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It is tradition in cosmology to use the homogeneous and isotropic FRW (Friedmann-
Robertson-Walker) spacetime. However, the real universe is inhomogeneous and aniso-
tropic on small scales so if we want to retain the FRW approach, we should at least perform
some averaging procedure. Because of the nonlinearity of the Einstein field equations, we
will in general obtain a nonzero correlation term, which does not necessarily obey the en-
ergy condition and so it can mimic the dark energy term. In this article I will try to review
different approaches to the averaging problem with the emphasis on cosmology.

1. I n t r o d u c t i o n

In General relativity (GR) the evolution of the metric tensor is driven by the Ein-
stein field equations. As emphasized in 1980s by Ellis [1984], averaging and evolu-
tion do not commute, i.e.

〈
Eµν(gµν)

〉
� Eµν(

〈
gµν
〉
). Eµν is the Einstein tensor, gµν is

the metric tensor and 〈〉 is some unspecified averaging procedure. On the other hand,
in cosmology one usually uses the homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) metric and the smooth stress energy tensor of the perfect fluid. If we
want to use a simple model and represent the dynamics of the universe by one single
scale function a(t) (not to use more general inhomogeneous cosmological model), we
should put a new correlation term Cµν into the equations.

Eµν(
〈
gµν
〉
) = 8π

〈
Tµν
〉
+Cµν, (1)
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which is defined by the construction

Cµν = Eµν(
〈
gµν
〉
) −
〈
Eµν(gµν)

〉
. (2)

It does not necessarily obey the usual energy condition and it can act as dark energy
[Buchert, 2008]. Averaging can be considered over some spacelike hypersurface,
which depends on the selected slicing or over some spacetime interval, which can
be covariantely defined. There are two main goals concerning averaging—the first is
to construct averaged metric and the second is to obtain correlation term modifying
Einstein equations.

There is a technical problem in a definition of an averaged tensor: Integrating a
tensor field in curved spacetime does not result in a new tensor field (this is because
of the addition of the tensors living in different spaces). In the next sections we will
show some attempts how to solve this problem.

2. I s a a c s o n ’ s a p p r o a c h

Following the work of Brill and Hartle [1964], Isaacson used an averaging method
for computing the effective gravitational stress energy tensor [Isaacson, 1968]. In
order to compute an average value of the general tensor over the domain D at the
base point x, he parallel transports tensors from points in D to x and then integrates.

〈
Aµν (x)

〉
BH
=

1
VD

∫

D

gα
′

µ

(
x, x′
)
gβ
′

ν

(
x, x′
)

Aα′β′
(
x′
) √−g(x′)d4x′. (3)

g(x′) denotes the determinant of the metric. gα
′
µ (x, x′) is the bivector of geodesic par-

allel displacement that serves to parallel transport of Aα′β′ (x′) and VD is the volume
of D . Integration over x′ is justified because of the contraction over the prime indices.
It can be shown that the following properties hold:

• One can ignore the terms
〈
A ρ
µν ;ρ

〉
BH

.
• One can integrate by parts.
• Covariant derivatives commute.

3. M a c r o s c o p i c G r a v i t y

Another promising approach to the averaging problem is the method (valid for
n-dimensional manifolds) developed by Zalaletdinov who also gives several condi-
tions for the correlation term to be fulfilled [Zalaletdinov, 1992, 1993, 2004]. One
of the big problem of BH averaging scheme is that it leaves the metric tensor un-
changed. To overcome this trouble, Zalaletdinov introduced a bilocal averaging op-
erator W α′

β (x′, x) which transforms as a vector at the point x′ and as a covector at the
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point x. Its construction follows from the demanded properties:

lim
x′→x

W α′

β (x′, x) = δαβ , (4)

W α′

γ′′ (x′, x′′)W γ′′

β (x′′, x) = W α′

β (x′, x). (5)

It can be shown that these two properties are equivalent to the following form of the
bilocal operator:

W α′

β (x′, x) = Fα
′

γ (x′)F−1γ
β (x). (6)

Now it is possible for a given compact region D of a differentiable space-time man-
ifold (M , gαβ) with a volume n-form to define the average value of the tensor field
tα...β... (x), x ∈M as

t̄α...β... (x) =
1

VD

∫

D

t̃α...β... (x, x′)
√
−g′dnx′, (7)

g′=det(gαβ(x′)), VD is the volume of D and the object t̃α...β... (x, x′) is the bilocal exten-
sion of the tensor tα...β... (x) using the bivector W α′

β (x′, x)

t̃α...β... (x, x′) = W α
α′ (x′, x)...W β′

β (x′, x)...tα
′...
β′... (x′). (8)

Now it is possible to bilocally extend Einstein equations and then perform aver-
aging. The theory of Macroscopic Gravity not only averages Einstein equations but
also geometry itself. From the consistent procedure how to average Cartan structure
equations and their integrability equations it is possible to find a system of algebraic
and differential equations that must be fulfilled by the correlation term term.

The first exact solution of Macroscopic Gravity was published by Coley et al.
[2005]. Resulting correlation term can be interpreted as an additional space curvature.

4. B u c h e r t e q u a t i o n s

In the last two sections we have seen that it isn’t very obvious how to average
tensors. However, averaging scalars has a clear rule. In most of the cosmological
models there is a preferred timelike vector (cosmic time) so it is useful to perform
3+1 splitting of the variables. Here we will restrict ourselves only to the dust source
[Buchert, 2000] [it can be generalized for the perfect fluid Buchert, 2001].

For the metric ds2 = −dt2 + gi jdXidX j spatial averaging of the scalar field Ψ over
the domain D is defined by

〈
Ψ(t, Xi)

〉
D

:=
1

VD

∫

D

Jd3XΨ(t, Xi), (9)

VD =

∫

D

Jd3X, (10)
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where J :=
√

detgi j, gi j is the metric of the spacelike hypersurface and Xi are the
comoving coordinates. Taking time derivative of this definition we can obtain the
following important commutation rule:

∂t

〈
Ψ(t, Xi)

〉
D
−
〈
∂tΨ(t, Xi)

〉
D
=
〈
Ψ(t, Xi)

〉
D
〈Θ〉D −

〈
Ψ(t, Xi)Θ

〉
D
, (11)

where the expansion rate Θ is related to the velocity of the fluid uµ according to
the definition by Θ = uµ;µ. Next we introduce in analogy with FRW spacetime a
dimensionless scale factor aD and the effective Hubble parameter HD

aD =

(
VD

VDi

) 1
3

, (12)

〈Θ〉D =
V̇D

VD
= 3

ȧD

aD
=: 3HD . (13)

A dot denotes partial derivative with respect to time, VDi is the volume of the
initial domain which geodetically evolved to VD . Now we have a formalism how to
average scalars. To obtain scalar equation from the Einstein equation, we have to
contract it with available tensors—i.e. gµν, uµ and ∇µ. After contraction we obtain
the Raychaudhuri equation, the Hamiltonian constraint and the continuity equation.
Now we perform averaging and use the commutation rule (11).

3
äD

aD
+ 4πG 〈ρ〉D − Λ = QD , (14)

(
ȧD

aD

)2
− 8πG

3
〈ρ〉D +

〈
R
〉
D

6
− Λ

3
= −QD

6
, (15)

∂t 〈ρ〉D + 3
ȧD

aD
〈ρ〉D = 0. (16)

〈
R
〉
D denotes average value of the spatial Ricci scalar, 〈ρ〉D means average density

of the averaged fluid and QD that shows possible backreaction (by present inhomo-
geneity and anisotropy) is defined by

QD :=
2
3

〈
(Θ − 〈Θ〉D )2

〉
D
− 2
〈
σ2
〉
D
. (17)

The scalar σ2 = 1
2σi jσ

i j is constructed from the shear tensor. The time derivative of
the averaged Hamiltonian constrain agrees with the Raychaudhuri equation when the
integrability equation is fulfilled

∂tQD + 6
ȧD

aD
QD + ∂t

〈
R
〉
D + 2

ȧD

aD

〈
R
〉
D = 0. (18)

In a similar way as in the FRW approach we can define dimensionless variables
(omega factors)

ΩD
m :=

8πG
3H2

D

〈ρ〉D ; ΩD
Λ :=

Λ

3H2
D

; ΩD
R := −

〈
R
〉
D

6H2
D

; ΩD
Q := − QD

6H2
D

(19)
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and Hamiltonian constraint will be written in the standard form

ΩD
m + Ω

D
Λ + Ω

D
R + Ω

D
Q = 1. (20)

The formalism can be extended [Larena, 2009] to arbitrary coordinate system.
In addition to the fluid 4-velocity uµ, there is another velocity nµ of the observer.
In the Buchert equations there are together with the kinematic term QD (and the
dynamic term if the fluid has nonzero pressure) other corrections which complicate
the resulting equations.

It is still not clear how big the correction to the Friedmann equations are. They are
some claims that they are negligible [Ishibashi, 2006], however there some models
which are able to explain observed acceleration of the universe [Wiltshire, 2007].
More references can be found e.g. in Ellis [2011]. For the scale issue see for example
Li and Schwarz [2008].

5. R i c c i f l o w

In the last section it was shown how to average scalars on an inhomogeneous man-
ifold. However, cosmological data are most often interpreted in the FRW spacetime.
In addition to the averaging (9), there should also be some procedure how to smooth
geometry itself. The theory of Macroscopic Gravity uses averaging of the Cartan
structure equations. There exists mathematically interesting alternative how to reach
3-spaces of constant curvature. Let gab be a given metric on the closed 3-manifold
without boundary, which depends on the parameter β (typically cosmic time) and let
it evolve in the direction of the Ricci tensor

∂

∂β
gab (β) = −2Rab (β) , 0 ≤ β ≤ T0

gab (β = 0) = gab. (21)

It can be shown that on the compact manifold for the sufficiently small β local solution
exist and if the initial metric has a positive Ricci curvature, solution exists for all β
converging exponentially to the space of the constant curvature [technical details and
other references can be found in Buchert and Carfora, 2002].

By this procedure also the other parameters will change—the average value of the
density will change after smoothing D0 to D as 〈ρ〉D = MD/VD . Similarly we would
obtain a new set of the normalized omega factors, which can be very different from
the original ones.
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6. A v e r a g i n g u s i n g s c a l a r c u r v a t u r e i n v a r i a n t s

If we can average scalars it is natural to ask how we can represent spacetime
by scalar quantities. In Coley et al. [2009] it was proven that the class of four-
dimensional Lorentzian manifolds that cannot be completely characterized by the
scalar polynomial curvature invariants constructed from the Riemann tensor and its
covariant derivatives must be of Kundt form (e.g. admitting geodetic null vector with
a null expansion, rotation and shear).

For a given spacetime (M , gαβ) we define the set of scalar invariants [Coley, 2010]

I ≡
{
R,RµνRµν,CµναβCµναβ,Rµναβ;γRµναβ;γ,Rµναβ;γδRµναβ;γδ, ...

}
. (22)

Integrating over the domain D we obtain another set Ī characterizing a smoother
geometry. As we can see from relations like RµνRµν � R̄µνR̄µν it is possible that there
does not exist any metric tensor ḡµν which would be constructed from the set Ī . To
overcome this difficulty we will first remove the scalars which are not algebraically
independent. It means that we will restrict our discussion to the subset IA ⊆ I .
Then we will omit any scalars that can be computed from the equations (“syzygies”)
characterizing particular spacetimes (e.g. defining the algebraic type of the spacetime,
like the Segre type or the Petrov type). We will obtain the new set IS A ⊆ IA and by
averaging we will get ĪS A. By the inverse procedure we will acquire a complete set
Ī (here we suppose that averaging will not change the form of the equations which
allowed the construction IS A ⊆ IA).

7. A v e r a g i n g C a r t a n s c a l a r s

In the last section geometry was characterized by the curvature scalars. This pro-
cedure works well only in four dimensions and it is rather difficult to obtain the metric
or the Ricci tensor from the averaged scalars. It can be shown [Cartan, 1946] that the
geometry may be completely characterized by the Riemann tensor and the finite num-
ber of its covariant derivatives (Cartan scalars). Because the Einstein tensor consists
of the sum of the Riemann tensor, it is possible to average geometry and the Einstein
equations together.

We will start with the construction of the Cartan scalars (for the texts concerning
equivalence problem [see, e.g., Karlhede, 1980, 2006]. Let (M , g) be n-dimensional
differentiable manifold with a metric

g = ηi jω
i ⊗ ω j, (23)

ηi j is constant symmetric matrix and ωi, i=1,2,...,n form the base of the cotangent
space at the point xµ. The tetrad (frame) is defined up to generalized rotations

ωi = ωi
ν(xµ, ξΥ)dxν, (24)
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ξΥ, Υ=1,..., 1
2 n(n−1) denotes the coordinates of the orthogonal group. In Macroscopic

Gravity, theory uses (bilocally extended) Cartan equation. Now all the geometrical
objects will be defined on the enlarged 1

2 n(n+1) dimensional space F(M )—the frame
bundle of M . The exterior derivative will be extended to d = dx + dξ and the Cartan
equations have the form

dωi = ω j ∧ ωi
j, (25)

dωi
j = −ωi

k ∧ ωk
j +

1
2

Ri
jklω

k ∧ ωl. (26)

with the condition
ηikω

k
j + η jkω

k
i = 0. (27)

Applying next the exterior derivative we will obtain covariant derivatives of the cur-
vature tensor.

dRi jkl = Rm jklω
m
i + Rimklω

m
j + Ri jmlω

m
k + Ri jkmω

m
l + Ri jkl;mω

m,

dRi jkl;n = Rm jkl;nω
m
i + Rimkl;nω

m
j + · · · + Ri jkl;nmω

m,

. (28)

.

.

Let Rp denote the set
{
Ri jkm,Ri jkm;n1 , ...,Ri jkm;n1...np

}
, p is the lowest number such that

Rp+1 contains no element that is functionally independent (over F(M )) of the ele-
ments in Rp (two functions f , g are functionally independent if the 1-forms d f and
dg are linearly independent).

There exist a quite elaborate algorithm [Karlhede, 2006] how to compute Cartan
scalars. It uses the structure of isotropy group of Rq and in every step it restrict the
frame requiring that Rq takes a standard form.

Now we can use the same algorithm as in the previous section. It can be shown
that the Cartan scalars satisfy some algebraic and differential relations which are in
general nonlinear. It means that we have to restrict to the smaller set of the scalars,
perform averaging and then construct a new set R

p+1
, from which it is possible to

construct a new metric gµν.

8. C o n c l u s i o n

The averaging problem in GR and especially in cosmology is of the fundamental
importance. Backreaction term in the averaged Einstein equations will change the
dynamic of the metric and affect the cosmological evolution. The question is how
important these corrections are and when it is possible to neglect them [Buchert,
2008, Ellis, 2011].

There is also a problem how to define average of tensors. In this review we have
introduced several different candidates how to average Einstein field equations and
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also spacetime geometry. Macroscopic Gravity is the promising model how to aver-
age inhomogeneities, but only a few simplified solutions are known because of the
complexity of the equations. The most popular approach to the averaging problem
are the Buchert equations. However, only scalar part of the equations are averaged so
we have less equation then variables and we have to put some relation by hand.
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