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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 1 , PAGES 3 2 – 4 5

CONVERGENCE ANALYSIS FOR ASYMMETRIC

DEFFUANT–WEISBUCH MODEL

Jiangbo Zhang

In this paper, we investigate the convergence behavior of the asymmetric Deffuant–Weisbuch

(DW) models during the opinion evolution. Based on the convergence of the asymmetric DW

model that generalizes the conventional DW model, we first propose a new concept, the separa-

tion time, to study the transient behavior during the DW model’s opinion evolution. Then we

provide an upper bound of the expected separation time with the help of stochastic analysis.

Finally, we show relations of the separation time with model parameters by simulations.

Keywords: opinion dynamics, asymmetric Deffuant–Weisbuch model, convergence, sepa-

ration time

Classification: 91C99, 91D30, 60G40

1. INTRODUCTION

Opinion dynamics, which was discussed several decades ago [6, 13], had attracted much
attention as a challenging research topic because of its many potential applications in
various disciplines. Particularly, the bounded confidence opinion models became popular
based on simulations studies in recent years. These models, such as the Hegselmann–
Krause (HK) model [7] and the Deffuant–Weisbuch (DW) model [3, 17], were proposed
in order to understand the evolution of opinions in a group. Both the HK model and
the DW model are successful in describing opinion aggregation or evolution as revealed
in numerical simulations and physical analysis (see [3, 5, 11]).

In recent years, mathematical analysis has been paid much attention to opinion dy-
namics, and related collective behavior of multi-agent systems have been widely applied
in [1, 8, 9, 14, 15]. However, because the inter-agent topology may keep changing and
is dependent of opinion states, many analysis methods (for example, in [1, 12]) cannot
be applied to these opinion models. Recently, with the help of stochastic analysis and
Lyapunov methods, [16] provided a new method for the convergence analysis of the
homogeneous HK model. In addition, the convergence of generalized DW models was
discussed in [18].
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The objective of our research in this paper is to study the convergence behavior of
the asymmetric DW dynamics, proposed in [18]. The main contributions include

• To study the transient behavior during the opinion evolution, we give a new con-
cept, the separation time, and show that it is a stopping time;

• We estimate the upper bound of the expected separation time for the asymmetric
DW model.

The rest of this paper is organized as follows. Section 2 formulates the asymmetric
DW opinion protocol and then introduces preliminary notations on probability and graph
theories. Section 3 introduces the separation time and then estimates its expected upper
bound. Section 4 presents simulation results. Finally, Section 5 provides concluding
remarks.

2. THE ASYMMETRIC DW DYNAMICS

In this section, we introduce the DW models, and compare the asymmetric DW model
with the conventional DW model.

2.1. Model Description

The conventional DW model can be found in [3], formulated as follows. Agent i has an
opinion value xi(t) ∈ R at time t ≥ 0, 1 ≤ i ≤ n. Without loss of generality, initial
opinions, xi(0), 1 ≤ i ≤ n, are limited in [0, 1] (noting that this can be easily extended
in any set in R). Denote ε0 ∈ (0, 1) as the confidence radius and γ0 ∈ (0, 1) as the trust
weight. Then the conventional DW protocol in [3] is described as{

xi(t + 1) = xi(t) + γ01{|xj(t)−xi(t)|≤ε0} · (xj(t)− xi(t));

xj(t + 1) = xj(t) + γ01{|xj(t)−xi(t)|≤ε0} · (xi(t)− xj(t)),
(1)

where i, j are selected randomly with a uniform distribution in V = {1, 2, . . . , n} at time
t. 1 is the indicator function, that is, 1{ω} = 1 if ω holds and 1{ω} = 0 otherwise.

Note that in the conventional DW model (1) only two agents are selected at each
time, and both learn each other if their distance is not larger than ε0. However, in many
cases [10], some person i may choose another person j and learn his/her opinion who
may not choose and learn the person i’s opinion at the same time, or maybe even when
they collect opinions from each other, trust weights are different when they update their
opinions. Based on the practical observation, we consider an asymmetric DW model.
The update rule of the opinions in the asymmetric DW model can be formulated as

xi(t + 1) = xi(t) + γi1{|xri(t)(t)−xi(t)|≤ε0} · (xri(t)(t)− xi(t)),∀1 ≤ i ≤ n, t ≥ 0, (2)

where γi ∈ (0, 1) is the trust combination weight of the agent i, and ri(t) denotes the
agent index chosen by agent i at time t ∈ N, which is a random variable uniformly and
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independently distributed in the agent set V = {1, 2, . . . , n}. Denote the agent neighbor
of agent i in V at time t as Ni(t) = {j : |xj(t)− xi(t)| ≤ ε0}.

For illustration, a simulation is given for a comparison between the conventional DW
model and the asymmetric DW model. We take 10 agents whose initial opinions are
randomly distributed in the interval [0, 1] and the confidence radius ε0 = 0.3. The curves
in Figure 1 show that the convergence of the agents’ opinions in the asymmetric DW
dynamics is faster than that in the conventional DW dynamics. Moreover, opinion values
in the conventional DW model changes more sharply than those in the asymmetric DW
model as shown in Figure 1.

(a) The conventional DW dynamics (b) The asymmetric DW dynamics

Fig. 1. Conventional DW dynamics (1) vs. asymmetric DW

dynamics (2).

2.2. Graph and Probability Space

To study the DW model (2), some concepts in graph theory and stochastic analysis are
required.

We first present some basic definitions about graph theory [4]. An undirected graph
G = (V, E) consists of a finite set V = {1, 2, . . . , n} of vertexes (or nodes) and an edge set
E , in which an edge is an pair of distinct nodes of V. A subgraph of G is a graph whose
vertex set is a subset of V, and whose adjacency relation is a subset of E restricted to
this subset. We provide following concepts.

• A path is an edge sequence that all edges are connected one by one, such as a path
from i1 to ik {(i1, i2), (i2, i3), . . . , (ik−1, ik)}. i and j are connected if there exists
at least a path from i to j.
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• A connected component of an undirected graph G is a subgraph in which any two
vertices are connected to each other by paths, and in which any vertex is not
connected to the vertex outside this subgraph. A complete connected component
of G is a connected component in which any two vertices are connected.

• |V| is the agent number of the set V.

A directed graph is defined by
−→
G = (V,

−→
E ) in which any edge (i, j) ∈

−→
E is directed

and denotes the information flow from j to i. We can define the path, the union of two
graphs, connected component and complete subgraph similarly as above.

To describe the randomness of the DW model (2), we introduce some notations of
probability theory (referring to [2]).

A probability space is usually defined as (Ω,F ,P), where Ω is the state space and
P is a normalized measure on a σ-algebra F composed by subsets of Ω. A set Q ∈ F
is called an event. The nonnegative real number P(Q) is the probability of the event
Q. In the probability space (Ω,F ,P), the event Q is established almost surely (a.s.)
if P(Q) = 1, and is a null event if P(Q) = 0. If A = (aij)n×n ∈ [0, 1]n×n, aij ≥ 0
and

∑n
j=1 aij = 1 for all i, j ∈ V, then A is a row-stochastic matrix (We simply call it

stochastic matrix in this paper).
The probability space that we consider for the DW dynamics is constructed by n-

agent infinite time opinions trajectories. For the conventional DW model (1) and the
asymmetric DW model (2), x(t) = (x1(t), . . . , xn(t))′ is, in fact, the abbreviation of
x(t, ω) = (x1(t, ω), . . . , xn(t, ω))′. Denote ωt = {x1(t), . . . , xn(t)}. Let {Ft} be a filtra-
tion on (Ω,F) such that Ft+1 = σ(x(0), . . . ,x(t)), t ≥ 0. F1 ⊂ F2 ⊂ . . . ⊂ F∞ = F . We
use (Ω,F ,P) to denote the probability space generalized by the DW model (2).

Based on the probability space (Ω,F ,P) of the model (2), for any event ω, we obtain
a directed graph

−→
G t(ω) in which (i, j) ∈

−→
E t(ω) if and only if ri(t, ω) = j and |xj(t, ω)−

xi(t, ω)| ≤ ε0 at time t ∈ N. Generally, we get a directed graph sequence {
−→
G t(ω)}t≥0

for any event ω ∈ Ω. Then we denote an undirected graph sequence on (1) and (2) as
{Gt}t≥0 where (i, j) ∈ Et if and only if |xi(t)− xj(t)| ≤ ε0.

In the following, we focus on the analysis of the DW model (2) based on the graph
sequence {Gt}, though similar conclusions can be obtained for the conventional DW
model (1).

3. SEPARATION TIME

In this section, we introduce a new concept, the separation time, and give a related
analysis for the convergence behavior.

Define x(t) ∈ Rn convergent to x∗ ∈ [0, 1]n a.s. if P(limt→∞ x(t) = x∗) = 1. The
following result was obtained in [18].
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Lemma 1. For the asymmetric DW model (2), one of the following two results holds
a.s. for any i, j ∈ V:

(i) limt→∞ |xi(t)− xj(t)| = 0,
(ii) limt→∞ |xi(t)− xj(t)| > ε0.

By Lemma 1, we obtain that, for limit states, G∞(ω) is composed by finite complete
connected components a.s. This induces us to think about whether there exists a finite
time τ(ω) in which all graphs in {Gτ (ω), ω ∈ Ω is a convergence event} are composed
by finite complete connected components. The following lemma explains the existence
of this finite time τ(ω) for the event ω that agents converge.

Lemma 2. If the opinion convergence holds for a given event ω ∈ Ω, then τ(ω) < ∞.

P r o o f . Consider an event ω in which the opinion convergence holds. By Lemma 1,
for the confidence radius ε0 > 0, there must exist a finite time T such that when t > T ,

[I] |xi(t)− xj(t)| ≤ ε0 if limt→∞ |xi(t)− xj(t)| = 0;

[II] |xi(t)− xj(t)| > ε0 if limt→∞ |xi(t)− xj(t)| > ε0.

Otherwise if there exists an infinite time sequence {tk} such that [I], [II] do not hold,
then we obtain that, correspondingly,

[I’] limt→∞|xi(t)− xj(t)| ≥ ε0 > 0 if {tk} satisfies that |xi(tk)− xj(tk)| > ε0;

[II’] limt→∞|xi(t)− xj(t)| ≤ ε0 if {sk} satisfies that xi(sk)− xj(sk)| ≤ ε0.

Both [I ′] and [II ′] contradict with Lemma 1 because

lim
t→∞

|xi(t)− xj(t)| = limt→∞|xi(t)− xj(t)| = limt→∞|xi(t)− xj(t)|.

Hence, our result is obtained. �

With the existence of τ for the event in which opinions converge, we can further show
that after time τ , all graphs {Gt, t ≥ τ} are the same. Obviously, they are composed by
complete connected components.

Lemma 3. For any event ω ∈ Ω and t ∈ N, if Gt(ω) is composed by complete connected
components, then Gt+1(ω) = Gt(ω).

P r o o f . If Gt is composed by complete connected components, then obviously if (i, j) ∈
Et and (j, k) ∈ Et then (i, k) ∈ Et for any i, j, k ∈ V.

Suppose Gt+1 is not composed by complete connected components. For the event ω,
we can assume that there exist i, j, k ∈ V such that

• (i, j) ∈ Et, (j, k) ∈ Et and (i, k) ∈ Et;
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• (i, j) ∈ Et+1, (j, k) ∈ Et+1 and (i, k) /∈ Et+1.

For the connected component G containing i, j, k, by the definition of {Gt} we can see
that

max
s,l∈G

|xs(t)− xl(t)| ≤ ε0, min
s∈Gc,l∈G

|xs(t)− xl(t)| > ε0.

Moreover, it is obtained obviously that both inequalities also hold at time t + 1 because
mins∈G,l∈Gc |xrs(t)(t) − xl(t)| > ε0 and mins∈G,l∈Gc |xrl(t)(t) − xs(t)| > ε0. However,
(i, k) /∈ Et+1 will contradict with mins∈Gc,l∈G |xs(t)− xl(t)| > ε0 because:

• If rk(t), ri(t) ∈ G, then

|xi(t + 1)− xk(t + 1)| ≤ max
s,l∈{i,k,rk(t+1),ri(t+1)}

|xs(t + 1)− xl(t + 1)| ≤ ε0;

• If rk(t) ∈ G, ri(t) ∈ Gc or rk(t) ∈ Gc, ri(t) ∈ G, then xi(t+1) = xi(t) or xk(t+1) =
xk(t). Similar with above, |xi(t + 1)− xk(t + 1)| ≤ ε0;

• If rk(t) ∈ Gc, ri(t) ∈ Gc, then |xi(t + 1)− xk(t + 1)| = |xi(t)− xk(t)| ≤ ε0.

Thus, we obtain the conclusion. �

By Lemmas 2 and 3, we have proved that there exists such a time τ(ω) that all
graphs {Gt(ω), t ≥ τ(ω)} are composed by the same complete connected components for
the event ω that opinions converge. This induces us to think about the low bound of
τ(ω). Hence, we introduce the definition of the separation time to describe this time as
follows.

Definition 1. For the DW models (1) and (2), the separation time T ∗(ω) is a mapping
T ∗(ω) : Ω → N̄ = N ∪ {+∞} such that

T ∗(ω) = inf{τ(ω) : Gτ(ω) is composed by complete connected components.} (3)

Moreover, by Lemma 3 we can see that all agent subgroups are not changed after
the separation time T ∗, and hence we say that agent subgroups are steady after the
separation time T ∗(ω) for the event ω that agent opinions converge. Specially, when
opinions do not converge for the event ω that agent opinions diverge, we only need to
take T ∗(ω) = ∞. By Lemma 2, it is obvious that the mapping T ∗(ω) can be well defined
for any event ω.

It is also not difficult to prove that T ∗(ω) is a stopping time for the event ω that
agent opinions converge. In fact, recalling the equation (3), T ∗ is clearly the hitting
time of {Gt(ω) is composed by complete connected components}. When t < T ∗(ω), all
the graphs G1(ω), . . . ,Gt−1(ω) are not composed by complete connected components.
Hence, T ∗(ω) is a stopping time.

Actually, the separation time of (2) is the first moment after which all opinion sub-
groups will not be changed. The estimation of the separation time is important because
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we can previously estimate when the steady opinion separation will appear. We will
give the following example to show the difference between the separation time and the
time when separation (maybe unsteady) occurs. With n = 40, ε0 = 0.2, two subgroups
are formed at time t = 25 in Figure 2. But they are divided with the distance less than
ε0 = 0.2 at this time and there is still some possibility for them to merge again though
subgroups look separated. In fact, T ∗ is about 45 in this example.

Fig. 2. A simulation for (2).

In the following we will estimate an expected upper bound of the separation time for
the DW dynamics (2).

Rewrite (2) as a matrix form x(t + 1) = W (t)x(t). The system matrix W (t) is a
stochastic matrix and

Wsk(t) =


1− ωs1{|xk(t)−xs(t)|≤ε0} if rs(t) 6= s, k = s;
ωs1{|xk(t)−xs(t)|≤ε0} if rs(t) = k, k 6= s;
1 if rs(t) = s, k = s;
0 otherwise.

Note that W (t) is measurable with respect to Ft+1, i. e., Wij(t) is measurable with
respect to Ft+1 for any i, j ∈ V and t ≥ 0, we can see that {W (t)} is a random chain
adapted to {Ft}, or simply {W (t)} is an adapted random chain.

A random vector process {π(t)} is an absolute probability process for {W (t)} if

E[πT (t + 1)W (t)|Ft] = πT (t) for all k ≥ 0,

and π(t) is a stochastic vector (
∑n

i=1 πi(t) = 1, πi(t) ≥ 0, i ∈ V) a.s. for any t ≥ 0
([16]).

Based on these notations, we present and prove the main result of this paper as
follows.
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Theorem 1. For the model (2),

E[T ∗(ω)] ≤ 1 +
nnγn−1

ε2
0γ

n(1− γ)(min{γ, 1− γ})n−1
(4)

where γ = min1≤i≤n γi and γ = max1≤i≤n γi.

P r o o f . For graphs {Gt(ω)}t≥0 and ω ∈ Ω, if the initial graph G0(ω) owns more than one
connected component, then we only need to analyze components respectively. Simply we
assume that G0(ω) owns one connected component for the event ω ∈ Ω in the following
analysis.

By the definition of T ∗(ω), for t < T ∗(ω), we can find at least one mapping it(ω) ∈
V : Ω → V, such that there exist jt, kt ∈ Nit(t), |xjt(t)− xkt(t)| ≥ ε0.

The following steps are carried out for the proof.

(i) We have proved that there exists a sequence {π(t)} which is the absolute proba-
bility sequence of {W (t)} (in [18]). For

Vπ(x(t), t) =
n∑

i=1

πi(t)(xi(t)−
n∑

j=1

πj(t)xj(t))2

and any t > 0,

E[
∞∑

t=0

∑
i<j

Lij(t)(xi(t)− xj(t))2] ≤ E[Vπ(x(0), 0)] < ∞ (5)

where L(t) = WT (t)diag(π(t + 1))W (t) (Corollary 4.3 in [16]).

Moreover, for Vπ(x(t), t), we can get Vπ(x(t), t) ≤
∑n

i=1 πi(t) = 1.

In fact, {W (t)} has an absolute probability sequence {π(t)} that is uniformly
bounded below by κ = ( δ

n )n−1, δ =
γ min{1−γ,γ}

γ (Lemma 2 in [18]). Hence,

Lij(t) ≥ κMij(t),

where M(t) = WT (t)W (t).

(ii) By P(ri(t) = j) = 1
n for any i, j ∈ V, t ≥ 0,

E[Wij(t)Wii(t)] = γi(1− γi)P(Wij(t) = γi,Wii(t) = 1− γi)

+ 0P(Wij(t) = 0,Wii(t) = 1) + 0P(Wij(t) = 0,Wii(t) = 1− γi) =
γi(1− γi)

n
.

Moreover,

Mij(t) =
n∑

k=1

(WT )ik(t)Wkj(t) =
n∑

k=1

Wki(t)Wkj(t).
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Therefore, for jt ∈ Nit(t), by

E[Mjtit(t)] =
n∑

s=1

E[Wsjt(t)Wsit(t)] ≥ E[Witjt(t)Witit(t)] ≥
γ(1− γ)

n
,

min
t<T∗

E[Mjt,it(t)] ≥
γ(1− γ)

n
. (6)

In the same way, mint<T∗ E[Mkt,it
(t)] ≥ γ(1−γ)

n .

(iii) {ri(t), 1 ≤ i ≤ n} are independent of agent locations at time t. Therefore,
P(|xi(t) − xj(t)| = a, rs(t) = l) = P(|xi(t) − xj(t)| = a)P(rs(t) = l) for any
i, j, s, l ∈ V, a ∈ [0, 1].

Denote S(x(0), |xi(t)− xj(t)|) as the set of all possible values of |xi(t)− xj(t)| at
time t given the initial values x(0) for (2), i, j ∈ V. Obviously, |S(x(0), |xi(t) −
xj(t)|)| < ∞ for the finite t and x(0) ∈ [0, 1]n.

We use {fk(γi, γj), k = 1, 2, 3, 4} to denote all possible values of Mij(t) and obtain
that:

fk(γi, γj) =


γi(1− γi) if ri(t) = j, rj(t) 6= i;
γj(1− γj) if rj(t) = i, ri(t) 6= j;
γi(1− γi) + γj(1− γj) if rj(t) = i, ri(t) = j;
0 otherwise.

Hence, for any i, j ∈ V, we denote fk(γi, γj) as fk simply and can get that

E[Mij(t)(xi(t)− xj(t))2] = E[Mij(t)(xi(t)− xj(t))2|Ft+1]

=
∫

[0,1]n

∑
a∈S(x(0),|xi(t)−xj(t)|)

∑
k

a2fkP(|xi(t)− xj(t)| = a,Mij(t) = fk)dx(0)

=
∑

k

∫
[0,1]n

∑
a∈S(x(0),|xi(t)−xj(t)|)

a2P(|xi(t)− xj(t)| = a)dx(0)

 fkP(Mij(t) = fk)

= E[Mij(t)]E[(xi(t)− xj(t))2]. (7)

Therefore, for t < T ∗, by (7) we have∑
i<j

E[Mij(t)(xi(t)− xj(t))2] ≥
∑

i<j,i,j∈Nit (t)

E[Mij(t)(xi(t)− xj(t))2]

≥ E[Mjtit
(t)(xjt

(t)− xit
(t))2] + E[Mktit(t)(xkt(t)− xit(t))

2]

= E[Mjtit
(t)]E[(xjt

(t)− xit
(t))2] + E[Mktit(t)]E[(xkt(t)− xit(t))

2]

≥ min{E[Mjt,it(t)], E[Mkt,it(t)]}E[(xjt(t)− xit(t))
2 + (xkt(t)− xit(t))

2]

≥ min{E[Mjt,it
(t)], E[Mkt,it

(t)]}E[(xjt
(t)− xkt

(t))2]

≥ ε2
0 min{E[Mjt,it(t)], E[Mkt,it(t)]}. (8)



Convergence analysis for asymmetric Deffuant–Weisbuch model 41

Also, because T ∗ is a stopping time, by (6), we obtain

E[
T∗−1∑
t=0

Mjtit
(t)] = E[

∞∑
t=0

Mjtit(t)1{T∗≥t+1}] ≥ min
t<T∗

E[Mjtit(t)]E[
∞∑

t=0

1{T∗≥t+1}]

≥
γ(1− γ)

n
E[

∞∑
t=0

1{T∗≥t+1}] =
γ(1− γ)

n
(E[T ∗]− 1). (9)

Similarly, E[
∑T∗−1

t=0 Mktit(t)] ≥
γ(1−γ)

n (E[T ∗]− 1).
In a sum, by inequalities (5), (6), (8) and (9), we have

1 ≥ E[Vπ(x(0), 0)] ≥ E[
T∗−1∑
t=0

∑
i<j

Lij(t)(xi(t)− xj(t))2]

≥ κε2
0 min{E[

T∗−1∑
t=0

Mjtit(t)], E[
T∗−1∑
t=0

Mktit(t)]}

≥ κε2
0 min

t<T∗
{E[Mjtit(t)], E[Mktit(t)]}E[T ∗ − 1]

≥ κ
γ(1− γ)

n
ε2
0(E[T ∗]− 1). (10)

Then, by (10), E[T ∗(ω)] ≤ 1 + n
κε2

0γ(1−γ)
.

Hence, the conclusion is obtained. �

Remark 1. Since the conventional DW model (1) is a special case of the asymmetric
DW model (2), it is not difficult to apply the estimation method of Theorem 1 in the
conventional DW model (1) to obtain a similar result. Additionally, our estimation is
much larger than the actual separation time and the following section will show the
difference by simulations.

4. SIMULATIONS

In this section, we present several numerical simulations to further illustrate phenomena
about the separation time. All figures are done after the averaging of 100 simulations.

First, we present an experiment about relations of the separation time with the agent
number. The confidence radius ε0 is fixed at 0.3 and initial opinions are randomly
distributed in the interval [0, 1]. To demonstrate the influence of the agent number n on
the separation time, we let n vary from 10 to 100, and the result is shown in Figure 3.
We can see that the separation time is a roughly increasing function of the parameter
n. Clearly, the more agents are, the larger the separation time is.

To show that our main result Theorem 1 is a conservative estimation one, we can
present following simulations on the separation time. Our estimated upper bound of the
expected separation time in Theorem 1 is larger than nn. However, we can see from
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Fig. 3. The agent number vs. the separation time for (2).

Figure 3 that separation times are always less than n, which is much less than the result
and shows the necessary to further estimate the separation time in future.

When t > T ∗, there exist some steady opinion subgroups. By Lemma 1, the steady
distances of different subgroups are lager than ε0. We use average subgroup distance
to describe the average of all adjacent subgroup distances. The following simulations
show phenomena after the separation time T ∗. The confidence radius ε0 is 0.15 and the
terminal time is 10000. By Figure 4, we can see that the average subgroup distance is
almost not sensitive to the agent number n.

Fig. 4. The agent number vs. average subgroup distance for (2).

Second, we illustrate the influence of the confidence radius on the separation time.
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We keep n = 100, and let ε0 vary from 0.05 to 1 with the step 0.025. Figure 5 shows
that the separation time increase first and then decrease as the parameter ε0 increases
from 0.05 to 1. There exists a value ε∗0 in which T ∗ gets the maximum value. When
ε0 < ε∗0, separated steady subgroups are formed early. When ε0 > ε∗0, we can see that
the separation time is a roughly decreasing function of parameter ε0, which implies that
the larger the confidence radius is, the smaller the separation time is.

Fig. 5. The confidence radius vs. the separation time for (2).

Finally, we present Figure 6 to show the relation of average subgroup distance with
the confidence radius. The confidence radius is the same as before. Figure 6 shows that
the average steady subgroup distance is increasing first and then becomes zero after
certain confidence radius.

Fig. 6. Confidence radius vs. average subgroup distance for (2).
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5. CONCLUDING REMARKS

In this paper, we proposed the separation time to investigate dynamical behaviors of the
asymmetric DW opinion dynamics. After the introduction of the separation time, we
estimated the upper bound of the expectation of the separation time using stochastic
analysis. Then we gave simulations on the separation time of the DW dynamics.

These results helped us to understand how the separation time functions as an im-
portant definition in the DW opinion dynamics. However, many interesting opinion
dynamics problems, such as further estimation of the expected separation time on the
DW model and the estimation for the number of steady subgroups of the DW model,
remain to be solved.
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