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Errors-in-variables (EIV) model with dependent errors is considered. A strong consis-
tency of the total least squares (TLS) estimate for weakly dependent (α- and φ-mixing)
measurements – encumbered with errors which are not necessarily stationary and identi-
cally distributed – is proved.

1. I n t r o d u c t i o n

The main goal of this paper is to establish results concerning consistency in linear
relations, where measurement errors in input and output data occur simultaneously.
Due to the fact that in some situations these disturbances cannot be considered as
independent by nature, a proper model is required and, consequently, a suitable sta-
tistical inference needs to be derived.

1.1 Errors-in-variables model

Errors-in-variables (EIV) model

Y
n×1
= Z

n×p
β

p×1
+ ε

n×1
and X

n×p
= Z

n×p
+ Θ

n×p
(E)

is assumed, where β is a vector of regression parameters to be estimated, X and
Y consist of observable random variables (X are covariates and Y is a response),
Z consists of unknown constants and has full rank, and ε and Θ are composed of
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random errors such that the joint distribution of the elements of [Θ, ε] is absolutely
continuous with respect to the Lebesgue measure.

1.2 Weak dependence

We do not restrict our model to independent observations; therefore, the depen-
dence between measurement errors needs to be specified. It is assumed that {ξn}∞n=1
is a sequence of random variables on a probability space (Ω,F , ). For sub-σ-fields
A ,B ⊆F , we define

α(A ,B) := sup
A∈A ,B∈B

| (A ∩ B) − (A) (B)| ,

ϕ(A ,B) := sup
A∈A ,B∈B, (A)>0

| (B|A) − (B)| .

Henceforth, let us define a filtration F n
m := σ(ξi,m ≤ i ≤ n).

There are many ways to describe weak dependence or, in other words,
asymptotic independence of random variables (see [1]). In this paper we concentrate
on two approaches. A sequence {ξn}∞n=1 of random elements (i.e., vectors) is said to
be strong mixing (α-mixing) if

α(n) := sup
k∈
α(F k

1 ,F
∞
k+n)→ 0, n→ ∞; (1)

moreover, it is said to be uniformly strong mixing (ϕ-mixing) if

ϕ(n) := sup
k∈
ϕ(F k

1 ,F
∞
k+n)→ 0, n→ ∞. (2)

Uniformly strong mixing – presented by Rosenblatt in [12] – implies strong mix-
ing (see [10]), which was introduced by Ibragimov in [8].

1.3 Error structure

Proper distributional assumptions of random errors in the EIV model need to be
proposed. Two levels of the error structure have to be distinguished. The first level of
error structure – within-individual level – is that each row [Θi,•, εi] has zero mean and
non-singular covariance matrix σ2I, where σ2 > 0 is unknown (for simplicity). This
assumption can be straightforwardly generalized as discussed in Section 4. Relation-
ships between individual observations are represented by the second level of error
structure – between-individual level. Here, rows [Θi,•, εi] are weakly dependent, e.g.,
α- or ϕ-mixing. This assumption is based on an idea of mutual influence between
those measurements which are “close to each other”, influence themselves somehow.
Moreover, this influence decreases as the distance between observations increases.

It has to be emphasized that no form of the errors’ stationarity is necessary to
be assumed. Hence we strengthen our results by omitting this sometimes restrictive
assumption strengthen our results.

Additional design assumption is necessary for asymptotics even in the case of
independent errors:

∆ := lim
n→∞

n−1Z�Z exists and is positive definite. (D)

Importance of the previous design assumption has already been thoroughly discussed
in [11].

2. T L S e s t i m a t i o n

Total least squares (TLS) estimate of the unknown parameter β was proposed
in [6] as

β̂ = (X�X − λI)−1X�Y, (3)

where λ ≡ λp+1([X,Y]�[X,Y]) and λq(A) means the qth largest eigenvalue of a square
positive semidefinite matrix A.

Strong consistency of the TLS estimate for independent errors is proved in [5];
moreover, weak consistency – again for independent errors – is discussed in [3].
When a premise of independence cannot be assumed, consistency of the TLS esti-
mate under weak dependence of errors has to be explored.

3. S t r o n g c o n s i s t e n c y

First of all, the strong law of large numbers (SLLN) for α-dependent non-identical-
ly distributed variables should be recalled.

Lemma 1 (SLLN for α-mixing) Let {Xn}∞n=1 be a sequence of α-mixing random
variables satisfying

sup
n∈

|Xn|q < ∞ (4)

for some q > 1. Suppose that there exists δ > 0 such that as n→ ∞,

α(n) =


O
(
n−

q
2q−2−δ

)
if 1 < q < 2,

O
(
n−

2
q−δ
)

if q ≥ 2.
(5)

Then

lim
n→∞

∑n
i=1(Xi − Xi)

n
= 0, a.s.

Proof: See [2, Theorem 1]. �

Additionally, the SLLN for ϕ-dependent non-identically distributed variables will
be used below.
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Lemma 2 (SLLN for ϕ-mixing) Let {Xn}∞n=1 be a sequence of zero mean ϕ-mixing
random variables satisfying

∞∑
n=1

√
ϕ(n) < ∞ (6)

and let {bn}∞n=1 be a non-decreasing unbounded sequence of positive numbers. Assume
that

∞∑
n=1

X2
n

b2
n
< ∞, (7)

then

lim
n→∞

∑n
i=1 Xi

bn
= 0, a.s.

Proof: See [14, Theorem 4.1]. �

For a given random sequence ξ◦ ≡ {ξn}∞n=1 of random elements, the dependence
coefficients α(n) will be denoted α(ξ◦, n). Analogous notation is used for ϕ-mixing
sequences. Moreover, three auxiliary lemmas for an application of the SLLN for
non-identically distributed random variables are stated to be used later.

The following lemma describes an asymptotic behaviour of α- and ϕ-mixing co-
efficients of the corresponding random sequences after a transformation. More pre-
cisely, a Borel transformation preserves the property of α- and ϕ-mixing and, more-
over, sustains the rate of the mixing coefficients.

Lemma 3 Suppose that for each m = 1, 2, . . ., there is given a sequence of random
variables denoted by ξ(m) := {ξ(m)

k }k∈ . Suppose that the sequences ξ(m), m = 1, 2, . . .
are independent of each other and that hk : × × . . .→ is a Borel function for
each k ∈ . Define the sequence ξ := {ξk}k∈ of random variables by

ξk := hk

(
ξ(1)

k , ξ
(2)
k , . . .

)
, k ∈ .

Then for each n ≥ 1, the following statements hold:
(1) α(ξ, n) ≤ ∑∞m=1 α(ξ(m), n),
(2) ϕ(ξ, n) ≤ ∑∞m=1 ϕ(ξ(m), n).

Proof: See [1, Theorem 5.2]. �

Design assumption (D) can be seen as a convergence of a specific sum in the
Cauchy sense, e.g., a limit of the averaged partial sums. The following technical
lemma enables us to derive various implications of design assumption (D).

Lemma 4 If limn→∞ n−2+δ∑n
i=1 ai exists and is finite for some δ > 0, then

∑∞
n=1

an
n2

is convergent.

Proof: Due to Abel’s partial summation [9, p. 1412], we have
n∑

i=1

ai

i2
=

n−1∑
i=1


i−1∑
j=1

a j


(

1
i2
− 1

(i + 1)2

)
+

1
n2

n∑
i=1

ai, ∀n > 1. (8)

If n tends to infinity, the last term of (8) tends to zero due to the lemma’s assumption.
Moreover, the infinite sum formed from the first summand on the right hand side
of (8) is convergent if and only if

∞∑
i=1

i−3
i−1∑
j=1

a j =

∞∑
i=1

i−1−δ

i−2+δ
i−1∑
j=1

a j


is convergent, but the right hand side of previous equation is convergent according to

the Abel’s convergence criterion (i−2+δ∑i−1
j=1 a j

i→∞−→ 0). Hence,
∑∞

n=1
an
n2 converges as

well. �

A convergence of matrices in Frobenius norm implies spectral convergence, which
can be mathematically formalized in the following lemma.

Lemma 5 If {An}∞n=1 and {Bn}∞n=1 are sequences of m × m matrices, then ‖An −
− Bn‖F → 0 as n→ ∞ implies λm(An)−λm(Bn)→ 0 as n→ ∞, where ‖ · ‖F denotes
Frobenius matrix norm.

Proof: See [4, Lemma 2.3]. �

The preliminary statistical machinery will now to be used for deriving the main
results of this paper – strong consistency of the TLS estimate. Besides the main
consistency results, an estimate of nuisance parameter σ2 is defined as σ̂2 := λ/n and
its strong consistency is proved as well.

First, the TLS estimate is strongly consistent, assuming α-mixing errors in the EIV
model.

Theorem 3.1 (α-mixing TLS strong consistency) Let the EIV model hold and
assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (9)

are independent sequences of α-mixing random variables having

α(Θ◦, j, n) = O(n−q j/(2q j−2)−δ j ), j = 1, . . . , p, (10)

and
α(ε◦, n) = O(n−qp+1/(2qp+1−2)−δp+1 ), (11)

as n→ ∞ for some δ j > 0 and 1 < q j ≤ 2, j ∈ {1, . . . , p + 1}. If

sup
n∈

Z2
n, j < ∞, (12)

sup
n∈

|Θn, j|2q j < ∞, and sup
n∈

|εn|2qp+1 < ∞ (13)

for each j ∈ {1, . . . , p}, then

lim
n→∞
β̂ = β a.s., (14)

lim
n→∞

λ

n
= σ2 a.s. (15)
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Proof: The estimate of β from (3) can be expressed as

β̂ =
{
I + (Z�Z)−1(Z�Θ +Θ�Z +Θ�Θ − nσ2I + (nσ2 − λ)I)

}−1

× (Z�Z)−1
(
Z�Zβ + Z�ε +Θ�Zβ +Θ�ε

)
. (16)

In order to prove (14), it is sufficient to show that
(1) n−1Z�Θ→ 0 a.s., n→ ∞;
(2) n−1Θ�Z→ 0 a.s., n→ ∞;
(3) n−1(Θ�Θ − nσ2I)→ 0 a.s., n→ ∞;
(4) n−1(nσ2 − λ)→ 0 a.s., n→ ∞;
(5) n−1Z�ε→ 0 a.s., n→ ∞;
(6) n−1Θ�ε→ 0 a.s., n→ ∞.

Note that

sup
n∈

|Zn, jΘn,k|2 = σ2 sup
n∈

Z2
n, j < ∞, ∀ j, k ∈ {1, . . . , p}.

Moreover, Lemma 3(i) implies that α(Z◦, jΘ◦,k, n) = O(n−qk/(2qk−2)−δk ), which implies
α(Z◦, jΘ◦,k, n) = O(n−1−δk ) for all j, k ∈ {1, . . . , p}. Applying SLLN for α-mixing
(Theorem 1), we have

n−1
n∑

i=1

Zi, jΘi,k
a.s.−→ 0, n→ ∞, ∀ j, k ∈ {1, . . . , p}.

Therefore, (i) holds and the similar arguments demonstrate (ii) and (v).
Again, it follows from Lemma 3(i) that α(Θ◦, jΘ◦,k, n) = O(n−1−δ j∧δk ) for all j, k ∈

∈ {1, . . . , p} such that j � k. The supremum assumption of Theorem 1 is straightfor-
wardly satisfied, because the independence from (9) provides

sup
n∈

|Θn, jΘn,k|2 = sup
n∈

Θ2
n, j Θ

2
n,k = [σ2]2 < ∞

for all j, k ∈ {1, . . . , p}, j � k. Hence, the SLLN for α-mixing yields

n−1
n∑

i=1

Θi, jΘi,k
a.s.−→ 0, n→ ∞, ∀ j, k ∈ {1, . . . , p}, j � k.

Thus the “nondiagonal” part of (iii) is satisfied and, furthermore, the analogous argu-
ments demonstrate (vi).

Consequently, α(Θ2
◦, j, n) = O(n−q j/(2q j−2)−δ j ) for all j ∈ {1, . . . , p} according to

Lemma 3(i). Since supn∈ |Θ2
n, j|q j < ∞ for all j ∈ {1, . . . , p}, the SLLN for

α-mixing can be applied

n−1
n∑

i=1

Θ2
i, j

a.s.−→ σ2, n→ ∞, ∀ j ∈ {1, . . . , p},

and the “diagonal” part of (iii) holds as well.
Now,

n−1(λ − nσ2) = λp+1(n−1[X,Y]�[X,Y] − σ2I)

due to the eigendecomposition property. Let B := n−1[I,β]�Z�Z[I,β]. For each
n ∈ , B is a positive semidefinite matrix of rank p. Thus it has p positive eigenvalues
and the smallest one being zero. Note that

n−1([X,Y]�[X,Y] − nσ2I) − B

= n−1
{
[I,β]�Z�[Θ, ε] + [Θ, ε]�Z[I,β]

}
+ n−1

{
[Θ, ε]�[Θ, ε] − nσ2I

}
. (17)

The first term on the right hand side of equation (17) converges almost surely to zero
due to (i), (ii), and (v). The second one converges almost surely to zero as well, using
similar arguments as in (iii) and (vi). Furthermore, it follows from Lemma 5 that

λp+1(n−1[X,Y]�[X,Y] − σ2I)
a.s.−→

n→∞
λp+1(B) = 0,

which demonstrates (iv).
Finally, (iv) directly implies (15) and completes the proof. �

Similar to the above-mentioned assumption, ϕ-mixing errors yield the TLS esti-
mate’s strong consistency as well, but under slightly different assumptions.

Theorem 3.2 (ϕ-mixing TLS strong consistency) Let the EIV model hold and
assumption (D) be satisfied. Suppose

{Θn,1}∞n=1, . . . , {Θn,p}∞n=1, and {εn}∞n=1 (18)

are independent sequences of ϕ-mixing random variables such that
∞∑

n=1

√
ϕ(Θ◦, j, n) < ∞ and

∞∑
n=1

√
ϕ(ε◦, n) < ∞. (19)

If
∞∑

n=1

Θ4
n, j

n2 < ∞ and
∞∑

n=1

ε4
n

n2 < ∞ (20)

for each j ∈ {1, . . . , p}, then

lim
n→∞
β̂ = β a.s., (21)

lim
n→∞

λ

n
= σ2 a.s. (22)

Proof: The process of proving this theorem is analogous to the proof of Theo-
rem 3.1. The only difference is that the SLLN for ϕ-mixing is applied instead of the
SLLN for α-mixing. Therefore, one does not have to be concerned with the supre-
mum condition (4) and the dependence coefficient assumption (5) from Theorem 1.
On the other hand, the convergence condition (6) on sum of the square roots of depen-
dence coefficients ϕ(n) and the convergence assumption (7) from Theorem 2 needs to
be fulfilled.
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Let us consider six terms of (16) from the proof of Theorem 3.1. It follows from
Lemma 3(ii) that {Zn, jΘn,k}∞n=1 is also a ϕ-mixing sequence for all j, k ∈ {1, . . . , p}.
Moreover,

∞∑
n=1

√
ϕ(Z◦, jΘ◦,k, n) ≤

∞∑
n=1

√
ϕ(Θ◦,k, n) < ∞, ∀ j, k ∈ {1, . . . , p}.

Assumption (D) implies

0 < n−1
n∑

i=1

Z2
i, j → ∆ j, j < ∞, n→ ∞, ∀ j ∈ {1, . . . , p}. (23)

Due to Lemma 4,

∞∑
n=1

{Zn, jΘn,k}2

n2 = σ2
∞∑

n=1

Z2
n, j

n2 < ∞, ∀ j, k ∈ {1, . . . , p},

which allows us to apply the SLLN for ϕ-mixing. Hence, (i) holds and the similar
arguments provide (ii) and (v).

The rest of the proof is now pretty straightforward. In order to show (iii), (iv),
and (vi), one has to realize that Lemma 3(ii) yields ϕ(ξ2◦ , n) ≤ ϕ(ξ◦, n), ϕ(ξ◦ζ◦, n) ≤
≤ ϕ(ξ◦, n) + ϕ(ζ◦, n). Furthermore,

∞∑
n=1

√
ϕ(ξ◦ζ◦, n) ≤

∞∑
n=1

√
ϕ(ξ◦, n) +

∞∑
n=1

√
ϕ(ζ◦, n) < ∞

for ξn, ζn ∈ {Θn,1, . . . ,Θn,p, εn}, ξn � ζn. Moreover, (20) holds and, due to the inde-
pendence from (18),

∞∑
n=1

{ξnζn}2
n2 =

∞∑
n=1

ξ2n ζ
2
n

n2 =
π2σ4

6
< ∞,

for ξn, ζn ∈ {Θn,1, . . . ,Θn,p, εn}, ξn � ζn, which completes the proof. �

4. C o n c l u s i o n s

A linear EIV model with its TLS solution is considered in this paper. An error
structure of the EIV model with weakly dependent errors is introduced. Strong laws
of large numbers for strong mixing and uniformly strong mixing are summarized.
They allow us to derive and prove a strong consistency of the TLS estimate under
both forms of errors’ asymptotic independence. Furthermore, no form of stationarity
is imposed on the errors. In these settings, the strong consistency of the nuisance
variance parameter is proved as well.

4.1 Discussion

A homoscedastic covariance structure of the within-individual errors [Θi,•, εi] can
be generalized by knowing the heteroscedastic covariance matrix Σ > 0 in advance.
Then, the observation data are just multiplied by the inverse of its square root as al-
ready discussed in [5] or [13], i.e. Σ−1/2[X,Y]�. This transformation of the original
data is purely linear, which is not restrictive at all in our case. The only property that
needs to be satisfied is an independence of the transformed errors. The assumptions
of independence (9) and (18) between errors on the within-individual level are cru-
cial and cannot be omitted. Incorporating an extra form of weak dependence on the
within-individual error level may be considered as well, but this could unfortunately
require very complicated additional assumptions.

If the covariance matrix Σ is unknown, it can be estimated using repeated obser-
vations, but, a more complicated design of the experiment will be necessary:

Yι
n×1
= Z

n×p
β

p×1
+ ει

n×1
and Xι

n×p
= Z

n×p
+ Θι

n×p
, ι = 1, . . . , r; (24)

where r ∈ stands for the number of replications. Extra information – needed for
estimation of the covariance matrix – is added by the replications. Then, a general
covariance matrix Σ for the within-individual errors can be estimated as in [7], e.g.,
by

Σ̂ :=
1

n(r − 1)

r∑
i=1

r∑
j=1

[Xi,Yi]�
[(
δi j −

1
r

)
I
]

[X j,Y j], (25)

where δi j denotes Kronecker delta. Previous equation (25) can, using the notations of
replication model (24), be rewritten as

Σ̂ =
1
nr

r∑
i=1

[Θi, εi]�[Θi, εi] −
1

nr(r − 1)

r∑
i=1

r∑
j=1
j�i

[Θi, εi]�[Θ j, ε j],

which illustrates the meaning of the estimate. Under some additional assumptions
on “replicated” errors [Θι, ει] ∈ n×(p+1), ι = 1, . . . , r, the appropriate SLLN can be
applied on Σ̂ and, consequently, its consistency can be proved as well.

Heteroscedastic covariance structure of the within-individual errors can even be
estimated without possessing repeated observations for each “individual,” but a struc-
ture of the covariance matrix has to be predefined in advance according to some prior
knowledge about the data dependence. E.g., if there is no reason to suppose that the
error structure is changing over particular covariates and response, Toeplitz or AR1
covariance models are reasonable choices.

Moreover, if we compare the assumptions for α- and ϕ-mixing in our EIV model,
α-mixing has weaker assumptions on dependence of the errors (every ϕ-mixing is



77

4.1 Discussion

A homoscedastic covariance structure of the within-individual errors [Θi,•, εi] can
be generalized by knowing the heteroscedastic covariance matrix Σ > 0 in advance.
Then, the observation data are just multiplied by the inverse of its square root as al-
ready discussed in [5] or [13], i.e. Σ−1/2[X,Y]�. This transformation of the original
data is purely linear, which is not restrictive at all in our case. The only property that
needs to be satisfied is an independence of the transformed errors. The assumptions
of independence (9) and (18) between errors on the within-individual level are cru-
cial and cannot be omitted. Incorporating an extra form of weak dependence on the
within-individual error level may be considered as well, but this could unfortunately
require very complicated additional assumptions.

If the covariance matrix Σ is unknown, it can be estimated using repeated obser-
vations, but, a more complicated design of the experiment will be necessary:

Yι
n×1
= Z

n×p
β

p×1
+ ει

n×1
and Xι

n×p
= Z

n×p
+ Θι

n×p
, ι = 1, . . . , r; (24)

where r ∈ stands for the number of replications. Extra information – needed for
estimation of the covariance matrix – is added by the replications. Then, a general
covariance matrix Σ for the within-individual errors can be estimated as in [7], e.g.,
by

Σ̂ :=
1

n(r − 1)

r∑
i=1

r∑
j=1

[Xi,Yi]�
[(
δi j −

1
r

)
I
]

[X j,Y j], (25)

where δi j denotes Kronecker delta. Previous equation (25) can, using the notations of
replication model (24), be rewritten as

Σ̂ =
1
nr

r∑
i=1

[Θi, εi]�[Θi, εi] −
1

nr(r − 1)

r∑
i=1

r∑
j=1
j�i

[Θi, εi]�[Θ j, ε j],

which illustrates the meaning of the estimate. Under some additional assumptions
on “replicated” errors [Θι, ει] ∈ n×(p+1), ι = 1, . . . , r, the appropriate SLLN can be
applied on Σ̂ and, consequently, its consistency can be proved as well.

Heteroscedastic covariance structure of the within-individual errors can even be
estimated without possessing repeated observations for each “individual,” but a struc-
ture of the covariance matrix has to be predefined in advance according to some prior
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α-mixing, see e.g., [1]), but stronger on the design (α-mixing requires bounded mo-
ments of the errors). For ϕ-mixing, it is the other way around. Indeed, assump-
tion (19) implies

ϕ(Θ◦, j, n) = o(n−2) and ϕ(ε◦, n) = o(n−2).

Taking into account α(n) ≤ ϕ(n) and supposing

ϕ(Θ◦, j, n) = O(n−2−δ j ), ϕ(ε◦, n) = O(n−2−δp+1 ),

assumptions (10) and (11) are satisfied for some 4/3≤qi≤2 j∈{1, . . . , p + 1}. On the
other hand, assumption (13) with qi = 2, j ∈ {1, . . . , p + 1} clearly implies assump-
tion (20). The choice of qi is essential as well. Smaller qis make assumption (13)
more restrictive, but then assumptions (10) and (11) become more realizable.

Additional design assumption (12), which is necessary for proving strong consis-
tency for α-mixing errors, may be viewed as a competitive one to the “basic” design
assumption (D). These assumptions are not equivalent and neither of them implies
the other one. On the other hand, assumption (12) can be considered as a supplemen-
tary assumption to assumption (D) in the following sense: (D) implies (23). Hence,
Lemma 4 yields Z2

n, j = o(n2), n → ∞ for all j ∈ {1, . . . , p}, which is a weaker condi-
tion than the equiboundedness of Z2

n, j over all n ∈ for all j ∈ {1, . . . , p} from (12).
Finally, if identically distributed rows of errorsare taken into account together with

existence of their suitable moments, assumptions (13) and (20) are trivially satisfied.
Then, a strict stationarity of the between-individual errors with an existence of the
appropriate moments has to imply these assumptions as well. In other words, mo-
ment assumptions (13) and (20) cannot be considered as unattainable. Moreover, for
strictly stationary errors even the supremum in definitions (1) and (2) can simply be
avoided.
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