min = min

{∫ ν

0

µ(α, 0) dα,

∫ ν

0

µ(0, β) dβ

}
.

Theorem 3.5. Assume fx(0, 0) 6= 0, fy(0, 0) 6= 0. The following statements hold

for any ν > 0.

(i) If fx(0, 0) < 0, j0 > 0 and

(3.3) fx(0, 0) + Lgy(0, 0) < 2
√
j0L for all Lν

min 6 L 6 Lmax,

then the zero equilibrium is ν-asymptotically stable.
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(ii) If fx(0, 0) < 0, j0 > 0 and

(3.4) fx(0, 0) + L̃gy(0, 0) > 2

√
j0L̃ for some L̃ ∈ (Lν

min, Lmax),

then the zero equilibrium is ν-partially asymptotically stable.

(iii) If fx(0, 0) > 0, j0 > 0 and

(3.5) fx(0, 0) + L̃gy(0, 0) < −2

√
j0L̃ for some L̃ ∈ (Lν

min, Lmax),

then the zero equilibrium is ν-partially asymptotically stable.

(iv) If fx(0, 0) > 0, j0 > 0 and

(3.6) fx(0, 0) + Lgy(0, 0) > −2
√
j0L for all Lν

min 6 L 6 Lmax,

then the zero equilibrium is ν-completely unstable.

(v) If j0 < 0, then the zero equilibrium is ν-completely unstable.

Note that stability of the zero equilibrium of the slow-fast system (3.2) is deter-

mined by the signs of fx(0, 0) and j0 for all sufficiently small ε > 0: the equilibrium

is a stable node if fx(0, 0) < 0, j0 > 0, an unstable node if fx(0, 0) > 0, j0 > 0, and

a saddle if j0 < 0 (cf. cases (i), (iv), (v) of Theorem 3.5).

3.6. Excitability. A system which rests at, or near, an equilibrium state in the

absence of external perturbations is called excitable if a relatively small and short

perturbation can cause the system to make a large excursion in the phase space before

returning back to the equilibrium. A classical mechanism leading to the excitability of

ordinary differential systems is the saddle-node homoclinic bifurcation, which creates

a pair of equilibria connected by a short and a long heteroclinic orbits (see e.g. [35],

[29]). Perturbations which instantaneously move a point in the phase space within

the basin of attraction of the unstable node are followed by the convergence back to

the node along the short homoclinic orbit. Hence, they have little effect on dynamics.

However, if a fluctuation moves the state from a vicinity of the stable node beyond

the stable manifold of the saddle equilibrium, then the trajectory returns to the node

along the long homoclinic orbit, thus resulting in a strong response to a relatively

small perturbation. This dynamics typically manifests itself by a large pulse in the

time trace of the phase variables. The distance between the saddle and the node

defines the size of perturbations which are capable of causing the pulse response.

Partially stable equilibria of system (1.7) seem to provide a possibility of a more

robust type of excitability. If an equilibrium is partially stable, then coupling of

the local dynamics near the equilibrium with global dynamics can make trajectories
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that leave a small vicinity of the equilibrium to come back after having made a large

excursion in the phase space, which is a premise for an excitable response to small

perturbations. Indeed, assume that, conditions of case (iii) of Theorem 3.5 are

satisfied and therefore the zero equilibrium is partially stable. Consider an initial

point (x0, y0) in the domain f(x, y) > 0, x < 0 and an admissible initial Preisach

state S̃0 ∈ Σν , which has a horizontal initial segment with L
S̃0
(x0) = L̃ satisfying

(3.5). The trajectory (x(t), y(t)) of system (1.7) starting from this point is a solution

of the ordinary differential system L
S̃0
(x)x′ = f(x, y), y′ = g(x, y) as long as it does

not cross the line f = 0. Due to (3.5), the zero equilibrium is a stable node of this

system with eigenvalues λ2 < λ1 < 0. Choosing an eigenvector e1 corresponding to

the eigenvalue λ1 in such a way that its x-component is negative, it is straightforward

to see that there is an angle A ⊂ {(x, y) : a1x+ b1y 6 0, a2x+ b2y 6 0, x 6 0} with
the vertex at zero and a disc U centered at zero such that (a) A contains the ray
re1, r > 0 in its interior; (b) the interior of the intersection A ∩ U is contained

in the domain f(x, y) > 0, x < 0; and, (c) if (x0, y0) belongs to A ∩ U , then the

trajectory of the system L
S̃0
(x)x′ = f(x, y), y′ = g(x, y) starting from the point

(x0, y0) converges to zero within the angle A, asymptotically approaching the ray
re1. Hence, the same property (c) is true for all the trajectories of system (1.7) with

initial data (x0, y0) ∈ A∩U and any admissible initial state with S0 ∈ Σν sufficiently

close to S̃0, i.e., all such trajectories converge to zero within the angle A.
Now assume that a small instant perturbation affects the x-component of such

a solution at a moment τ , namely x instantly changes to x−ε where ε > 0. We assume

that the state of the Preisach operator changes at the same instant appropriately,

acquiring a small vertical segment of length ε, which corresponds to a monotonic

change of the input from the value x to the value x − ε. As f(x(t), y(t)) > 0 for

t < τ , the x-component of the solution was increasing prior to the perturbation,

hence S(τ) ∈ Σε. If the perturbation happens at a large moment τ , then x is close

to zero and therefore the perturbation moves the point (x, y) across the line f = 0

to the domain f < 0, x < −ε, hence x decreases after the moment τ . Moreover, an

argument similar to that we use in the proof of Theorem 3.2 below shows that after

the moment τ the trajectory is almost horizontal and its x-component decreases until

the trajectory crosses the line x = −δ through a segment Rδ = {x = −δ,−a(δ) 6

y 6 a(δ)}, where 0 < δ < δ0 is independent of the value of ε which can be arbitrarily

small, and a(δ) → 0+ as δ → 0.

Now, if this local dynamics couples with global dynamics which returns the tra-

jectory from the segment Rδ to the arc A ∩ ∂U , where ∂U is the boundary of the

disc U , and, simultaneously, returns the state of the Preisach nonlinearity to a state

S ∈ Σν which has approximately the same initial segment as the state S̃0, then this

combination of dynamics ensures the excitability.
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An explicit rigorous example of such a coupling of local and global dynamics is an

open problem. Note that the suggested excitable dynamics are robust with respect

to small perturbations of the system. This robustness contrasts to the excitability

scenario in ordinary differential equations, where a small variation of system param-

eters can eliminate a pair of close equilibria connected by two heteroclinic orbits via

the saddle-node homoclinic bifurcation, thus eliminating the excitability property.

A partially stable equilibrium of system (1.7) is similar to a saddle-node equilibrium

of an ordinary differential equation in that, in both systems, there are many tra-

jectories which converge to the equilibrium and, simultaneously, many trajectories

which diverge from it. However, while the partially stable equilibrium is robust, the

saddle-node is not. Trajectories which leave a small neighbourhood of a partially

stable equilibrium of system (1.7) and then are caught into the basin of attraction of

the same equilibrium due to global dynamics can also be compared to trajectories of

an ordinary differential system near a homoclinic loop connecting the unstable and

stable manifolds of a saddle equilibrium. Again, we suggest that such trajectories of

system (1.7) are robust, while the homoclinic loop will, generically, be destroyed by

an arbitrarily small perturbation of the ordinary differential system via the homo-

clinic bifurcation.

3.7. Solutions that do not hit the line f = 0. Theorems 3.2–3.4 discuss

the behaviour of trajectories that hit the line f = 0 near the zero equilibrium. As

we have seen in the previous subsection, there might be other trajectories, which

converge to the zero equilibrium without hitting the line f = 0 (see also the proof

of Theorem 3.5 below). After some moment τ , such trajectories satisfy an ordinary

differential system (2.11) and converge to zero along the less stable direction of the

stable zero node of system (2.11). However, in case of a partially stable equilibrium

of system (1.7), such trajectories are unstable to small perturbations which can push

them to the domain where the equilibrium of system (1.7) repels. In particular, as

discussed above, this local dynamics can be a premise for the excitability.

3.8. Examples and open problems. The LCR circuit system (1.5) with L = 0

is an example of system (1.7). It satisfies condition (3.3) of Theorem 3.5, hence the

zero equilibrium j = 0, u = 0 of this system is ν-asymptotically stable, as expected.

Let us consider another example of a stable equilibrium coming from hydrology.

The following lumped model of a water flow through a slab of soil has been derived

in [47], [48] by combining Darcy’s law with the hysteretic constitutive relationship

between the moisture content and the water pressure in the soil, and averaging out

the spatial variation of the variables:

(3.7) u′ = k(a(t)− x), u(t) = (Px)(t).
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Here u is the amount of water in the soil column; x is the pressure (or, equivalently,

the so-called matric potential) in the center of the soil column; a is the pressure

on the surface of the soil controlled by the conditions in the atmosphere such as

precipitation and humidity. The first equation is the balance equation stating that

the rate of change of the water content equals the water flux from the surface into

the soil slab, which is proportional to the difference of pressures on the surface and

in the soil. The second equation is the constitutive hysteretic relationship between u

and x defined by the properties of the porous media of the soil and modelled by the

Preisach operator P . This model and its extensions with multiple flows from and to

the soil slab have been studied in [37], [2], [38], [8], [26], [46], [53], [49]. In particular,

the Preisach operator density function has been identified for different types of soils

on the basis of the measured constitutive relationship in [25]; the model has been

fitted to experimental rainfall and soil water content data in [2], [8].

Let us consider a similar model with two layers of two different soils. The upper

layer is the same as above. In the lower layer, we assume simply the linear constitutive

relationship between the water content and the pressure. The resulting system

u′ = k1(a− x) + k2(y − x), v′ = k2(x− y), u(t) = (Px)(t), v = Cy

has the form (1.7), where x, y are the pressures in the lower and upper soil layers,

respectively; a is the pressure on the surface; u and v are the water contents in

the upper and lower soil layers; k1 and k2 are hydrolic conductivities of those. If

a is constant, then the equilibrium is achieved for x = y = a. The system satisfies

the conditions of part (i) of Theorem 3.5, hence the equilibrium is ν-asymptotically

stable. In hydrological applications it is natural to assume that the hydrolic conduc-

tivities depend on the pressure, k1 = k1(x), k2 = k2(y), and that the constitutive

relationship is nonlinear, v = C(y). One can apply Theorem 3.5 in this context too.

Several examples of models of population dynamics in ecology, epidemiology and

economics lead to extensions of system (1.7). As one illustration, let us consider

the following Predator-Prey system, where prey can migrate between two patches

of habitat, a free patch and a refuge. The free patch is characterized by certain

uniform growth rate b of the prey and attack rate a by the predator. The prey

growth rate and the attack rate in the refuge are for simplicity assumed to be zero.

We further assume that the heterogeneous refuge consists of many cells where each

cell is characterized by two thresholds α and β with α < β. A refuge cell gets filled

with prey when the density x of predator exceeds the higher threshold value β; the

cell gets emptied when the predator density x decreases below the lower threshold4 α.

4 The difference between the threshold values can be caused by herding behaviour of the
prey.
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This behaviour is modelled by the non-ideal relay (2.1), which switches between the

“filled” state 1 and the “empty” state 0 in response to the variations of the predator

density x(t). In the continuous limit, assuming the density of prey µ(α, β) in the

refuge cell with thresholds α, β when it is filled, we obtain that the total number of

prey in the refuge is given by the integral (2.3). That is, the Preisach operator maps

the time series of x to the time series of the number of prey in the refuge. Therefore,

the total number of prey is y + Px where y is the number of prey in the free patch.

Assuming that the transitions of prey between the free and refuge patches are much

faster than the population processes, we arrive at the predator-prey system

(3.8) x′ = −dx− cx2 + eaxy,

y′ + (Px)′ = by − axy,

where d is the death rate of the predator, c is the competition rate coefficient and e

is the predator efficiency. This system does not have the form (1.7), hence a modifi-

cation of Theorem 3.5 is needed to analyse its stability. Numerical simulations give

an evidence that the unique positive equilibrium x∗ = b/a, y∗ = (ad + bc)/(a2e) of

(3.8) is globally stable. A rigorous analysis is beyond the scope of this paper.

A similar modelling approach was used in [51], [52] to formulate a Susceptible-

Infected-Recovered epidemiological model where people can switch from a riskier to

a safer mode of behaviour in the face of epidemics and switch back when the risk

of contagion decreases. The resulting model is more complex than (1.7) or (3.8) in

that it contains both the Preisach operator Px and the time derivative (Px)′. Such

models are typically characterized by multiple equilibrium points forming connected

sets or branches. A rigorous analysis of stability of such equilibrium sets, to the

best of our knowledge, has not been attempted yet. Moreover, a similar set of

ideas has been applied in the context of models of economics and finance in order

to explain multiplicity of equilibria, persistent memory of shocks and other stylized

features observed in economic processes. For example, a Supply-Demand model of

this type was developed in [17]; further material related to the role of hysteresis in

economics can be found in [28], [12], [13], [14], [15], [16]. A single equation (3.7)

was considered in [11] as a prototype model of supply driven by investment or, in

a broader context, a model of economic flows related to large ensembles of exchange

operations exhibiting hysteresis. A stochastic counterpart of equation (3.7) was used

to model price dynamics in a market with hysteretic agents [45]. Global stability of

a periodic solution of equation (3.7) driven by a non-stationary periodic input a(t)

was shown in [38]. In case of a stationary input a(t) ≡ a, this global result agrees

with Theorem 3.5 as the decoupled system (Px)′ = k(a − x), y′ = −y satisfies the

conditions of part (i) of Theorem 3.5, which ensure the ν-asymptotic stability of the

equilibrium.
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4. Proofs

4.1. Proof of Theorem 3.1. Suppose a trajectory (x(t), y(t)) hits the line f = 0

at a moment t = τ at a point (x0, y0) 6= 0 close to the origin. Assume

(4.1) fy(x0, y0)g(x0, y0) > 0

(the other case fy(x0, y0)g(x0, y0) < 0 can be considered similarly). Consider

(4.2)
df(x(t), y(t))

dt
= fx(x(t), y(t))x

′(t) + fy(x(t), y(t))g(x(t), y(t)).

As on some time interval τ−δ < t < τ the component x(t) is strictly monotone, x′ is

defined and satisfies |x′(t)| < k|f(x(t), y(t))| with some k > 0 almost everywhere on

τ−δ/2 < t < τ . This inequality combined with (4.1), (4.2) and f(x0, y0) = 0 implies

that f(x(t), y(t)) strictly increases on a sufficiently small time interval (τ − ε, τ ],

hence f(x0, y0) = 0 implies f(x(t), y(t)) < 0 for t ∈ (τ − ε, τ). If we assume that

f(x(t), y(t)) 6 0 also on some time interval (τ, τ + δ1) after the moment τ , then,

similarly, df(x(t), y(t))/dt > 0 almost everywhere on a sufficiently small time interval

(τ − ε, τ + ε), hence f(x(t), y(t)) > 0 for t > τ , i.e., we arrive at a contradiction.

Therefore, there are moments θ > τ arbitrarily close to τ such that f(x(θ), y(θ)) > 0.

Moreover, if θ is such a moment and if we assume that f(x(t), y(t)) > 0 on a time

interval [θ, θ1) with f(x(θ1), y(θ1)) = 0, while the trajectory does not leave some

sufficiently small neighbourhood of the point (x0, y0) during this time interval, then

(4.2) implies that df(x(t), y(t))/dt > 0 almost everywhere on some interval t ∈
(θ1 − δ, θ1) ⊂ (θ, θ1), which implies f(x(t), y(t)) < f(x(θ1), y(θ1)) = 0 on (θ1 − δ, θ1)

and thus makes a contradiction with the assumption f(x(t), y(t)) > 0 on the whole

interval [θ, θ1). This contradiction shows that if f(x(θ), y(θ)) > 0 for a θ > τ

sufficiently close to τ , then f(x(t), y(t)) > 0 for t > θ as long as the trajectory is

sufficiently close to (x0, y0). As such θ exist arbitrarily close to τ , we conclude that

f(x(t), y(t)) > 0 on some time interval (τ, τ + ε).

The relations f(x(t), y(t)) < 0 on t ∈ (τ − ε, τ) and f(x(t), y(t)) > 0 on (τ, τ + ε)

imply that the intersection point τ of the trajectory with the line f = 0 is isolated

and that τ is a minimum point of the component x(t), which strictly decreases to

the left of τ and strictly increases to the right of τ .

It remains to prove formulas D−x(τ) = 0 and (3.1) at tk = τ . The first follows

from the relations f(x0, y0) = 0, L(x(t)) > 0 where L(x) is the coefficient (2.7)

in the ordinary differential system (2.11) which is equivalent to system (1.7) on

the time interval τ − ε < t < τ . To prove the second formula, note that x(t) is

absolutely continuous for t > τ . (Indeed, consider the function z(x) =
∫ x

x(τ)
L(s) ds;
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the first equation of system (2.11) implies z′ = f(x(z), y), hence z(t) is continuously

differentiable for t > τ and x(t) = x(z(t)) is continuously differentiable for t > τ

and absolutely continuous for t > τ .) Therefore, x(t) − x(τ) =
∫ t

τ
x′(θ) dθ. Set

∆x = x(t) − x(τ), ∆y = y(t) − y(τ), ∆t = t − τ . Assume ∆x > k∆t with k > 0,

then relations

x′ =
1

µ0 + o(1)

(
fx +

fy∆y

∆x
+ o(1)

|∆y|+∆x

∆x

)
as ∆t → 0+

and ∆y = g∆t+ o(∆t) with fx = fx(x0, y0), fy = fy(x0, y0), g = g(x0, y0) imply

x′ =
1

µ0

(
fx +

fyg

k
+ o(1)

)
;

here o(1) is a small quantity which vanishes at the point (x0, y0). The expression

on the right hand side is less than k for sufficiently small ∆t provided that k > k+,

where k+ is the positive root of the quadratic equation µ0k
2−fxk−fyg = 0. Hence,

(4.3) ∆x(t) > k∆t > k+∆t ⇒ x′(t) < k

for ∆t > 0 small enough. Similarly,

(4.4) ∆x(t) 6 k∆t < k+∆t ⇒ x′(t) > k.

If ∆x(t) > k∆t > k+∆t and t1 ∈ [τ, t] is the latest moment such that ∆x(t1) =

k∆t1, then integrating the inequality x′(t) < k over the segment [t1, t], we obtain

x(t) − x(t1) < k(t − t1) which contradicts x(t) − x(t1) = ∆x(t) −∆x(t1) > k∆t −
k∆t1 = k(t − t1). Hence, given any k > k+, (4.3) implies ∆x(t) 6 k∆t for all

sufficiently small ∆t > 0. Similarly, given a k < k+, (4.4) implies ∆x(t) > k∆t.

Hence, D+x(τ) = k+ and the proof is complete. �

4.2. Proof of Theorem 3.2. We use the notation of the previous subsection.

Given any small ε, ν > 0, we can choose a δ > 0 such that |g(x, y)| < ε in the

rectangle K = {|x| 6 δ, |y| 6 δ + 2δν}. Assume that a trajectory (x(t), y(t)) hits

the line f = 0 at a moment t = τ at a point (x0, y0) 6= 0 inside the rectangle

|x| < δ, |y| < δ. To be definite, assume x(t) strictly increases on an interval [τ, τ1)

(the case when x(t) strictly decreases after the moment τ is similar). According to

(3.1),

D+x(τ) = fx(0, 0)/µ0 + o(1) > 0 as δ → 0,

while |y′(τ)| = |g(x0, y0)| < ε, hence choosing ν = 2εµ0/fx(0, 0) and making δ > 0

sufficiently small we ensure that the trajectory enters the angle A = {|y − y0| <
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ν(x−x0)}. Also, the smallness of ν ensures that the set A∩K, which is at the same

time the intersection of the angle A with the vertical strip |x| 6 δ, does not intersect

the line f = 0. Hence, as long as the trajectory belongs to A ∩ K, the function x

increases and satisfies

(4.5) ∆xµx′ = L(x)x′ = f(x(t), y(t)) = fx∆x+ fy∆y

where fx, fy are evaluated at some intermediate points in A and µ(x, ξ) is evaluated

at an intermediate point of the segment |ξ| 6 δ. Therefore, taking into account that

|∆y/∆x| < ν due to (x, y) ∈ A, we have

(4.6) x′ =
fx(0, 0)

µ0
+

fy(0, 0)∆y

µ0∆x
+ o(1) >

fx(0, 0)

µ0
− ν|fy(0, 0)|

µ0
+ o(1)

with the small term vanishing as δ → 0. As ν > εµ0/(fx(0, 0)− ν|fy(0, 0)|) for small
ε, relation (4.6) combined with |y′| < ε for (x, y) ∈ K implies |dy/dx| < ν. Thus,

|dy/dx| < ν as long as the trajectory is inside the intersection of A with the vertical

strip |x| 6 δ and we conclude that the trajectory is included in A until it hits the

line x = δ, which proves the theorem. �

4.3. Proof of Theorem 3.3. Let us use the notation of the previous subsection,

but assume that fx(0, 0) < 0, j0 < 0. To be definite, assume again that x(t) strictly

increases on some interval [τ, τ1) after the trajectory (x(t), y(t)) hits the line f = 0

at a point (x0, y0) at the moment τ , i.e., fy(x0, y0)g(x0, y0) > 0 in formula (3.1) and,

by continuity, fy(0, 0)g(x0, y0) > 0. Relations f(x0, y0) = f(0, 0) = g(0, 0) = 0 imply

fx(0, 0)x0 + fy(0, 0)y0 = o(x0) and

(4.7) g(x0, y0) = gx(0, 0)x0 + gy(0, 0)y0 + o(x0) = − j0x0

fy(0, 0)
+ o(x0),

hence from fy(0, 0)g(x0, y0) > 0, j0 < 0 it follows that x0 > 0. Thus, the component

x(t) of the trajectory is positive and increasing on a time interval [τ, τ1) after the

moment τ . According to Theorem 3.1, x(t) will be increasing and positive as long as

the trajectory does not intersect the line f = 0 and does not leave some fixed neigh-

bourhood U0 of the origin. Furthermore, Theorem 3.1 implies that any trajectory

crossing the line f = 0 in the half-plane x > 0 close to the origin must approach this

line vertically and from the same direction (from below if −j0/fy(0, 0) > 0 and hence

relations x > 0, f(x, y) = 0 imply y′ = g(x, y) > 0 for small x, and from above if

−j0/fy(0, 0) < 0 and hence the relations x > 0, f(x, y) = 0 imply g(x, y) < 0). Since

the trajectory we consider has crossed the line f = 0 at the moment τ , we conclude
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that it will not cross this line again in U0 after the moment τ . Hence x(t) is positive

and increasing for t ∈ [τ, τu] where τu is the first moment when the trajectory reaches

the boundary of U0. As x(t) increases, the pair (x(t), y(t)) for τ + ε 6 t 6 τu is

a solution of ordinary differential system (2.11) with an equilibrium at the origin,

which is unique in U0, hence the trajectory leaves U0 in finite time, i.e., τu < ∞.
It remains to prove the relation |fx(0, 0)x(t)+fy(0, 0)y(t)| = o(1)|x(t)| for t ∈ [τ, τe]

as δ → 0, which also implies τe < τu, i.e., the trajectory hits the line x = δ before it

leaves U0. In order to do this, given a sufficiently small ν > 0, consider the domain

Āδ =
{
(x, y) : f(x, y) > 0, σ

(
∆y +

fx(x0, y0)

fy(x0, y0)
∆x

)
6 ν∆x, x0 6 x 6 δ

}

where x0 < δ, ∆x = x− x0, ∆y = y− y0, and σ = sign fy(0, 0). Relations (3.1) and

fx(x0, y0) < 0 imply D+x(τ) = −fy(x0, y0)g(x0, y0)/fx(x0, y0) + o(g(x0, y0)), while

y′(τ) = g(x0, y0), hence the right derivative (dy/dx)+ at the point (x0, y0) equals

(dy
dx

)

+
= −fx(x0, y0)

fy(x0, y0)
+ o(1)

with o(1) vanishing at the origin. Combining this relation with the fact that σy(t)

increases in a neighbourhood of the point τ , we see that the trajectory (x(t), y(t))

enters the domain Āδ through its vertex (x0, y0) at the moment τ and remains in the

interior of Āδ for all t > τ sufficiently close to τ . Note that (x(t), y(t)) is continuously

differentiable for τ < t < τu, since it is a solution of ordinary differential system (2.11)

on each time interval τ < τ + ε 6 t < τu.

As we have seen, the trajectory (x(t), y(t)) cannot leave Āδ through the line f = 0.

Relations (4.5) imply

dy

dx
=

y′

x′
=

µ(x1, y1)g(x, y)

fx(x2, y2) + fy(x3, y3)∆y/∆x

with some (xi, yi) ∈ U0. Hence, on the line l which is a part of the boundary of Āδ

and which is defined by σ(∆y + fx(x0, y0)∆x/fy(x0, y0)) = ν∆x, we have

dy

dx
=

µ(x1, y1)g(x, y)

fx(x2, y2) + fy(x3, y3)(−fx(x0, y0)/fy(x0, y0) + σν)
= o(1)

where o(1) vanishes as the diameter of U0 tends to zero for a constant ν > 0. Noting

that for σ > 0 the line l has a positive slope and bounds the domain Āδ from above,

while for σ < 0 the line l has a negative slope and bounds Āδ from below, we see that

the trajectory cannot leave the domain Āδ through the line l if δ > 0 is sufficiently

small due to the relation dy/dx = o(1), δ → 0 on l. Hence, the trajectory leaves Āδ

through the line x = δ. Finally, Āδ ⊂ {(x, y) : |y+fx(0, 0)x/fy(0, 0)| 6 2ν|x|, x > 0}
for small δ > 0, which completes the proof. �
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4.4. Proof of Theorem 3.4. To be definite, assume again that the component

x(t) strictly increases on some interval [τ, τ1] after a trajectory (x(t), y(t)) hits the

line f = 0 at a point (x0, y0) at the moment τ , i.e., fy(x0, y0)g(x0, y0) > 0. Under the

conditions of Theorem 3.4, j0 > 0, hence relations (4.7) imply x0 < 0. Using the same

argument as in the proof of Theorem 3.3, we see from formula (4.7) that any trajec-

tory crossing the line f = 0 in the half-plane x < 0 close to the origin must approach

this line vertically and from the same direction (from below if −j0/fy(0, 0) < 0 and

from above if −j0/fy(0, 0) > 0). Therefore the trajectory we consider does not cross

the line f = 0 after the moment τ as long as the trajectory does not leave the open

left half-plane x < 0 and, furthermore, x(t) increases all the time the trajectory is in

this half-plane. To complete the proof, let us show that, given any small δ > 0, the

trajectory does not cross the line lδ = {(x, y) : y = ((−fx(0, 0)−δ)/fy(0, 0))x, x < 0}
if |x0| is sufficiently small, and hence the trajectory converges to the zero equilibrium
in the angle Aδ between the lines f = 0 and lδ. Indeed, the derivative dy/dx on the

line lδ for t > τ is

dy

dx
= L(x)

gx(0, 0)x+ gy(0, 0)((−fx(0, 0)− δ)/fy(0, 0))x+ o(x)

fx(0, 0)x+ fy(0, 0)((−fx(0, 0)− δ)/fy(0, 0))x+ o(x)

with x0 < x < 0 and L(x) = µ(0, 0)x0 + o(x0), hence

dy

dx
=

µ(0, 0)(−j0 − gy(0, 0)δ)

−fy(0, 0)δ
x0 + o(x0).

If |x0| is sufficiently small, then the absolute value of the slope dy/dx is less than the
absolute value of the slope of the line lδ and hence the trajectory cannot leave the an-

gle Aδ through this line. Finally, the fact that x(t) increases implies that (x(t), y(t))

for t > τ1 is a solution of ordinary differential system (2.11) with a smooth right-

hand side, which has an isolated equilibrium at the origin, therefore the trajectory

converges to the zero equilibrium but never reaches it. �

4.5. Proof of Theorem 3.5. Consider a trajectory of system (1.7) with small

initial data x(t0) = x0, y(t0) = y0 such that f(x0, y0) 6= 0 and S0 ∈ Σν . Recall that

as long as the trajectory does not hit the line f = 0, it is a solution of the ordinary

differential system

(4.8) LS0
(x)x′ = f(x, y), y′ = g(x, y)

where LS0
(x) is a positive smooth function of x as long as x remains small; this

function is separated from zero uniformly with respect to S0 ∈ Σν and continuously
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depends on S0. Eigenvalues of the linearization of system (4.8) at zero are

λ1,2 =
1

2L
(fx(0, 0) + Lgy(0, 0)±

√
(fx(0, 0) + Lgy(0, 0)

)2 − 4j0L),

where L = LS0
(0).

(i) According to Theorem 3.4, if a trajectory hits the line f = 0 sufficiently close to

the zero equilibrium, then the trajectory converges to this equilibrium. In particular,

if fx(0, 0) + LS0
(x0)gy(0, 0) > −

√
j0LS0

(x0) for a small x0 and S0 ∈ Σν , then, due

to condition (3.3), the zero equilibrium of system (4.8) is either a focus or a center,

hence a trajectory (x(t), y(t)) starting sufficiently close to zero must hit the line

f = 0. In the complementary case fx(0, 0) + LS0
(x0)gy(0, 0) 6 −

√
j0LS0

(x0), the

zero equilibrium of system (4.8) is exponentially stable, hence the trajectory either

hits the line f = 0 or converges to zero without hitting the line f = 0.

(ii) Fix an L̃ satisfying (3.4). The definition of Lmax, L
ν
min implies that for any

sufficiently small x̃ there is a staircase state S̃0 ∈ Σν with the end at the point (x̃, x̃)

such that L
S̃0
(x̃) = L̃. To be definite, assume that the initial segment of all such

states is horizontal and that the domain f > 0 is situated below the line f = 0 on the

(x, y) phase plane. Consider a point (x̃, ỹ) on the line f(x, y) = 0, g(x, y) > 0 with

an arbitrarily small x̃ 6= 0.5 If a point (x0, y0) lies below the line f = 0 sufficiently

close to the point (x̃, ỹ) and S0 ∈ Σν is sufficiently close to S̃0, then the trajectory of

system (4.8) starting from the point (x0, y0) goes almost vertically up and hits the

line f = 0. This trajectory is also a trajectory of system (1.7) for small x0, as the

second segment of the state S0 has the length l > ν. Hence, all such trajectories of

system (1.7) hit the line f = 0 and according to Theorem 3.4 converge to the zero

equilibrium. This proves condition (a) of the definition of the partial stability. To

prove condition (b), consider that if S0 ∈ Σν is close to S̃, then the zero equilibrium is

an unstable node with the Lyapunov exponents λ1 > λ2 > 0 for system (4.8) due to

assumption (3.4). It is straightforward to check that the eigenvector e1 corresponding

to the eigenvalue λ1 is transversal to the line f = 0. Hence a trajectory of system

(4.8) with S0 = S̃ starting at a point (x̃, ỹ) = re1 with an arbitrarily small r 6= 0

from the domain f > 0 leaves some fixed neighbourhood U of zero without hitting

the line f = 0. The same is true for every trajectory of system (4.8) with S0 ∈ Σν

sufficiently close to S̃, which starts from a point (x0, y0) sufficiently close to (x̃, ỹ).

As these trajectories do not intersect the line f = 0 in U , they are also trajectories

of system (1.7) with the admissible initial Preisach state. This proves condition (b).

5 In the case when the domain f > 0 is situated above the line f = 0, we would consider
a point (x̃, ỹ) on the line f = 0, g < 0 instead. If the initial segment of the state S0 is
vertical, then the domain f > 0 should be replaced with the domain f < 0 in the above
argument.
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(iii) This case is similar to (ii). Here condition (3.5) ensures that there is an

admissible state S̃0 ∈ Σν such that the zero equilibrium of system (4.8) with any

S0 ∈ Σν sufficiently close to S̃0 is a stable node with eigenvalues λ2 < λ1 < 0 and

eigenvectors e1, e2. Hence, trajectories of (4.8) which start sufficiently close to the

straight line going through the origin in the direction of the eigenvector e1 converge

to zero without crossing the line f = 0. The same is therefore true for trajectories

of system (1.7) if an admissible initial Preisach state is chosen as in the case (ii). At

the same time, there is a set of trajectories of system (1.7) starting sufficiently close

to the line f = 0 that hit this line. According to Theorem 3.2 they escape some fixed

vicinity of zero.

(iv) This case is a counterpart of (i). If a trajectory (x(t), y(t)) hits the line f = 0,

then it escapes some neighbourhood U of the zero equilibrium due to Theorem 3.2. In

particular, if fx(0, 0) + LS0
(x0)gy(0, 0) <

√
j0LS0

(x0), then, due to condition (3.6),

the zero equilibrium of system (4.8) is either a focus or a center, hence the trajectory

(x(t), y(t)) must hit the line f = 0. If fx(0, 0)+LS0
(x0)fy(0, 0) >

√
j0LS0

(x0), then

the zero equilibrium of system (4.8) is an unstable node, hence the trajectory either

hits the line f = 0 or escapes U without hitting the line f = 0.

(v) If a trajectory does not hit the line f = 0, then, due to the condition j0 < 0,

it is a trajectory of the ordinary differential system (4.8) with a saddle equilibrium

point at the origin. Hence, the trajectory escapes some neighbourhood U of the origin

(except if the initial point (x0, y0) belongs to the stable manifold of the equilibrium).

If a trajectory hits the line f = 0, then it escapes U due to Theorems 3.2, 3.3. �
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