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A NEW ERROR ESTIMATE FOR A FULLY FINITE ELEMENT

DISCRETIZATION SCHEME FOR PARABOLIC EQUATIONS

USING CRANK-NICOLSON METHOD

Abdallah Bradji, Annaba, Jürgen Fuhrmann, Berlin

(Received June 30, 2013)

Abstract. Finite element methods with piecewise polynomial spaces in space for solving
the nonstationary heat equation, as a model for parabolic equations are considered. The
discretization in time is performed using the Crank-Nicolson method.
A new a priori estimate is proved. Thanks to this new a priori estimate, a new error

estimate in the discrete norm of W1,∞(L2) is proved. An L
∞(H1)-error estimate is also

shown.

These error estimates are useful since they allow us to get second order time accurate
approximations for not only the exact solution of the heat equation but also for its first
derivatives (both spatial and temporal).

Even the proof presented in this note is in some sense standard but the statedW1,∞(L2)-
error estimate seems not to be present in the existing literature of the Crank-Nicolson finite
element schemes for parabolic equations.

Keywords: parabolic equation; finite element method; Crank-Nicolson method; new error
estimate

MSC 2010 : 65N30, 65N15, 65M15, 35K15, 35K05

1. Preliminaries and a brief description of the main results

Let us consider the following the nonstationary heat equation, as a model for

parabolic equations:

(1.1) ut(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ),

where Ω is an open bounded domain in Rd (d = 1, 2 or 3) with a polyhedral boundary

∂Ω, T > 0, and f is a given function.
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An initial condition is given by:

(1.2) u(x, 0) = u0(x), x ∈ Ω,

and, for the sake of simplicity, we consider homogeneous Dirichlet boundary condi-

tions, that is

(1.3) u(x, t) = u(1, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

Heat equation is typically used in different applications, such as fluid mechanics, heat

and mass transfer, etc., and it is the prototypical parabolic partial differential equa-

tion which in turn arises, for instance, in many different models like Navier-Stokes

and reaction-diffusion systems. It describes the distribution of heat (or variation in

temperature) in a given region over time. Therefore parabolic equations are impor-

tant from the mathematical viewpoint as well as in practice.

Let {Th : h > 0} be a family of shape regular and quasi-uniform triangulations of
the domain Ω. The elements of Th will be denoted by K. For each triangulation Th,
the subscript h refers to the level of refinement of the triangulation, which is defined

by h = max
K∈Th

hK , where hK denotes the diameter of the element K.

Let Vh be the standard finite element space of continuous, piecewise polynomial

functions of degree k > 1, i.e.,

Vh = {v ∈ C(Ω): v|K ∈ Pk, ∀K ∈ Th},

and we denote by

(1.4) Vh
0 = Vh ∩H1

0(Ω).

The time discretization is performed using a constant time step τ = T/(M + 1),

where M ∈ N \ {0}, and we shall denote tn = nτ , for n ∈ [[0,M + 1]].

Throughout this paper, the notations Ci, where i ∈ N \ {0}, stand for positive
constants independent of the parameters of the discretization.

The discretization scheme we want to consider is implicit and it is based on the use

of the Crank-Nicolson method as discretization in time and on the use of the finite

element mesh described above. We shall denote by vn−1/2 the following arithmetic

mean value, when (vn)M+1
n=0 is a discrete function, between the two time levels n− 1

and n:

(1.5) vn−1/2 =
vn + vn−1

2
,
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and vn−1/2 denotes the arithmetic mean value (1.5) by replacing vn with v(tn) and

vn−1 by v(tn−1), when v ∈ C([0, T ]), i.e.,

(1.6) vn−1/2 =
v(tn) + v(tn−1)

2
, ∀ v ∈ C([0, T ]).

To define the finite element approximation for our problem (1.1)–(1.3), we need to

use the following discrete first time derivative

(1.7) ∂1vn =
vn − vn−1

τ
, ∀n ∈ [[1,M + 1]].

The discretization of the initial condition (1.2) is performed as: Find u0h ∈ Vh
0 (see

(1.4)) such that

(1.8) a(u0h, v) = −(∆u0, v)L2(Ω) = a(u0, v), ∀ v ∈ Vh
0 .

The discretization of the heat equation (1.1) is: for any n ∈ [[0,M ]], find unh ∈ Vh
0

such that, for all v ∈ Vh
0

(1.9) (∂1un+1
h , v)L2(Ω) + a(u

n+1/2
h , v) =

(

1

τ

∫ tn+1

tn

f(t) dt, v

)

L2(Ω)

,

where a(·, ·) denotes the bilinear form defined for all (u, v) ∈ H1(Ω)×H1(Ω) by

a(u, v) =

∫

Ω

∇u(x) · ∇v(x) dx.

To compute the solution of the finite element scheme (1.8)–(1.9) (see either [3],

page 385, or [4], pages 172–173), we first compute the initial solution u0h using (1.8).

Equation (1.8) can be written in to the following matrix form

(1.10) AU0 = η0,

where A is a symmetric and positive definite matrix, η0 is known, and Un =

(Un
1 , . . . , U

n
N)T with unh =

N
∑

i=1

Un
i ϕi where ϕi are the basis functions of Vh.

Equation (1.9) leads to the following linear systems, for each time step n ∈ [[1,

M + 1]]

(1.11)
(

M +
τ

2
A
)

Un = ηn,

where M + τ
2A is a symmetric, positive definite matrix and η

n is known from the

previous steps.
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The following discrete second time derivative will help us during the convergence

analysis of the finite element scheme (1.8)–(1.9):

(1.12) ∂2vn+1 =
vn+1 − 2vn + vn−1

τ2
=

1

τ
(∂1vn+1 − ∂1vn), ∀n ∈ [[1,M ]].

The following rules will be useful for our analysis, for any smooth function ψ defined

on [0, T ]

(1.13) ∂1ψ(tn+1) =
1

τ

∫ tn+1

tn

ψt(t) dt and ∂2ψ(tn+1) =
1

τ2

∫ tn+1

tn

∫ t

t−τ

ψtt(s) ds dt.

The existence and uniqueness of a solution to the finite element scheme (1.8)–(1.9)

stems from the fact the matrices A and M + 1
2τA are positive definite (see also [3],

pages 385–386, and [4], pages 171–173).

The following error estimates are known:

1. L∞(L2)-error estimate. Under the regularity assumption u0 ∈ Hk+1(Ω),

ut ∈ L1(0, T ;Hk+1(Ω)), and uttt ∈ L1(0, T ; L2(Ω)), the following L∞(L2)-error esti-

mate holds (see [2], where the piecewise linear finite element space is used, [3], Corol-

lary 11.3.1, page 394, and [4], Theorem 7.5.2, pages 177–178), for all n ∈ [[0,M +1]]:

‖unh − u(tn)‖L2(Ω)

6 C1h
k+1

(

‖u0‖Hk+1(Ω) +

∫ T

0

‖ut(t)‖Hk+1(Ω) dt

)

+
τ2

8

∫ T

0

‖uttt(t)‖L2(Ω) dt

6 C2(h
k+1 + τ2)

(

‖u0‖Hk+1(Ω) +

∫ T

0

‖ut(t)‖Hk+1(Ω) dt+

∫ T

0

‖uttt(t)‖L2(Ω) dt

)

.

2. L2(H1)-error estimate. Under the regularity assumption u ∈ C(0, T ;Hk+1(Ω))

and uttt ∈ L2(0, T ;L2(Ω)), the following L2(H1)-error estimate holds (see [1]):

( M
∑

n=0

τ‖en+1/2
h ‖2H1(Ω)

)1/2

6 C3(h
k + τ2)(‖u‖C(0,T ; Hk+1(Ω)) + ‖uttt‖L2(0,T ;L2(Ω))),

where enh = u(tn)− unh and the notation v
n+1/2 is defined in (1.5)–(1.6).

3. L∞(H1)-error estimate when the piecewise linear finite element space (k = 1)

is used. Under the assumption that f ≡ 0, u0 ∈ H4
0 (Ω), k = 1 (piecewise linear finite

element space), and a suitable choice for quadrature replacing the first term on the

left of (1.9), it is proved in [2] that the error is of order h+ τ2 in the discrete norm

of L∞(H1).

4. L∞(H1)-error estimate when biquadratic finite volume element methods are

used on rectangular spatial domain Ω. Thanks to the estimate in [5], Theorem 5.1,

116



pages 1064–1065, the error is of order h2 + τ2 in L∞(H1)-norm when biquadratic

finite volume element methods based on some optimal stress points are used in the

particular case of a rectangular spatial domain Ω.

However, we are not aware of the existence of any error estimate in the discrete

norm of W1,∞(L2). We think also that there is no explicit statement for an error in

the discrete norm of L∞(H1) for arbitrary k (recall that the L∞(H1)-error estimate

provided in [2] is stated when k = 1, i.e., using piecewise linear trial functions).

We aim in this contribution to provide a new W1,∞(L2)-error estimate. An

L∞(H1)-error estimate for arbitrary k will be also derived. We will prove, under

the assumption that the exact solution is smooth, that the error is of order hk+1+τ2

in the discrete norm of W1,∞(L2) and is of order hk + τ2 in the discrete norm of

L∞(H1). The proof of the results we want to present is based on a new a priori

estimate stated in Lemma 2.1.

It is clear that deriving error estimate of order hk+s + τ2, with s is either 0 or 1,

in the norms of W1,∞(L2) and L∞(H1) yields approximations of order hk+s + τ2

in the discrete norm L∞(L2) for the first derivatives (both temporal and spatial)

of the exact solution. Such results are important from mathematical point of view.

In addition to this, the approximation of the first derivatives of the exact solution

is useful in practice since the time derivative ut represents the rate of changes of

temperature at point over time and temperature gradient is a physical quantity that

describes in which direction and at what rate the temperature changes the most

rapidly around a particular location. The temperature gradient is a dimensional

quantity expressed in units of degrees (on a particular temperature scale) per unit

length. Temperature gradients in the atmosphere are important in the atmospheric

sciences (meteorology, climatology and related fields).

If ω(x, t) is a function of the space variable x and time t, then it is sometimes

suitable to separate these variables and consider ω as a function ω(t) = ω(·, t) which
for each t under consideration attains a value ω(t) that is a function of x and belongs

to a suitable space of functions depending on x, see [4], page 155.

We assume that f ∈ L2(0, T ;L2(Ω)) and u0 ∈ L2(Ω). Then, see for instance [4],

pages 156–158, for more details, there exists a unique weak solution for (1.1)–(1.3)

in the following sense: there exists a function u ∈ L2(0, T ;H1
0(Ω)) ∩ C(0, T ;L2(Ω))

such that:

(1) In the sense of distributions on ]0, T [

(1.14)
d

dt
〈u(t), v〉 + a(u(t), v) = 〈f(t), v〉, ∀v ∈ H1

0(Ω).

(2) and

(1.15) u(0) = u0.
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The following coercivity will be useful, for all v ∈ H1
0(Ω)

(1.16) a(v, v) =

∫

Ω

|∇v|2(x) dx = |v|21,Ω.

The Poincaré inequality (see [3], Theorem 1.3.3, page 11) states, for some positive

constant Cp

(1.17) ‖v‖L2(Ω) 6 Cp|v|1,Ω, ∀ v ∈ H1
0(Ω).

The convergence of the finite element scheme is analyzed using the spaces Cm([0, T ];

Hl(Ω)), where m and l are integers, of m-times continuously differentiable mappings

of the interval [0, T ] with values in the Sobolev space Hl(Ω), see [4], page 156. The

space Cm([0, T ];Hl(Ω)) is equipped with the norm

‖u‖Cm([0,T ] ; Hl(Ω)) = max
j∈[[0,m]]

{

sup
t∈[0,T ]

∥

∥

∥

dju

dtj
(t)

∥

∥

∥

Hl(Ω)

}

.

2. Statement of the main results

We first begin by a regularity assumption for the problem (2.1) below. For any

r ∈ L2(Ω), let ϕ(r) ∈ H1
0(Ω) be the exact solution of the following problem (the

existence and uniqueness are ensured by the Lax-Milgram lemma)

(2.1) a(ϕ(r), v) = 〈r, v〉, ∀v ∈ H1
0(Ω).

Assumption 2.1 (Regularity assumption, see [3], Remark 6.2.1, page 173).

For any r ∈ L2(Ω), we assume that the solution ϕ(r) of (2.1) belongs to H2(Ω)

and there exists a constant Creg > 0 such that ‖ϕ(r)‖H2(Ω) 6 Creg‖r‖L2(Ω), for all

r ∈ L2(Ω).

Among the main results of the present contribution is the following theorem:

Theorem 2.2 (New W1,∞(0, T ;L2(Ω))-error estimate). Under Assumption 2.1,

let u ∈ L2(0, T ;H1
0(Ω)) be the weak solution of (1.1)–(1.3) in the sense of (1.14)–

(1.15). Let {Th;h > 0} be a family of shape regular and quasi-uniform triangulations
of the domain Ω and h = max

K∈Th

hK , where hK denotes the diameter of the element K.

Let Vh
0 be the standard finite element space defined by (1.4) where k ∈ N \ {0}.

We assume that the time discretization is performed using a constant time step

τ = T/(M + 1), where M ∈ N \ {0}, and we define tn = nτ , for n ∈ [[0,M + 1]].
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Then, there exists a unique solution (unh)
M+1
n=0 ∈ (Vh

0 )
M+2 for (1.8)–(1.9). Assume

that the exact solution u is of class C3([0, T ];Hk+1(Ω)). Then, the following error

estimates hold:

⊲ Discrete W1,∞(0, T ;L2(Ω))-estimate: for all n ∈ [[1,M + 1]]

(2.2) ‖∂1(unh − u(tn))‖L2(Ω) 6 C3(h
k+1 + τ2)‖u‖C3([0,T ] ; Hk+1(Ω)),

⊲ Discrete L∞(0, T ;H1
0(Ω))-estimate: for all n ∈ [[0,M ]]

(2.3) |un+1/2
h − un+1/2|1,Ω 6 C4(h

k + τ2)‖u‖C3([0,T ] ; Hk+1(Ω)),

where ∂1 denotes the discrete temporal derivative (1.7), and the notation vn+1/2 is

defined in (1.5)–(1.6).

To prove Theorem 2.2, we need to use the following new a priori estimate.

Lemma 2.1 (A new a priori estimate). Under Assumption 2.1, let {Th;h > 0} be
a family of shape regular and quasi-uniform triangulations of the domain Ω and h =

max
K∈Th

hK , where hK denotes the diameter of the element K. Let Vh
0 be the standard

finite element space defined by (1.4). We assume that the time discretization is

performed using a constant time step τ = T/(M + 1), where M ∈ N \ {0}, and we
define tn = nτ , for n ∈ [[0,M + 1]].

Assume that there exits (ηnh )
M+1
n=0 ∈ (Vh

0 )
M+2 such that η0h = 0 and for all n ∈

[[0,M ]]

(2.4) (∂1ηn+1
h , v)L2(Ω) + a(η

n+1/2
h , v) = (γn, v)L2(Ω), ∀ v ∈ Vh

0 ,

where γn ∈ L2(Ω), for all n ∈ [[0,M ]].

Then the following estimates hold:

(2.5) ‖∂1ηnh‖L2(Ω) 6 C5(γ + γ), ∀n ∈ [[1,M + 1]],

and

(2.6) |ηn+1/2
h |1,Ω 6 C6(γ + γ), ∀n ∈ [[0,M ]],

where the notation vn+1/2 is defined in (1.6), the seminorm (it is a norm on H1
0(Ω))

|·|1,Ω is given in (1.16), and

(2.7) γ =
M

max
n=0

‖γn‖L2(Ω) and γ =
M

max
n=1

‖∂1γn‖L2(Ω).
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P r o o f. We will prove Lemma 2.1 item by item.

P r o o f of (2.5): acting the discrete operator ∂1 on (2.4) we get, for all n ∈ [[1,M ]]

(2.8) (∂2ηn+1
h , v)L2(Ω) + a(∂1η

n+1/2
h , v) = (∂1γn, v)L2(Ω).

Taking v = ∂1ηn+1
h +∂1ηnh in (2.8), using (1.12) together with (1.16), and multiplying

the result by τ we get

‖∂1ηn+1
h ‖2L2(Ω) − ‖∂1ηnh‖2L2(Ω) +

τ

2

∣

∣∂1(ηn+1
h + ηnh)

∣

∣

2

1,Ω

= τ(∂1γn, ∂1(ηn+1
h + ηnh))L2(Ω).

Thanks to the use of the Cauchy-Schwarz inequality together with (1.17), the previ-

ous inequality implies that

(2.9) ‖∂1ηn+1
h ‖2L2(Ω) − ‖∂1ηnh‖2L2(Ω) +

τ

2
|∂1(ηn+1

h + ηnh)|21,Ω
6 τCp‖∂1γn‖L2(Ω)|∂1(ηn+1

h + ηnh )|1,Ω.

Using the inequality ab 6 4a2 + b2/4, the previous inequality yields that

‖∂1ηn+1
h ‖2L2(Ω) − ‖∂1ηnh‖2L2(Ω) 6 4(Cp)

2τ(γ)2.

Summing the previous inequality over n ∈ [[1, j]], where j ∈ [[1,M ]], and using the

fact that Mτ < T we get

(2.10) ‖∂1ηj+1
h ‖2L2(Ω) 6 ‖∂1η1h‖2L2(Ω) + 4T (Cp)

2(γ)2.

Thanks to the previous inequality, any estimate on ‖∂1η1h‖2L2(Ω) will yield an estimate

on ‖∂1ηj+1
h ‖2

L2(Ω). Let us move to estimate ‖∂1η1h‖2L2(Ω). Take n = 0 in (2.4) to get

(note that η0h = 0)

(∂1η1h, v)L2(Ω) +
1

2
a(η1h, v) = (γ0, v)L2(Ω).

Taking v = ∂1η1h in the previous equality, using that fact that ∂
1η1h = η1h/k (since

η0h = 0), and using (1.16) leads to

(2.11) ‖∂1η1h‖2L2(Ω) 6 (γ0, ∂1η1h)L2(Ω).

This with the Cauchy-Schwarz inequality yields that

(2.12) ‖∂1η1h‖L2(Ω) 6 γ.
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This with (2.10) implies that, for all j ∈ [[0,M ]]

‖∂1ηj+1
h ‖2L2(Ω) 6 (γ)2 + 4T (Cp)

2(γ)2.

The last inequality with the rule
√
a+ b 6

√
a+

√
b, for all positive a and b, implies

(2.5) with C5 = max(1, 2
√
TCp).

P r o o f of (2.6): Taking v = ηn+1
h + ηnh in (2.4) and using the Cauchy-Schwarz

inequality together with (1.17), we get, for all n ∈ [[0,M ]]

|ηn+1/2
h |1,Ω 6 Cp(‖∂1ηn+1

h ‖L2(Ω) + γ).

This with (2.5) which has been proved in the previous item yields (2.6). This com-

pletes the proof of Lemma 2.1. �

Proof of Theorem 2.2

1. Existence and uniqueness of the discrete solution. The existence and

uniqueness for the scheme (1.8)–(1.9) stems from the fact that the matrices involved

in the linear systems of this scheme are either the matrix A or the matrix M + 1
2τA

(see (1.10) and (1.11)) which are positive definite.

2. Proof of estimates (2.2)–(2.3). The proof of the estimates (2.2)–(2.3) of

Theorem 2.2 is based essentially on the comparison with the following finite element

scheme: for each n ∈ [[0,M + 1]], we compute ūnh ∈ Vh
0 (see (1.4)) such that

(2.13) a(ūnh , v) = −(∆u(tn), v)L2(Ω) = a(u(tn), v), ∀ v ∈ Vh
0 .

The scheme (2.13) has a unique solution thanks to the coercivity (1.16).

The following convergence result is known (see for instance [3], Theorem 6.2.1,

pages 171–172)

(2.14) |ūnh − u(tn)|1,Ω 6 C7h
k‖u‖C([0,T ] ; Hk+1(Ω)).

Acting the discrete operator ∂j (see (1.7) and (1.12)), j ∈ {1, 2}, on the both sides
of (2.13) yields

(2.15) a(∂j ūnh, v) = −(∆∂ju(tn), v)L2(Ω), ∀ v ∈ Vh
0 .

This with the known convergence result [3], Proposition 6.2.2, page 173, and (1.13)

implies

‖∂jūnh − ∂ju(tn)‖L2(Ω) 6 C7h
k+1‖u‖Cj([0,T ] ; Hk+1(Ω)).
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This with the fact that ‖u‖Cj([0,T ];Hk+1(Ω)) 6 ‖u‖C2([0,T ];Hk+1(Ω)) (since j 6 2) implies

that

(2.16) ‖∂j ūnh − ∂ju(tn)‖L2(Ω) 6 C7h
k+1‖u‖C2([0,T ];Hk+1(Ω)).

The convergence results (2.14) and (2.16) will be used later.

We consider the auxiliary error given by

(2.17) ēnh = unh − ūnh.

Taking n = 0 in (2.13), using (1.2), and comparing the result with (1.8) we get the

following useful property

(2.18) ē0h = 0.

Writing (2.13) in the level n+ 1 and adding the result to (2.13) we get

(2.19) a(ū
n+1/2
h , v) = −(∆un+1/2, v)L2(Ω), ∀ v ∈ Vh

0 .

Subtracting (2.19) from (1.9), adding −∂1ūnh to the result, and substituting f by
ut −∆u (the subject of (1.1)), we get

(2.20) (∂1ēn+1
h , v)L2(Ω) + a(ē

n+1/2
h , v) = (Kn,1 −K

n,2, v)L2(Ω),

where

K
n,1 = ∂1(u(tn+1)− ūn+1

h ) and K
n,2 =

1

τ

∫ tn+1

tn

∆u(t) dt− ∆u(tn+1) + ∆u(tn)

2
.

Note that ēnh satisfies (2.18) and (2.20) and therefore ē
n
h satisfies the hypotheses of

Lemma 2.1, so one can apply Lemma 2.1 to obtain

(2.21) ‖∂1ēnh‖L2(Ω) 6 C5(γ + γ), ∀n ∈ [[1,M + 1]],

and

(2.22) |ēn+1/2
h |1,Ω 6 C6(γ + γ), ∀n ∈ [[0,M ]].

where

(2.23) γ =
M

max
n=0

‖Kn,1 −K
n,2‖L2(Ω) and γ =

M
max
n=1

‖∂1(Kn,1 −K
n,2)‖L2(Ω).
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The error estimates (2.16) imply that, for j ∈ {0, 1}

(2.24) ‖∂jKn,1‖L2(Ω) 6 C7h
k+1‖u‖C2([0,T ];Hk+1(Ω)).

We use the following known representation (it is easy to check using integration by

parts):

(2.25) K
n,2 =

1

τ

∫ τ

0

( (t− τ/2)2

2
− τ2

8

)

∆utt(t+ tn) dt.

We can easily check that 1
2 (t− τ/2)2 − 1

8τ
2 is non-positive for t ∈ [0, τ ] and by some

elementary calculations, we get

∫ τ

0

((t− τ/2)2

2
− τ2

8

)

dt = −τ
3

12
.

This with the first representation of (1.13) and the triangle inequality implies that,

for j ∈ {0, 1} (recall that Ω is a subset of Rd)

(2.26) ‖∂jKn,2‖L2(Ω) 6 d
τ2

12
‖u‖C3([0,T ];H2(Ω)).

Gathering now (2.21)–(2.24) and (2.26) we get

(2.27) ‖∂1ēnh‖L2(Ω) 6 C8(h
k+1 + τ2)‖u‖C3([0,T ];Hk+1(Ω))

and

(2.28) |ēn+1/2
h |1,Ω 6 C9(h

k+1 + τ2)‖u‖C3([0,T ];Hk+1(Ω)).

Noting that unh − u(tn) = unh − ūnh + ūnh − u(tn) = ēnh + ūnh − u(tn), one can deduce

from (2.14), (2.16), and (2.27)–(2.28) together with the triangle inequality the desired

estimates (2.2)–(2.3). �
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3. Conclusion

We considered a Crank-Nicolson finite element scheme for the nonstationary heat

equation. The existing literature, see for instance [1], [3], [4] and the references

therein, concerning the convergence of the error state that the convergence order is

hk+1 + τ2 or hk + τ2 in the discrete norms L∞(L2) or L2(H1), respectively, and [2]

states that for k = 1 (piecewise linear finite elements) the order is h+ τ2 in L∞(H1).

We proved in the present contribution that the error is of order hk+1 + τ2 in the

discrete norm of W1,∞(L2). It is also shown that the error is of order hk + τ2 in

the discrete norm of L∞(H1). These simple results seem not to be present in the

existing literature. The stated results can be extended to parabolic equations with

time independent variable coefficients.
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