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Non-dominating ultrafilters

VERA FISChER AND bERNhARD IRRGANG

Wien, bonn

We show that if cov(M ) = κ, where κ is a regular cardinal such that ∀λ < κ(2λ ≤ κ), then
for every unbounded directed family H of size κ there is an ultrafilter UH such that the
relativized Mathias forcing M(UH ) preserves the unboundedness of H . This improves
a result of M. Canjar (see [4, Theorem 10]). We discuss two instances of generic ultra-
filters for which the relativized Mathias forcing preserves the unboundedness of certain
unbounded families of size < c.

1. I n t r o d u c t i o n

Recall that Mathias forcing M consists of pairs (u, A) where u is a finite subset of
ω, A ∈ [ω]ω and max u < min A. The extension relation ≤M is defined as follows:
(u2, A2) ≤ (u1, A1) if u2 is an end-extension of u1, A2 ⊆ A1 and u2\u1 ⊆ A1. When-
ever U is a filter on ω, the relativized Mathias forcing M(U ) is the suborder of M
consisting of all conditions (u, A) such that A ∈ U . It is well known that if U is a
selective ultrafilter the relativized Mathias posetM(U ) adds a dominating real. In [4]
M. Canjar gives a characterization of the ultrafilters for which the relativized Mathias
poset does not add a dominating real. Namely, if U is an ultrafilter such thatM(U )
is weakly bounding (i.e. preserves the ground model reals as an unbounded family)
then U is a P-point with no rapid predecessors in the Rudin-Keisler order.
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In [4] it is shown that if d = c, then there is an ultrafilter U for which M(U )
is weakly bounding. Recall that a family H ⊆ ωω is directed if for every H ′ ∈
∈ [H ]<|H | there is a real h ∈ H which simultaneously dominates all elements
of H ′. In this paper we show that given any regular uncountable cardinal κ such
that ∀λ < κ(2λ ≤ κ), the weaker hypothesis cov(M ) = κ, implies the existence of
ultrafilters U for whichM(U ) is weakly bounding. Furthermore, we show that under
this hypothesis, if H ⊆ ωω is an unbounded directed family of size κ then there is
an ultrafilter UH which preserves the unboundedness of H . Thus in a sense our
result improves Canjar’s result, since the existence of such ultrafilters allows one to
preserve the unboundedness of a fixed unbounded family along certain finite support
iterations. Note also that this weaker hypothesis, cov(M ) = κ and 2λ ≤ κ for all
λ < κ, implies that d = κ. In section 3 we discuss the generic existence of ultrafilters
for which the relativized Mathias forcing preserves the unboundedness of unbounded
families of size < c.

2. N o n - d o m i n a t i n g u l t r a f i l t e r s

Under CH, there are known methods with which one can associate to a given un-
bounded family of size c an ultrafilter which preserves the unboundedness of the
family. Recall that a filter F ⊆ P(ω) is a Kσ-filter, if it is generated by countably
many compact subsets of P(ω) = 2ω. In [7, Proposition 5.1], C. Laflamme shows
that CH implies the existence of a maximal almost disjoint family A such that the
dual filter F (A ) is not contained in any Kσ-filter. Then using the techniques of
[2, Theorem 3.1], one can extend F (A ) to an ultrafilter U such that M(U ) does
not add a dominating real. Furthermore, with every unbounded directed family of
cardinality c = ℵ1, one can associate such an ultrafilter, i.e. an ultrafilter for which
the relativized Mathias forcing preserves the unboundedness of the family.

Using the notion of logarithmic measures, S. Shelah obtains a modification of the
Mathias poset which is almost ωω-bounding and thus in particular does not add a
dominating real. Recall also that countable support iterations of proper almost ωω-
bounding posets is weakly bounding (see [8]).

Definition 2.1 (S. Shelah, [8]) A function h : [s]<ω → ω, where s ⊆ ω is a
logarithmic measure if ∀a ∈ [s]<ω, ∀a0, a1 such that a = a0 ∪ a1, there is i ∈ {0, 1}
such that h(ai) ≥ h(a) − 1 unless h(a) = 0. If s is a finite set and h a logarithmic
measure on s, the pair x = (s, h) is a finite logarithmic measure.

Shelah’s poset Q (see [5, Definition 3.8]) consists of all pairs p = (u, T ) where u
is a finite subset of ω and T = 〈(si, hi)〉i∈ω is an infinite sequence of finite logarithmic
measures such that max u < min s0, max si < min si+1 for all i ∈ ω and 〈hi(si)〉i∈ω is
unbounded. The sequence T is called the pure part of p also pure condition and is
identified with the pair (∅, T ). Let int(T ) =

⋃
i∈ω si. Note that if (u, T ) is a condition
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in Q, then (u, int(T )) is a condition in the Mathias poset M. The extension relation
≤Q is defined as follows: (u2, T2) ≤Q (u1, T1) if

(1) (u2, int(T2)) ≤M (u1, int(T1));
(2) Let T� = 〈(s�i , h

�
i )〉i∈ω, � ∈ {1, 2}. Then ∃〈Bi〉i∈ω ⊆ [ω]<ω such that max u2 <

< min s1
j for j = min B0 and for all i ∈ ω, max Bi < min Bi+1, s2

i ⊆
⋃

j∈Bi
s1

j

and if e ⊆ s2
i is such that h2

i (e) > 0, then there is j ∈ Bi for which h1
j(e∩ s1

j) >
> 0.

Remark 2.2 For the purposes of this note, it is sufficient to know that if (u2, T2) ≤Q

(u1, T1) then (u2, int(T2)) ≤M (u1, int(T1)). However for completeness we have stated
the entire definition of ≤Q.

Definition 2.3 ([5, Definition 3.9]) Let C be a centered family of pure conditions
in Q. Then Q(C) is the suborder of Q consisting of all (u,R) ∈ Q such that T ≤Q R
for some T ∈ C.

Lemma 2.4 Let C be a centered family of pure conditions in Q. Then Q(C) is
densely embedded inM(FC) where

FC = {X ∈ [ω]ω : ∃T ∈ C(int(T ) ⊆ X)}.
Proof. It is sufficient to observe that the mapping

i : (a, T ) �→ (a, int(T ))

from Q(C) toM(FC) is a dense embedding. Indeed, it is clear that i is order preserv-
ing. Let (a, X) ∈ M(FC). Then by definition there is T ∈ C such that int(T ) ⊆ X and
so in particular max a < min int(T ). Therefore (a, T ) is a condition in Q(C) such that
(a, int(T )) ≤ (a, X). It remains to show that i preserves incompatibility. Let (a,T ) and
(b,R) be incompatible conditions in Q(C). By definition of Q(C) there are T0, R0 in C
such that T0 ≤ T , R0 ≤ R. However C is centered family and so there is a pure condi-
tion Z in C which is a common extension of T0, R0. Then Z is a common extension of
T , R. Case 1. If a is not an end-extension of b and b is not an end-extension of a, then
clearly (a, int(T )) and (b, int(R)) are incompatible. Case 2. Suppose w.l.o.g. that a
end-extends b. If a\b ⊆ int(R) then (a, Z) is a common extension of (a, T ) and (b,R),
which is a contradiction. Therefore a\b � int(R) and so the conditions (a, int(T )) and
(b, int(R)) are incompatible. �

By [5, Lemma 6.2], if cov(M ) = κ for some regular cardinal κ such that ∀λ <
< κ(2λ ≤ κ) and H ⊆ ωω is an unbounded, directed family of size κ then there is
a centered family C such that Q(C) preserves the unboundedness of H and adds a
real which is not split by the ground model reals. Applying Lemma 2.4 we obtain the
following.

Theorem 2.5 Let κ be a regular cardinal such that ∀λ < κ(2λ ≤ κ) and let
cov(M ) = κ. Then there is an ultrafilter U such that M(U ) is weakly bounding.
Furthermore if H ⊆ ωω is an unbounded directed family of size κ then there is an
ultrafilter UH such thatM(UH ) preserves the unboundedness of H .
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Proof. To obtain the first part of the claim consider a dominating directed family
of size κ, which exists since cov(M ) ≤ d = κ. Let H be an unbounded directed
family of size κ and let C = CH be the associated centered family constructed in
[5, Lemma 6.2]. By Lemma 2.4 Q(C) is densely embedded inM(U ), where

U =FC = {X ∈ [ω]ω : ∃T ∈ C(int(T ) ⊆ X)}.

Therefore Q(C) and M(U ) are forcing equivalent and so M(U ) preserves the un-
boundedness of H .

It remains to observe that U is an ultrafilter. Let {Aβ+1}β<κ be a fixed enumeration
of the infinite subsets ofω. Note that the centered family C is defined as the union of a
sequence σ = 〈Cα〉α<κ of centered families (see [5, Lemma 6.2]), which in particular
satisfy the following property:

(∗) For every α = β + 1 < κ successor, there is a set Dα, where Dα = Aα or Dα = Ac
α,

such that for all X ∈ Cα(int(X) ⊆ Dα).

Now to see that U is an ultrafilter, consider an arbitrary infinite subset A of ω. Then
A = Aβ+1 for some β < κ. Let γ = β + 1. Since C =

⋃
α<κCα, by the above property

(∗), every element of Cγ can serve as a witness to the fact that A or Ac is in U . �

3. P r e s e r v i n g s m a l l u n b o u n d e d f a m i l i e s

There is very little known about models in which c ≥ ℵ2 and there is an ultrafilter
which preserves the unboundedness of a given unbounded family of size < c. Let
C(κ) denote the poset for adding κ-many Cohen reals and let V denote the ground
model.

Theorem 3.1 Assume CH. There is a countably closed, ℵ2-c.c. poset P which adds
a C(ω2)-name for an ultrafilter U such that in VP×C(ω2) the forcing notion M(U )
preserves the unboundedness of all families of Cohen reals of size ω1.

Proof. Let P be the poset defined in [6, Definition 16] and let C be the C(ω2)-name
for the centered family of pure condition added by P. In VP×Q(ω2) by [6, Theorem
1], the poset Q(C) preserves the unboundedness of all families of Cohen reals of
cardinality ω1. Furthermore by Lemma 2.4 Q(C) is densely embedded in M(U )
where U = {X ∈ [ω]ω : ∃T ∈ C(int(T ) ⊆ X)}. It remains to observe that U is an
ultrafilter (see [6, Lemma 7 and Theorem 1]). �

Theorem 3.2 (Brendle, Fischer [3]) Assume GCH. Let κ < λ be regular uncount-
able cardinals. Let V1 = VC(κ) and let B be the family of Cohen reals. Then there is
a ccc generic extension V2 of V1 such that V2 � c = λ and in V2 there is an ultrafilter
U which preserves the unboundedness of B.
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Proof. Let µ = λ+1 and let P′κ,µ be a forcing notion defined as Pκ,µ from [3, Section
4], with the only difference that P′α,0 = C(α) for all α ≤ κ. Then V2 = VP

′
κ,λ is the

desired generic extension (following the notation of [3], let U = Uκ,λ). �

The method used in [3], referred to as matrix-iteration, first appears in [1], where
assuming GCH with any regular cardinal λ one associates generic extensions V1 ⊆ V2
such that V1 = VC(ω1) and V2 � (c = λ) is a ccc extension of V1. If B is the family of
the ω1 Cohen reals added over the ground model V , then in V2 there is an ultrafilter
for which the relativized Mathias forcing preserves the unboundedness of B.
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