
Mathematica Bohemica

Stepan Manko
Quantum-graph vertex couplings: some old and new approximations

Mathematica Bohemica, Vol. 139 (2014), No. 2, 259–267

Persistent URL: http://dml.cz/dmlcz/143853

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143853
http://dml.cz


139 (2014) MATHEMATICA BOHEMICA No. 2, 259–267

QUANTUM-GRAPH VERTEX COUPLINGS:

SOME OLD AND NEW APPROXIMATIONS

Stepan Manko, Děčín

(Received September 27, 2013)

Abstract. In 1986 P. Šeba in the classic paper considered one-dimensional pseudo-
Hamiltonians containing the first derivative of the Dirac delta function. Although the
paper contained some inaccuracy, it was one of the starting points in approximating one-
dimension self-adjoint couplings. In the present paper we develop the above results to the
case of quantum systems with complex geometry.
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1. Introduction

Quantum graphs have attracted a lot of attention both in the physical and math-

ematical literature since their rediscovery in the end of the last century. One of the

reasons for this is that quantum graphs represent natural models for complex sys-

tems prepared from semiconductor wires, carbon nanotubes, and photonic crystals.

Applications also arise in dynamical systems and probability theory, spectral theory

of differential operators on manifolds and in singular domains, in chemistry, for in-

stance, in modeling electron spectra of aromatic molecules. Another reason is that

such models provide a tool for studying properties of quantum dynamics in situations

when the system has a nontrivial geometrical or topological structure. Among the

systems that were successfully modeled by quantum graphs we mention, e.g., electron

propagation in multiply connected media and quantum chaos. We refer the reader

to the recent monograph [4] for a broad overview and an extensive bibliography.

The research has been supported by the European Union within the project “Support
of inter-sectoral mobility and quality enhancement of research teams at Czech Technical
University in Prague” CZ.1.07/2.3.00/30.0034.
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One of the fundamental questions in these models concerns the way in which the

wave functions are coupled at the graph vertices. If n edges meet at a vertex, in the

absence of external fields the requirement of self-adjointness or, in physical terms,

probability current conservation leads to the condition (U−I)Ψ(0)+i(U+I)Ψ′(0) = 0

coupling the vectors of boundary values of the wave functions and their derivatives,

in which U is an n × n unitary matrix. Different sets of parameters give rise to

different dynamics on the graph and the choice of the parameters should be guided

by the junctions to which the graph vertices should represent an idealized description.

There are at least two natural approaches. On the one hand one may investigate

the dynamics of a quantum particle confined to real-world mesoscopic waveguides of

small width ε and compare it with the dynamics on the idealized one-dimensional

“manifolds” obtained in the limit as ε vanishes. On the other hand we may start

from the simplest coupling, often called Kirchhoff, and to investigate how the junction

properties are influenced by a potential supported in the vicinity of the vertex, in

particular if the support shrinks to a point and the potential is properly scaled. In

this paper we will use the second approach due to which it is easy to obtain the so-

called δ-coupling using the scaling which preserves the mean value of the potential.

To obtain other couplings we need a different limiting procedure, for instance, using

shrinking potentials with a more singular scaling of the type Q(·) 7→ ε−2Q(·/ε).
The motivation for the present note was two-fold. First, we intended to review

some recent achievements in this area. To be more exact the first aim of this paper is

to discuss the asymptotic behaviour as ε→ 0 of the family of Schrödinger operators

on the star graph given by

(1.1) Aε := − d2

dx2
+
λ(ε)

ε2
Q
(x

ε

)

.

In Section 2 we present this part without proofs referring for details to our recent

papers [8], [14], [15]. We also discuss some historical aspects of the problem.

Our second goal is to study the asymptotic behaviour as ε → 0 of the rank 1

perturbation of the free Hamiltonian of the form

Bε := − d2

dx2
+
µ(ε)

ε3
〈·, Vε〉ΓVε(x).

In Section 3 we formulate the problem rigorously and state the results giving rise to

new quantum-graph vertex couplings; the proofs and discussion are also given there.
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2. Vertex couplings obtained from Aε

2.1. Metric graphs. We begin with recalling a few basic notions from the theory

of differential equations on graphs. A metric graphG = (V,E) is identified with finite

sets V = V (G) of vertices and E = E(G) of edges, the latter being isomorphic to

(finite or semi-infinite) segments of the real line. A map ψ : G → C is said to be

a function on the graph and its restriction to the edge e ∈ E(G) will be denoted by

ψe. Each edge has a natural parametrization; if G is embedded into R3 it is given by

the arc length of the curve representing the edge. A differentiation is always related

to this natural length parameter. Vertices are endpoints of the corresponding edges;

we denote by ψ′
e(a) the limit value of the derivative at the point a ∈ V (G) taken

conventionally in the outward direction, i.e., away from the vertex. The integral
∫

G
ψ dx of ψ over G is the sum of integrals over all edges, the measure being the

natural Lebesgue measure. Using this notion we can introduce the Hilbert space

L2(G) with the scalar product 〈ψ1, ψ2〉G =
∫

G
ψ1ψ2 dx, and furthermore, the Sobolev

space H2(G) on the graph with the norm ‖ψ‖H2(G) = (‖ψ‖L2(G) + ‖ψ′′‖L2(G))
1/2.

Observe that neither the function belonging to H2(G) nor its derivative need be

continuous at the graph vertices. We say that a function ψ satisfies the Kirchhoff

conditions at the vertex a ∈ V (G) if ψ is continuous at this vertex and
∑

e ψ
′
e(a) = 0

holds, where the sum is taken over all the edges incident in a; in the particular

case when there is only one such edge e the Kirchhoff conditions at the “hanging”

vertex a reduce to the usual Neumann condition, ψ′
e(a) = 0. The symbol K(G) shall

denote the set of functions on G obeying the Kirchhoff conditions at each graph

vertex.

2.2. Perturbed and limit quantum-graph models. We focus on noncompact

star-shaped graphs Γ consisting of 3 semi-infinite edges γ1, γ2, and γ3 connected at

a single vertex denoted by a. In that case E(Γ) = {γ1, γ2, γ3} and without loss of
generality we may identify each γi with the halfline [0,∞). Our consideration will

need neighborhoods of the vertex; if ai stands for an arbitrary but fixed point of γi,

we introduce the compact star graph Ω with vertices V (Ω) = {a}∪ {ai}ni=1. We will

use the symbol ai for both the vertex and its distance from a.

Given a star graph Γ, we introduce the family of Schrödinger operators Aε on

L2(Γ) with the domain D(Aε) = H2(Γ)∩K(Γ), where the real-valued potential Q is

integrable and has a compact support supposed to be the graph Ω constructed above.

The function λ(·) in the above expression is supposed to be real-valued for real ε
and holomorphic in the vicinity of the origin. In addition, it satisfies the condition:

λ(ε) = 1 + ελ + O(ε2) as ε → 0, where λ is a real number. In this section we will

describe the convergence of Aε as ε→ 0 in the norm-resolvent topology.
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To state the results, we need one more notion. We shall say that a potential

Q admits a zero-energy resonance of order m if there are m linearly independent

(resonant) solutions to the Neumann problem

(2.1) −ψ′′ +Qψ = 0 on Ω, ψ ∈ K(Ω).

If m > 0, the construction we are going to present below requires a particular

basis in the space of solutions of the problem (2.1).

Lemma 2.1. Suppose that the problem (2.1) has m (= 0, 1, 2) linearly inde-

pendent solutions, then one can choose them as real-valued functions ψ1, . . . , ψm

satisfying ψi(aj) = δij for i, j = 1, . . . ,m, where δij is the Kronecker symbol.

For notational convenience, we introduce two sets via m := {1, . . . ,m} and n :=

{1, 2, 3} \ m, respectively, adopting the convention that m is empty for m = 0.

To describe the outcome of the limiting process we need the following quantities:

θij := ψi(aj) for i ∈ m, j ∈ n and qij :=
∫

Γ
Qψiψj dx for i, j ∈ m. Using them, we

define the limit operatorA as the one acting viaA ψ := −ψ′′ on functions ψ ∈ H2(Γ)

that obey the matching conditions

(2.2) ψj(0)−
∑

i∈m

θijψi(0) = 0, j ∈ n,

ψ′
i(0) +

∑

j∈n

θijψ
′
j(0)− λ

∑

j∈m

qijψj(0) = 0, i ∈ m.

R em a r k 2.1. (a) In the generic case the potentialsQ from the described class ad-

mit no zero-energy resonance, corresponding to Dirichlet decoupled edges, ψj(0) = 0.

(b) If m = 1, then the matching conditions (2.2) contain 4 parameters since

qij = qji, while for m = 2 the number of parameters is 6.

(c) If λ is nonzero, the limit operator A may have a discrete spectrum in (−∞, 0).

Our first main result says that the Schrödinger operators Aε approach A as ε→ 0

in the norm-resolvent topology with a particular convergence rate:

Theorem 2.1. Aε → A holds as ε→ 0 in the norm resolvent sense, and morever,

for any fixed ζ ∈ C \ R there is a constant C such that

‖(Aε − ζ)−1 − (A − ζ)−1‖B(L2(Γ)) 6 C
√
ε, ε ∈ (0, 1].

The proof of the theorem is given in [8] for an arbitrary finite number of edges.

A particular situation when λ is zero was treated in [15] for the star graphs with
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3 edges. In the case λ = 0 the conditions (2.2) do not couple function values and

derivatives, and as a result, the matching conditions of the limit operator are scale-

invariant. This means, in particular, that A has no eigenvalues and σ(H) = [0,∞).

Another manifestation of the scale-invariant character is that the scattering matrix,

which we discussed in [14], is independent of energy. Observe that if the zero-

energy resonance is of order 1, then the scale-invariant matching conditions with

θ12 = θ13 = 1 lead to the δ-coupling with the parameter α = 0, i.e., to the Kirchhoff

coupling. For m = 2, the scale-invariant matching conditions are a generalization

of the standard δ′s-coupling with the parameter β = 0. In both the situations the

model contains 2 parameters.

2.3. A bit of history. Šeba was seemingly the first to investigate the limit of

Aε for vertices connecting two edges, which is equivalent to generalized point in-

teraction on the line [2], with the conclusion that the limit is trivial describing

disconnected edges [16]. Recalling that the Schrödinger operators are quantum me-

chanical Hamiltonians for a particle on the line, one would have to conclude that, in

dimension 1, the barrier ε−2Q(·/ε) is asymptotically opaque, i.e., that the particle
cannot tunnel through it in the limit ε → 0. Note that the author considered λ(·)
being constant. Later it was pointed out, however, that such a claim holds only

generically and a nontrivial limit may exist when the potential Q has a zero-energy

resonance—cf. [7] and subsequent papers of its authors. In [7] the numerical analysis

of exactly solvable models of (1.1) with piece-wise constant Q of compact support

was performed. Namely, the authors demonstrated that for resonant Q, the limiting

value of the transmission coefficient Tε(k) of the operator Aε is different from zero;

in certain cases, the limit operator was defined via the matching conditions in its

domain

(2.3) ψ(+0) = θψ(−0), θψ′(+0) = ψ′(−0).

The coupling conditions of the form (2.3) also appear in [13] in a realization of

the pseudo-Hamiltonian −d2/dx2 + αδ′(x) by means of the distribution theory over

discontinuous test functions. In the paper [11], eigenvalue and eigenfunction asymp-

totics as ε → 0 were studied for the full-line Schrödinger operators given by the

differential expression −d2/dx2 + ε−2Q(x/ε) + q(x), where Q is regular and of com-

pact support and q is unbounded at infinity. The eigenfunctions were shown to

satisfy in the limit the Dirichlet condition ψ(0) = 0 in the non-resonant case and

the interface condition (2.3) in a resonant case, thus again exhibiting the zero-energy

dichotomy (see also [10] for the convergence of the corresponding Hamiltonians).

One has to stress, however, that the role of zero-energy resonances in the limit

was in fact known before; one can find it in the analysis of the behaviour of Aε on
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the line and its many-dimensional analogues, which has been discussed in literature

in connection with the one-dimensional low-energy scattering [5] (see also [1], [6],

[12] for discussion of zero-energy resonances and further references). It is also worth

mentioning here that the low-energy scattering theory for Schrödinger operators

in dimensions one and two is more complicated than in dimension three, which

is connected with, respectively, the square root and logarithmic singularities the

Green function of the free Hamiltonian then possesses. The above result was further

generalized, in particular, to combinations of potentials with different scaling [9],

which can be regarded as a realization of Aε with nonconstant coupling function λ(·).

3. Vertex couplings obtained from Bε

In this section we consider the family of Schrödinger operators

Bε := − d2

dx2
+
µ(ε)

ε3
〈·, Vε〉ΓVε(x), D(Bε) = H2(Γ) ∩K(Γ)

with Vε(x) := V (x/ε), where the real-valued potential V belongs to the Faddeev-

Marchenko class and has zero mean, i.e.,
∫

Γ
V = 0. The function µ(·) in the above

expression is real-valued for real ε and holomorphic in the vicinity of the origin,

and satisfies the condition µ(ε) = µ + εµ1 + O(ε2) as ε → 0, where µ and µ1 are

real numbers. We will investigate convergence of Bε as ε → 0 and find out which

coupling conditions appear in the domain of the corresponding limit operator.

To describe the main result we introduce the quantities ϑi :=
∫∞

0 xiV (xi) dxi for

i = 1, 2, 3 and A :=
3
∑

i=1

∫∞

0

∫∞

0
(|xi − yi|/2 − xi)V (xi)V (yi) dxi dyi. We thus define

the limit operatorB as the one acting as the negative second derivative on each edge

γi on functions ψ ∈ H2(Γ) that obey the matching conditions

(3.1)
ψ1(0)− ψ2(0)

ϑ1 − ϑ2
=
ψ1(0)− ψ3(0)

ϑ1 − ϑ3
= β

3
∑

i=1

ϑiψ
′
i(0),

3
∑

i=1

ψ′
i(0) = 0,

where β = (µ1A
2)−1 if µ = 1/A, otherwise β is zero, i.e., the limit operator coincides

with the Hamiltonian of the free particle H . We start with the description of the

Green function for the limit operator and then we will compare it with the one ofBε.

Lemma 3.1. The resolvent of B is an integral operator with the kernel

(3.2) Ξk(xi, yj) = Gk(xi, yj) + Λij(k
2)eik(xi+yj), i, j = 1, 2, 3,
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with k2 ∈ ̺(B) and ℑk > 0. Here

(3.3) Gk(xi, yj) =
i

2k

[

δije
ik|xi−yj | +

(2

3
− δij

)

eik(xi+yj)
]

is the integral kernel of the resolvent of the free Hamiltonian H , and

Λ(k2) =
iβ

3(3i + 2βkd)





4n1 + n2 + n3 n3 − 2(n1 + n2) n2 − 2(n1 + n3)

n3 − 2(n1 + n2) n1 + 4n2 + n3 n1 − 2(n2 + n3)

n2 − 2(n1 + n3) n1 − 2(n2 + n3) n1 + n2 + 4n3





with 2d :=
∑

16i<j63

(ϑi−ϑj)
2, n1 := (ϑ1 −ϑ2)(ϑ1 −ϑ3), n2 := (ϑ2−ϑ1)(ϑ2 −ϑ3) and

n3 := (ϑ1 − ϑ3)(ϑ2 − ϑ3).

P r o o f. By using Krein’s formula the sought Green’s function is given via (3.2).

To find the matrix Λ, we substitute (3.2) into the matching conditions (3.1). �

Theorem 3.1. As ε → 0, the family of Hamiltonians Bε converges to B in the

norm-resolvent sense.

P r o o f. To compare the resolvents of Bε and B, fix k := iκ belonging to the

resolvent sets of both operators; this can be achieved e.g. with κ > 0 large enough.

We start with the following observation. The resolvent (Bε + κ
2)−1 is an integral

operator in L2(Γ) which has the kernel of the following form (see [3]):

(Bε + κ
2)−1(xi, yj) = Giκ (xi, yj)− ζε((H + κ

2)−1Vε)(xi)((H + κ
2)−1Vε)(yj),

with Giκ of (3.3) and with the constant ζε := (ε3/µ(ε) + 〈(H + κ
2)−1Vε, Vε〉Γ)−1.

Consider first the asymptotic behavior of ζε as ε vanishes. Using the Taylor

expansion of e−εκ (xi+yi), together with the fact that V has compact support and

zero mean, one easily derives the asymptotic formula

〈(H + κ
2)−1Vε, Vε〉Γ = −Aε3 + κBε4 +O(ε5),

where B = − 2
3 (ϑ

2
1 + ϑ22 + ϑ23 − ϑ1ϑ2 − ϑ1ϑ3 − ϑ2ϑ3). We thus conclude that

ζε =
−β

ε4(1 − κβB)
+O

( 1

ε3

)

, ε→ 0.

Similar arguments give the following asymptotics of the function (H + κ
2)−1Vε:

((H + κ
2)−1Vε)(xi) = −ε2 e−κxi

[ 3
∑

j=1

(1

3
− δij

)

ϑj +O(ε)

]

, ε→ 0.
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Combining the above formulas results in

(Bε + κ
2)−1(xi, yj) = Giκ (xi, yj) + e−κ (xi+yj)(Λij(−κ

2) +O(ε)), ε→ 0.

In view of the above relation, the kernel (Bε +κ
2)−1(xi, yj) converges to the kernel

Ξiκ (xi, yj) in L2(Γ), and so the corresponding operators converge in the Hilbert-

Schmidt norm. Thus {Bε}ε>0 approximates B in the norm-resolvent topology. �

In [16] the author studied the family Bε in dimension one; he proved that in the

strong resolvent limit one gets the well-known δ′-coupling: ψ′(−0) = ψ′(+0), ψ(+0)−
ψ(−0) = βψ′(0). It was the first attempt to realize the physical meaning of this cou-

pling and its connection with the pseudo-Hamiltonian −d2/dx2+β〈·, δ′(x)〉δ′(x). In
the case of graphs two generalizations of this coupling are known: ψ′

1(0) = ψ′
2(0) =

ψ′
3(0),

3
∑

i=1

ψi(0) = βψ′(0) and
3
∑

i=1

ψ′
i(0) = 0, ψi(0) − ψj(0) = (β/3)(ψ′

i(0) − ψ′
j(0))

for i, j = 1, 2, 3. Using Šeba’s approach, we introduce a new (physically motivated)

definition of the δ′-coupling on the graph given by (3.1). Interestingly enough, al-

though Šeba proved the strong resolvent convergence, we give the proof of the norm

resolvent one, which is more suitable from the viewpoint of the quantum-mechanical

approximations.
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