
Acta Universitatis Carolinae. Mathematica et Physica

TomĂĄĹĄ Jurczyk
Ridge least weighted squares

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011), No. 1, 15--26

Persistent URL: http://dml.cz/dmlcz/143664

Terms of use:
© Univerzita Karlova v Praze, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/143664
http://project.dml.cz


15

2011 ACTA uNIVERSITATIS CAROLINAE – MATHEMATICA ET pHySICA VOL  52, NO  1

Ridge Least Weighted Squares

Tomáš JurcZyk

praha

Received May 10, 2010
Revised August 10, 2010

Multicollinearity and outlier presence are classical problems of data within the linear re-
gression framework. We are going to present a proposal of a new method which can
be a potential candidate for robust ridge regression as well as a robust detector of multi-
collinearity. This proposal arises as a logical combination of principles used in the ridge
regression and in the least weighted squares estimate. We will also show the properties of
the new method.

1. N o t a t i o n a n d g o a l s

Let us set up notation first. Let N denote the set of all positive integers, R the
real line. All vectors are supposed to be column ones.

Throughout the paper we will be investigating regression methods. We consider
the linear regression model

Yi = X
′

iβ
0 + ei =

p∑
j=1

Xi jβ
0
j + ei, i = 1, 2, . . . , n,

where vector Y = (Y1, . . . ,Yn)′ is the response variable, Xi j is an element of the
design matrix X = (Xi j)

n,p
i=1, j=1, which has the full rank. Xi denotes the i-th row of X,

and ei, i = 1, . . . , n are error terms, which are random variables with Eei = 0. For any
β ∈ R p, ri(β) = Yi −

∑p
j=1 Xi jβ j denotes the i-th residual and r2

(h)(β) stands for the h-th
order statistic among the squared residuals, i.e., we have r2

(1)(β) ≤ r2
(2)(β) ≤ . . . ≤

≤ r2
(n)(β).
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Multicollinearity and outlier presence are classical problems of data within the linear regres-
sion framework  We are going to present a proposal of a new method which can be a po-
tential candidate for robust ridge regression as well as a robust detector of multicollinearity  
This proposal arises as a logical combination of principles used in the ridge regression and 
in the least weighted squares estimate  We will also show the properties of the new method 

The purpose of the paper is to find an estimate of vector parameter β0 to simulta-
neously handle multicollinearity and contamination (both problems and their conse-
quences are explained in part 2 of the paper). It will be recalled that methods routinely
used to solve one of these problems are no longer suitable when the second problem
also arises in the data. Moreover, we will try to describe the substance of this issue.

Many procedures have been suggested for this situation – mainly multistep proce-
dures where one of the steps uses the ridge weighted least squares estimation (given
in definition 4); such proposals could be seen for example in [5], [7] or [10]. We try
to find our method in a different way: we want to combine two methods directly into
a one-step procedure. We are going to use the ridge regression (proposed by [2]),
which is a classical method for dealing with multicollinearity, and the least weighted
squares (first presented in [11]), which can be used for outlier detection.

2. C o n s e q u e n c e s o f m u l t i c o l l i n e a r i t y
a n d o u t l i e r p r e s e n c e

In order to show our idea of finding a suitable estimate, we first have to understand
the consequences of both problems separately, as well as the principle of why the
ridge regression and the least weighted squares do their jobs. We will start with
problems of classical least squares method (LS).

2.1 Multicollinearity

Least squares method is a simple and widely used method. Unfortunately, there
exist many situations in which this method is clearly not suitable. One of these prob-
lematic situations can be a presence of multicollinearity.

Multicollinearity is a situation in which the regressors are nearly linear dependent.
In this situation the normal equations for the LS estimate do not have a stable solu-
tion, the LS estimate has a large expected value of its length, and components of the
estimate may have a large variation (for more details see [15]). If we imagine the
loss function (function which is being minimized) of the LS estimate (

∑n
i=1 r2

i (β)), we
will see the problem immediately. We have a nearly multiple solution of the normal
equations (caused by dependence of the regressors) – such a solution forms a linear
subspace in R p, so the graph of the loss function of the LS estimate is “almost” flat
(see also [3]) in certain direction(s). Therefore we get a large expected length and a
large variance of the estimate.

One of the methods which is recommended and used instead of LS in case of the
multicollinearity presence is the ridge regression estimator.

Definition 1 Let δ > 0, then

β̂(RR,n,δ) = argmin
β∈Rp


n∑

i=1

r2
i (β) + δ

p∑
j=1

β2
j
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j



is called the Ridge Regression (RR) estimate of parameter β0.

RR estimate can be computed as (X′X+δI)−1X′Y , thus avoiding problems with in-
version of matrix X′X (which is ill-conditioned under the multicollinearity presence)
and also ensures the stability of the solutions. It is known that the RR estimate is
biased but, at the same time, it has a smaller mean square error (for small values of δ)
than the LS estimate (the proof can, for example, be found in [15]).

LS and RR loss functions are different in penalization for large values of β. Just
because of this penalization, the RR estimator avoids estimates with large length (this
is also visible from lemma 5 with w = (1, 1, . . . , 1)′) and therefore the variation of
the estimate is also reduced. The loss function

∑n
i=1 r2

i (β) + δ
∑p

j=1 β
2
j is not so flat as∑n

i=1 r2
i (β).

2.2 Contamination problem

Contamination is a problem of the data with the presence of other observations
(outliers) which do not follow the regression model, and typically have large values.
It is known that already one outlier far away from the model will move the minimum
of the loss function of the LS estimate in direction of its influence. It is caused by the
fact that all residuals have the same importance.

Dealing with contaminated data is one of the tasks of robust statistics. The main
goal of the robust statistics is searching for models which would work for majority
of data. There exist many different robust methods which are used to reveal con-
taminating observations. We are going to present one typical representative of such
robust methods called least weighted squares. This estimator was proposed in [11].
We choose this estimator because of its nice properties (see [6], [11], [13], etc.) and
also because it is a direct generalization of another well-known and widely used least
trimmed squares (LTS) estimator (firstly mentioned in [8]).

Definition 2 For any n ∈ N , let 1 = w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 be some weights.
Then

β̂(LWS ,n,w) = argmin
β∈Rp

n∑
i=1

wir2
(i)(β)

is called the Least Weighted Squares (LWS) estimator.
We can see that the robust aspect is ensured here by weighting. The largest residual
gets the smallest weight. Please notice that a single weight is not directly related to a
specific observation. The LWS estimator assigns the weights to the observations “by
itself”.

It remains to say how this method can be used for outlier detection. With the
special choice of weights wn−h+1 = . . . = wn = 0, we can take for outliers those
observations to which these zero weights are assigned. The idea is following: if the
assigned weight for the observation is 0, the residual of this observation will not affect
the value of the loss function (regardless of how large the respective residual is).
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2.3 Multicollinearity and outliers together

We are interested now in a special type of data, in which the majority of the data
suffers from multicollinearity and follow the regression model, while the rest of the
data represents contamination.

The ridge regression is useless on this type of data because it is not robust. This
follows from the fact that each residual has the same importance; hence already one
large outlier (one potential large residual) considerably affects the estimate.

We expect the revealing of all contaminating observations from a good robust
method, and consequently the revealing of the true structure of the data. This task
is important, because dependence of regressors is an essential feature of the data. We
could try LWS (as a classical representative of robust methods) on this type of data.
Unfortunately, according to paper [3], the LWS method is not suitable either. The
robust regression methods based on residual weighting fail in detection of outliers
(although they are “built” for this purpose) with the increasing rate of multicollinear-
ity. Simply, we have nearly dependence of the regressors in the majority of the data,
so there are nearly some degrees of freedom which are filled by additional outliers.
In other words – the LWS method prefers the weights assignment which assigns large
weights to some outliers, as compared with the assignment in which all outliers have
zero weights. For more details see [3].

3. R i d g e l e a s t w e i g h t e d s q u a r e s

Now, we are going to show the promised new method which should be able to cope
with both presented problems.

Let us again recall the three methods we have already presented in this paper.
The RR is derived from the classical LS by addition of penalization. The LWS is
designed as a weighted version of LS. If we wrote down minimization problems or
loss functions of all presented estimators, we would reach a possible candidate for
our method immediately.

Least Squares Ridge Regression∑n
i=1 r2

i (β) → ∑n
i=1 r2

i (β) + δ
∑p

j=1 β
2
j

↓ ↓
Least Weighted Squares Ridge Least Weighted Squares∑n

i=1 wir2
(i)(β) → ∑n

i=1 wir2
(i)(β) + δ

∑p
j=1 β

2
j

We can see that ridge least weighted squares (as we call this new method) is a logical
combination of both principles – penalization for large β in case of multicollinearity
and weighting against outliers.

The ridge least weighted squares should solve the problem of multicollinearity
for LWS in the same way as RR does for the LS estimate (see again lemma 5). It

makes the loss function less flat than that of LWS. Therefore, the influence of outliers
(expected to be located far away from origin) will be reduced. We should define new
estimator precisely:

Definition 3 Let δ > 0 and 1 = w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 be some weights, then the
solution of the extremal problem

β̂(RLWS ,n,w,δ) = argmin
β∈Rp


n∑

i=1

wir2
(i)(β) + δ

p∑
j=1

β2
j

 (1)

is called the Ridge Least Weigthed Squares (RLWS) estimator.

3.1 Existence of RLWS estimate

To show the existence of the solution in (1), let us first recall a slightly simpler
estimate and its properties.

Definition 4 Let δ > 0, w = (w1,w2, . . . ,wn)′ be nonnegative weights, then we
define the Ridge Weighted Least Squares Estimator (RWLS) as

β̂(RWLS ,n,w,δ) = argmin
β∈Rp


n∑

i=1

wir2
i (β) + δ

p∑
j=1

β2
j

 . (2)

This weighted version of the ridge regression estimator is also called the Weighted
Ridge in literature (see [1]). We can rewrite (2) in matrix notation:

β̂(RWLS ,n,w,δ) = argmin
β∈Rp

(
(Y − Xβ)′W(Y − Xβ) + δβ′β

)
, (3)

where W = diag{w1,w2, . . . ,wn}.

Lemma 1 The solution of the normal equations

X′WY = X′WXβ + δβ (4)

is also the solution of the minimization expressed in (2). Therefore

β̂(RWLS ,n,w,δ) = (X′WX + δI)−1X′WY.

Proof: Let b ∈ R p be a solution of (4), which means X′W(Y − Xb) − δb = 0. We
are going to show that the loss function in (3) is, for any β ∈ R p, greater than or equal
to the value of the loss function for b. We have

(Y − Xβ)′W(Y − Xβ) + δβ′β
= [(Y − Xb) + (Xb − Xβ)]′W[(Y − Xb) + (Xb − Xβ)] + δ[b − (b − β)]′[b − (b − β)]
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makes the loss function less flat than that of LWS. Therefore, the influence of outliers
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Theorem 1 For any δ > 0, 1 = w1 ≥ w2 ≥ . . . ≥ wn ≥ 0 and arbitrary observa-
tions {Yi, Xi}ni=1 the solution of (1) always exists.

Proof: We have fixed δ > 0, w, design matrix X = (X1, X2, . . . , Xn)′ and response
variable Y = (Y1, Y2, . . . ,Yn)′. Denote by W = diag{w1,w2, . . . ,wn} the weight ma-
trix. For a given permutation π of indices {1, 2, . . . , n}, denote Y(π) and X(π) the
vector and the matrix obtained as the corresponding permutation of vector Y coordi-
nates and of matrix X rows, respectively. For data (Y(π), X(π)), w and δ, we are able
to compute the RWLS estimate

β̂(RWLS ,n,w,δ)(π) = [X′(π)WX(π) + δI]−1X′(π)WY(π).

According to Lemma 1, β̂(RWLS ,n,w,δ)(π) minimizes
n∑

i=1

wi

(
Yi(π) − X′i (π)β

)2
+ δ

p∑
j=1

β2
j

over β. Compute β̂(RWLS ,n,w,δ)(π) for all permutations and select that permutation, say
πmin, for which

n∑
i=1

wi

(
Yi(π) − X′i (π)β̂

(RWLS ,n,w,δ)(π)
)2
+ δ

p∑
j=1

(
β̂(RWLS ,n,w,δ)

j (π)
)2

is minimal. For any other permutation of indices π̃ we haven∑
i=1

wi

(
Yi(πmin) − X′i (πmin)β̂(RWLS ,n,w,δ)(πmin)

)2
(5)

+δ

p∑
j=1

(
β̂(RWLS ,n,w,δ)

j (πmin)
)2

≤
n∑

i=1

wi

(
Yi(π̃) − X′i (π̃)β̂

(RWLS ,n,w,δ)(π̃)
)2
+ δ

p∑
j=1

(
β̂(RWLS ,n,w,δ)

j (π̃)
)2

= min
β∈Rp


n∑

i=1

wi

(
Yi(π̃) − X′i (π̃)β

)2
+ δ

p∑
j=1

β2
j


The only difference between RLWS and RWLS estimations is implied by the

way of their assigning the weights to observations. In more detail – the RWLS as-
signment of the weights is fixed, while the RLWS method chooses one of the as-
signments by itself. Therefore, if we knew the permutation (say π∗) chosen by the
RLWS method just for β which minimizes the RLWS loss function, we would have
β̂(RLWS ,n,w,δ) = β̂(RWLS ,n,w,δ)(π∗). Together with inequality (5), we get that the value
of the loss function for β̂(RWLS ,n,w,δ)(πmin) is less than or equal to the value of the
loss function for β̂(RLWS ,n,w,δ). But if we look at the RLWS minimization and realize
that weights w1, . . . ,wn are non-increasing, we see that, for each β, the loss function
of RLWS follows the rule “the larger the residual, the smaller the weight". This is
clearly the best possible (minimizing) assignment of the weights (for any β including
β̂(RLWS ,n,w,δ)); we thus arrive to π∗ = πmin. �

Remark 1 The proof of theorem 1 shows the way how to find the RLWS estimate.
Instead of searching for the estimate through

min
β

min
π


n∑

i=1

wi

(
Yi(π) − X′i (π)β

)2
+ δ

p∑
j=1

β2
j


(i.e., in fact RLWS minimization), we find the estimate by minimizing

min
π

min
β


n∑

i=1

wi

(
Yi(π) − X′i (π)β

)2
+ δ

p∑
j=1

β2
j


(i.e., the procedure used in Theorem 1). So there exist πmin and β̂(RLWS ,n,w,δ) such that
β̂(RLWS ,n,w,δ) is the solution of the same normal equations as for
β̂(RWLS ,n,w,δ)(πmin), i. e. X′(πmin)W(Y(πmin) − X(πmin)β) − δβ = 0. Let us also em-
phasize that the inversion of the matrix X′(πmin)WX(πmin)+ δI for δ > 0 always exists
because of its positive definiteness.

According to the previous remark, the only possible non-uniqueness of the RLWS
solution can appear when the permutation πmin is not unique. Let us discuss possible
situations:
1) We have weights with wi = wj for some i � j: then the permutations which have
the pair i and j and the swapped pair j and i at the same positions give the same value
of the loss function.
2) In another situation there may be r2

i (β̂(RLWS ,n,w,δ)) = r2
j (β̂

(RLWS ,n,w,δ)) for some i � j:
then the permutation with swapped πi and π j gives the same value of the loss function
as permutation πmin = (π1, π2, . . . , πn)′.

Even if there one (or both) of situation described in 1) or 2) arises, the RLWS
estimate is the same for all minimizing permutations mentioned in 1) or 2). Therefore
cases 1) and 2) are not problematic and the estimate is unique. The only situation
when the estimate is not unique is the following:
3) For fixed δ there exist β1 � β2 in which we have global minimum of RLWS loss
function. Let 1) and 2) not hold. Then two different permutations π1

min = (π1
1, . . . , π

1
n)′

and π2
min = (π2

1, . . . , π
2
n)′ must exist such that

n∑
i=1

wir2
π1

i
(β1) + δ(β1)′β1 =

n∑
i=1

wir2
π2

i
(β2) + δ(β2)′β2. (6)

If we rewrite (6), we get
n∑

i=1

wi

(
[eπ1

i
− X′

π1
i
(β1 − β0)]2 − [eπ2

i
− X′

π2
i
(β2 − β0)]2

)
= δ
(
(β2)′β2 − (β1)′β1

)
.

So, if the error term ei, i = 1, . . . , n is a continuous random variable then the occurence
of situation 3) has probability 0.

Combinations of πmin non-uniqueness of types 1), 2) and 3) may of course occur,
but only case 3) can cause non-uniqueness of the estimate.

To complete the picture of all solutions of (1), let us show the shape of the loss
function of RLWS in more detail. For each permutation πk = (πk

1, . . . , π
k
n)′ k =

= 1, . . . , n!, let us define functions fk(β) =
∑n

i=1 wir2
πk

i
(β) + δ

∑p
j=1 β

2
j . Each fk is

continuous and strictly convex as a quadratic function of β (the strict convexity is
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caused by the δ term). The loss function of RLWS is then lRLWS (β) = mink fk(β).
Therefore, lRLWS (β) is continuous and the parameter space is divided into parts on
which it is strictly convex. This implies that lRLWS (β) can have several local minima.
If there is a multiple solution of the RLWS method then the solutions are in different
parts of the parameter space and there is only a finite number of them (no more than
n!), furthermore, if we change the value of δ, the number of solutions will change
(unless they are all exactly in the same distance from the origin, which is also highly
improbable). Let us stress again that there cannot appear a situation in which the so-
lutions would lie on a line (or in a linear subspace) like it appears for LS (LWS) when
X (X(πmin)) does not have the full rank (see, for example, [3]). (πmin is analogous to
πmin from Theorem 1 for LWS).

4. P r o p e r t i e s o f R L W S

We have already considered the existence and uniqueness of the estimate. The
shape of the loss function was also briefly mentioned. Now we are ready to show
some basic properties of the RLWS estimate.

It is immediately visible that the estimate is biased because of δ > 0. It inherits
this property from the ridge regression estimator (which is one of the special cases of
RLWS).

From the robust point of view, the RLWS estimate has the same properties con-
cerning the breakdown point as the LWS (or LTS) estimate. It is so because the δ
term does not force the estimate to be unbounded in any way. The breakdown point is
determined by the number of zero weights in w. For example, the maximal possible
breakdown point for LWS (�(n − p)/2� + 1)/n (which is at the same time maximal
for any regression equivariant estimator – for proof see [9]) can also be attained by
RLWS – we have to choose �n/2� + �(p + 1)/2� zero weights to reach it.

Now, we are going to investigate equivariance properties of RLWS. Let us denote
by β̂RLWS ({X′i , Yi}ni=1) the RLWS estimate obtained from data Y = (Y1, . . . ,Yn)′ and X
where Xi is the i-th row vector.

Lemma 2 The RLWS estimate is scale equivariant, i.e., β̂RLWS ({X′i , cYi}ni=1) =
= cβ̂RLWS ({X′i , Yi}ni=1) for any constant c.

Proof: Denote by Y(i) and X′(i) the observation which gives r2
(i)(β).

β̂RLWS ({X′i , cYi}ni=1) = argmin
β

n∑
i=1

wi

(
cY(i) − X′(i)β

)2
+ δβ′β

= argmin
β

c2


n∑

i=1

wi

(
Y(i) − X′(i)

β

c

)2
+ δ
β′β

c2



= argmin
β=cβ∗

n∑
i=1

wi

(
Y(i) − X′(i)β

∗
)2
+ δ(β∗)′β∗ = cβ̂RLWS ({X′i , Yi}ni=1).

�

Lemma 3 The RLWS estimate is not regression equivariant, i.e., there exists vector
v such that β̂RLWS ({X′i , Yi + X′i v}ni=1) � β̂RLWS ({X′i , Yi}ni=1) + v.

Proof: β̂RLWS ({X′i , Yi + X′i v}ni=1) = argmin
β

n∑
i=1

wi[Y(i) − X′(i)(v − β)]2 + δβ′β

= argmin
β=β∗+v

n∑
i=1

wi

(
Y(i) − X′(i)β

∗
)2
+ δ(β∗ + v)′(β∗ + v). (7)

In order to have regression equivariance, the term (7) should be in the form

argmin
β=β∗+v

n∑
i=1

wi

(
Y(i) − X′(i)β

∗
)2
+ δ(β∗)′(β∗). �

We will also state the result for affine equivariance. Let us recall the definition first.
We say that an estimator T is affine equivariant if T ({X′i A, Yi}ni=1) = A−1T ({X′i , Yi}ni=1)
for any nonsingular square matrix A.

Lemma 4 The RLWS estimate is not affine equivariant. Nevertheless RLWS esti-
mate is equivariant with respect to transformations of the type A−1 = A′.

Proof: β̂RLWS ({X′i A, Yi}ni=1) = argmin
β

∑n
i=1 wi

(
Y(i) − X′(i)Aβ

)2
+ δβ′β

= argmin
β=A−1β∗

n∑
i=1

wi

(
Y(i) − X′(i)β

∗
)2
+ δ(β∗)′(A−1)′A−1β∗,

which is not generaly equal to

argmin
β=A−1β∗

n∑
i=1

wi

(
Y(i) − X′(i)β

∗
)2
+ δ(β∗)′β∗.

For A satisfying (A−1)′A−1 = I (the same condition as A−1 = A′) the equivariance
holds. �

Previous results are implied by the penalization for β far from the origin. The
estimate cannot be equivariant with respect to transformations not preserving the dis-
tance structure. On the other hand, for example rotation transformations preserve
equivariace (lemma 4).

As the last issue we will discuss consistency.

Lemma 5 Let β̂(LWS ,n,w) be the solution of LWS and β̂(RLWS ,n,w,δ) be the solution of
RLWS minimization for the same dataset.
Then ‖β̂(RLWS ,n,w,δ)‖ ≤ ‖β̂(LWS ,n,w)‖ for all δ > 0.
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Lemma 5 Let β̂(LWS ,n,w) be the solution of LWS and β̂(RLWS ,n,w,δ) be the solution of
RLWS minimization for the same dataset.
Then ‖β̂(RLWS ,n,w,δ)‖ ≤ ‖β̂(LWS ,n,w)‖ for all δ > 0.



24

Proof: The minimization forms of LWS and RLWS (definition 2 and 3) imply
n∑

i=1

wir2
(i)

(
β̂(LWS ,n,w)

)
≤

n∑
i=1

wir2
(i)

(
β̂(RLWS ,n,w,δ)

)
(8)

and
n∑

i=1

wir2
(i)

(
β̂(LWS ,n,w)

)
+ δ

p∑
j=1

(
β̂(LWS ,n,w)

j

)2

≥
n∑

i=1

wir2
(i)

(
β̂(RLWS ,n,w,δ)

)
+ δ

p∑
j=1

(
β̂(RLWS ,n,w,δ)

j

)2
. (9)

From inequalities (8) and (9) it directly follows

δ

p∑
j=1

(
β̂(RLWS ,n,w,δ)

j

)2
≤ δ

p∑
j=1

(
β̂(LWS ,n,w)

j

)2
;

hence ‖β̂(RLWS ,n,w,δ)‖ ≤ ‖β̂(LWS ,n,w)‖. �

Lemma 5 together with the result in [13] (Lemma 2), which implies that LWS
estimate is bounded in probability, gives that RLWS is bounded in probability as well
(for the conditions see Lemma 2 in [13]). This is the first step to show that RLWS
(although it is biased) is also weakly consistent (under the same conditions as for the
LWS estimate). Due to the limits on the scope of this paper, let us only hint that
with the increasing n it becomes more important to reduce the part

∑n
i=1 wir2

(i) than
δ
∑p

j=1 β
2
j (which is negligible in comparison with

∑n
i=1 wir2

(i)). The
√

n-consistency
of RLWS can be proven as well.

Theorem 2 Let all conditions of Lemma 2 in [14] hold, then RLWS estimate is√
n-consistent.

Sketch of the proof: Unfortunately, we did not build sufficient notation in this paper
and also we do not have enough space for the whole proof, so again only the idea. To
prove the

√
n-consistency of RLWS we will use all results from [14]. In this setup, Xi

is a random vector. An outline of the proof of the
√

n-consistency of the LWS estimate
from [14]: At first we derive the normal equations for LWS (denoted as INELWS

Y,X,n (β))
using the empirical distribution function of absolute values of the residuals. Then we
are working with 1√

n INELWS
Y,X,n (β) = 0. Using weak consistency of LWS, closeness of

the empirical and theoretical distribution functions, and the conditions of the theorem,
we arrive at equality

A(n, X, e)
√

n(β̂(LWS ,n,w) − β0) + R(β̂(LWS ,n,w), n, X, e) = P(β̂(LWS ,n,w), n, X, e)

where term R(β̂(LWS ,n,w), n, X, e) is op(1), P(β̂(LWS ,n,w), n, X, e) is Op(1) and A(n, X, e)
converges in probability to a regular matrix.

Because the RLWS estimate is also weakly consistent and the normal equations
for RLWS (using empirical distribution function – not derived in this paper) are

INERLWS
Y,X,n,δ(β) = INELWS

Y,X,n (β) − δβ, we can repeat all steps of Lemma 2 in [14] and get
equation

A(n, X, e)
√

n(β̂(RLWS ,n,w,δ) − β0) − 1
√

n
δβ̂(RLWS ,n,w,δ)

+R(β̂(RLWS ,n,w,δ), n, X, e) = P(n, X, e, β̂(RLWS ,n,w,δ)).
Terms A, P and R have the same properties as above. This is in fact the end of
the proof, because 1√

nδβ̂
(RLWS ,n,w,δ) is op(1). The exact proof will be available in

upcoming paper [4]. �

5. D i s c u s s i o n

The aim of this short paper is to show a new estimate which seems to be a rea-
sonable candidate for a robust version of the ridge regression. Another role of this
estimate can also be a robust detector of multicollinearity. It is known that already
one additional observation may hide or create multicollinearity for classical methods
of multicollinearity detection (such as the condition number or Pearson’s correlation
coefficient). The idea of utilization RLWS as robust diagnostics of multicollinearity
is simple: We have the RLWS estimate as well as the weights assignment of this es-
timate. So, if RLWS works well, we drop off observations which are identified (by
their weights) as outliers and use the classical multicollinearity diagnostics on the rest
of the (noncontaminated) data.

It is also important to know the way of obtaining this estimate because it tells
us that our proposal is reasonable. Basic properties such as existence, uniqueness,
equivariance and consistency is discussed. The next step will be to investigate the
performance of the estimate on real and also simulated data as well as to make a
comparison with other methods. This way is open because RLWS can be simply
computed using the same type of algorithm as the LWS (more details about algorithm
can be found in [12]).
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The explicit solution of the problem of maximization of information divergence from the
family of multinomial distributions is presented, using result of N. Ay and A. Knauf for
the problem of maximization of multi-information [3], which is the special case of maxi-
mization of information divergence from hierarchical models [10].
The problem studied in this paper is a generalization of the binomial case, which was
solved in [8].
The problem of maximization of information divergence from an exponential family has
emerged in probabilistic models for evolution and learning in neural networks that are
based on infomax principles [1].
The maximizers admit interpretation as stochastic systems with high complexity w.r.t. ex-
ponential family [3].

1. I n t r o d u c t i o n

Let ν be a nonzero measure on a finite set Z.
Let F = Eν, f = {Qν, f ,ϑ : ϑ ∈ Rd} be the (full) exponential family determined by

the reference measure ν and the directional statistic f : Z → Rd, d ∈ N, where Qν, f ,ϑ
is a probability measure (pm) given by

Qν, f ,ϑ(x) = e〈ϑ, f (z)〉−Λν, f (ϑ)µ(z), z ∈ Z,
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