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STABILITY AND BOUNDEDNESS OF SOLUTIONS

OF NONLINEAR VECTOR DIFFERENTIAL EQUATIONS

OF THIRD ORDER

M. O. Omeike

Abstract. The paper studies the equation
...
X + Ψ(Ẋ)Ẍ + Φ(X)Ẋ + cX = P (t)

in two cases:
(i) P (t) ≡ 0,
(ii) P (t) 6= 0.

In case (i), the global asymptotic stability of the solution X = 0 is studied; in
case (ii), the boundedness of all solutions is proved.

1. Introduction

For over five decades, the study of the stability and boundedness of ordinary
scalar and vector nonlinear differential equations of third order have received
tremendous attention. For a comprehensive treatment of this subject we refer the
reader to the book by Reissig et al [7], the papers by Chukwu [1], Ezeilo [2], Mehri
and Shadman [4], Tejumola [8], Tunc ([10], [9]), Tunc and Ates [11], Omeike and
Afuwape [5] and the references cited in this book and papers. Throughout the
results presented in the book of Reissig et al [7] and the papers mentioned above,
Liapunov’s second method ([3]) has been used as a basic tool to verify the results
established in these works.
The present work is concerned with the differential equation of the form

(1)
...
X + Ψ(Ẋ)Ẍ + Φ(X)Ẋ + cX = P (t)

or the equivalent system of the form

(2)
Ẋ = Y

Ẏ = Z

Ż = −Ψ(Y )Z − Φ(X)Y − cX + P (t)
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which was obtained as usual by setting Ẋ = Y, Ẍ = Z in (1), where t ∈ R+ = (0,∞)
and X : R+ → Rn, c is a positive constant, Ψ and Φ are n×n continuous symmetric
positive definite matrix functions for the argument displayed explicitly and the
dots indicate differentiation with respect to t and P : R+ → Rn. It is also assumed
that P is continuous for the argument displayed explicitly. Moreover, the existence
and the uniqueness of the solution of Eq. (1) will be assumed (see Picard-Lindelof
theorem in Rao [6]). Eq. (1) represents a system of real third-order differential
equations of the form

...
xi +

n∑
k=1

ψik(ẋ1, . . . , ẋn)ẍk +
n∑
k=1

φik(x1, . . . , xn)ẋk + cxi = pi(t) , (i = 1, . . . , n) .

We shall assume, as basic throughout what follows, that the derivative ∂ψij
∂ẋj

exist

and are continuous for (j = 1, . . . , n). The motivation for the present work comes
from the papers of Tunc [10], and Omeike and Afuwape [5], where they studied
the stability and boundedness of solutions of Eq. (1) for which Φ(X) = B (an
n × n symmetric positive definite matrix). With respect to our observations in
the literature, no work based on Eq. (1) was found. Essentially, our subject is to
establish some sufficient conditions for the stability and for the boundedness of
solutions of (1) in the cases P (t) ≡ 0, P (t) 6= 0, respectively. Unlike in [5] and [10],
Ψ(Y ) and Φ(X) do not necessarily commute. In addition, Φ(X) is not necessarily
differentiable.

2. Main results

Before stating our main results, we give some well known algebraic results which
will be required in the proofs.

Lemma 2.1. Let A be a real symmetric positive definite n× n matrix. Then for
any X ∈ Rn,

δa‖X‖2 ≤ 〈AX,X〉 ≤ ∆a‖X‖2 ,

where δa and ∆a are respectively the least and greatest eigenvalues of the matrix A.

Proof of Lemma 2.1. See [10]. �

Lemma 2.2. Subject to earlier conditions on Ψ, the following is true for all t ∈ R+

and Y , Z ∈ Rn:
d

dt

∫ 1

0
〈σΨ(σY )Y, Y 〉 dσ = 〈Ψ(Y )Y,Z〉 .

Proof of Lemma 2.2. See [10]. �

In the case P ≡ 0, the first main result of this paper is the following theorem.

Theorem 2.1. Let all the basic assumptions imposed on Ψ, Φ and c hold. Further,
suppose that there are positive constants a0 and b0 such that the following conditions
are satisfied,
a0b0 − c > 0 , b0 ≤ λi(Φ(X)) ≤ b0 + µ and λi(Ψ(Y )) ≥ a0, (i = 1, 2, . . . , n)



STABILITY AND BOUNDEDNESS OF SOLUTIONS. . . 103

for all X,Y ∈ Rn, where µ = 4cb−2
0 (a0b0 − c) > 0, and λi(Φ(X)), λi(Ψ(Y )) are

“eigenvalues of the matrix indicated” Φ(X) and Ψ(Y ), respectively.
Then the zero solution of system (2) is globally asymptotic stable.

Proof of Theorem 2.1. The proof of this theorem depends on a scalar differen-
tiable Liapunov function V = V (X,Y, Z). The idea of the Liapunov’s method is
to impose some conditions on the function V and its time derivative d

dt
V (X,Y, Z)

which both imply the stability of the zero solution of Eq. (1). We define the
Liapunov function V by

(1) 2V = 〈b0Z,Z〉+ 2〈cY, Z〉+ 〈cX + b0Y, cX + b0Y 〉+ 2
∫ 1

0
σ〈cΨ(σY )Y, Y 〉dσ .

Now, it is clear from (1) that V (0, 0, 0) = 0. �

Next, in view of the assumptions on Theorem 2.1 and the above lemmas,
respectively, it follows that

〈b0Z,Z〉 = b0‖Z‖2 ,

2〈cY, Z〉 ≥ −2c‖Y ‖‖Z‖ ,

2
∫ 1

0
σ〈cΨ(σY )Y, Y 〉 dσ ≥ a0c‖Y ‖2 .

Hence one can get from (1) that

V ≥ 1
2b0‖Z‖2 − c‖Y ‖‖Z‖+ ca0

2 ‖Y ‖
2 + 1

2‖cX + b0Y ‖2

= 1
2‖cX + b0Y ‖2 + 1

2b0(‖Z‖ − c

b0
‖Y ‖)2 + 1

2

(a0b0 − c
b0

)
‖Y ‖2 .(2)

Thus, it is evident from the terms contained in (2) that there exists a sufficiently
small positive constant D1 such that

(3) V ≥ D1(‖X‖2 + ‖Y ‖2 + ‖Z‖2) .

Now, let (X,Y, Z) = (X(t), Y (t), Z(t)) be any solution of differential system (2).
Differentiating the function V (t) = V (X(t), Y (t), Z(t)) with respect to t along
system (2) and using Lemma 2.2, we obtain

V̇ (t) = −〈c(Φ− b0I)Y, Y 〉+ 〈b0(Φ− b0I)Y, Z〉 − 〈(b0Ψ− cI)Z,Z〉

= −〈c(Φ− b0I)(Y − bo
2cZ), (Y − bo

2cZ)〉

− 〈[(b0Ψ− cI)− b2
0

4c (Φ− b0I)]Z,Z〉

≤ −〈[(b0Ψ− cI)− b2
0

4c (Φ− b0I)]Z,Z〉

≤ −[(a0b0 − c)−
b2

0
4cµ]‖Z‖2 ≤ 0 .(4)
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In addition, one can easily see that
V (X,Y, Z)→∞ as ‖X‖2 + ‖Y ‖2 + ‖Z‖2 →∞ .

The whole discussion shows that the zero solution of (1) is globally asymptotic
stable (see also Reissig et al. [[7], Theorem 1.5]).
Example 2.1. As a special case of system (2), let us take for n = 2 that

Ψ(Y ) =
(

9 + y2 1
1 9 + y2

)
, Φ(X) =

(
2 + 1

1 + x2 0
0 2

)
and c = 2 .

By easy calculation, we obtain eigenvalues of the matrices Ψ(Y ) and Φ(X) as
follows:

λ1(Ψ) = 8 + y2 , λ2(Ψ) = 10 + y2

and

λ1(Φ) = 2 + 1
1 + x2 , λ2(Φ) = 2 .

Next, it is clear that λ(Ψ) ≥ 8 = a0 and b0 = 2 ≤ λi(Φ) ≤ 30 since b0 +µ = 30 and
a0b0 − c = 14 > 0. Thus, all the conditions of Theorem 2.1 are satisfied. It should
be noted that when Ψ(Y ) and Φ(X) reduce to the linear case our conclusion is
also valid.

In the case P 6= 0, the second and last main result of this paper is the following
theorem.
Theorem 2.2. In addition to the conditions in Theorem 2.1, we suppose that there
is a positive constant K > 0 and non-negative and continuous function θ = θ(t)
such that the following conditions are satisfied
(i) ‖P (t)‖ ≤ θ(t) for all t ≥ 0, max θ(t) <∞ and θ ∈ L1(0,∞),
where L1(0,∞) is the space of integrable Lebesgue functions. Then there exists a
constant D > 0 such that any solution (X(t), Y (t), Z(t)) of system (2) determined
by

X(0) = X0 , Y (0) = Y0 , Z(0) = Z0

satisfies,

‖X(t)‖ ≤ D , ‖Y (t)‖ ≤ D , ‖Z(t)‖ ≤ D

for all t ∈ R+.
Proof of Theorem 2.2. Our main tool for the proof of Theorem 2.2 is also the
Liapunov function V defined in (1). Then under the assumptions of Theorem 2.2,
we still obtain (3), and since P (t) 6= 0, it is also clear from (2), (1) and (4) that

V̇ (t) ≤ (‖b0Z‖+ ‖cY ‖)× ‖P (t)‖

= (b0‖Z‖+ c‖Y ‖)× ‖P (t)‖

≤ D2(‖Z‖+ ‖Y ‖)× θ(t) ,(5)
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where D2 = max{b0, c}.
Now, in view of the inequalities

‖Y ‖ ≤ 1 + ‖Y ‖2 , ‖Z‖ ≤ 1 + ‖Z‖2

and (3), we have from (5) that

V̇ (t) ≤ D2(2 + ‖Z‖2 + ‖Y ‖2)× θ(t)

≤ D3θ(t) +D4θ(t)V (t)(6)

where D3 = 2D2 and D4 = D−1
1 D2.

Integrating both sides of (6) from 0 to t (t ≥ 0), one can easily obtain

V (t)− V (0) ≤ D3

∫ t
0
θ(s) ds+D4

∫ t
0
V (s)θ(s) ds .

Taking D5 = V (0) +D3K, it follows that

V (t) ≤ D5 +D4

∫ t
0
V (s)θ(s) ds .

By using Gronwall-Bellman inequality (see Rao [6]), we conclude that

V (t) ≤ D5 exp
(
D4

∫ t
0
θ(s) ds

)
.

This result completes the proof of Theorem 2.2. �

Example 2.2. If in addition to Example 2.1, let

P (t) =


1

1 + t2

1
1 + t2

 .

Hence by elementary calculation, one can easily find
‖P (t)‖ = 2

1 + t2
≤ 3

1 + t2
= θ(t), max θ(t) = 3 <∞,

and
∫ ∞

0

3
1 + t2

dt = 3π
2 , that is θ ∈ L1(0,∞).

Thus, all the conditions of Theorem 2.2 are satisfied.
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