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Abstract. We consider an elliptic pseudodifferential equation in a multi-dimensional cone,
and using the wave factorization concept for an elliptic symbol we describe a general solution
of such equation in Sobolev-Slobodetskii spaces. This general solution depends on some
arbitrary functions, their quantity being determined by an index of the wave factorization.
For identifying these arbitrary functions one needs some additional conditions, for example,
boundary conditions. Simple boundary value problems, related to Dirichlet and Neumann
boundary conditions, are considered. A certain integral representation for this case is given.
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1. Introduction

The key point in the theory of pseudodifferential equations and boundary value

problems is studying invertibility of the model operator in a canonical domain [1].

Such model operator can be treated as a convolution operator in a well known sense.

The author has used the idea to consider a cone as a canonical domain serving the

theory of pseudodifferential equations on manifolds with non-smooth boundary [3].

Existence of such special wave factorization for symbols of elliptic pseudodifferential

equations has permitted to obtain full solvability picture for model pseudodifferential

equations in the two-dimensional case [4]. The author hopes that the consideration

in more detail will allow to transfer the main results to spaces of arbitrary dimension.

A pseudodifferential operator A denoted by A(ξ), ξ ∈ R
m, is defined by the formula

(1.1) (Au)(x) =

∫

Rm

A(ξ)ũ(ξ)eixξ dξ,

where ũ denotes the Fourier transform.
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This is a model operator. Generally speaking one considers pseudodifferential

operators depending on the space variable x. Following the tradition we call the

variable x the space variable, and ξ the co-variable or impulse variable. The operator

denoted by A(x, ξ) is defined as in (1.1) with help of the formula

u(x) 7−→

∫

Rm

A(x, ξ)ũ(ξ)eixξ dξ

by “freezing” the space variable x.

Here we will consider the class of symbols independent of the space variable x and

satisfying the following condition: ∃ c1, c2,

(1.2) c1 6 |A(ξ)(1 + |ξ|)−α| 6 c2, ∀ ξ ∈ R
m.

The number α ∈ R we call the order of the pseudodifferential operator A.

We will denote by Pα the symbol class satisfying the condition (1.2).

Let us define the Sobolev-Slobodetskii functional space Hs(Rm) as the Hilbert

space of distributions [1] with the norm

‖u‖2s =

∫

Rm

|ũ(ξ)|2(1 + |ξ|)2s dξ.

It is well-known that an operator from Pα is a linear bounded operator acting from

Hs(Rm) into Hs−α(Rm), see [1]. Everywhere below we use H̃s(M) to denote the

Fourier image of the space Hs(M).

Let us go to studying solvability of pseudodifferential equations

(1.3) (Au+)(x) = f(x), x ∈ Ca
+,

in the space Hs(Ca
+), where C

a
+ is the m-dimensional cone C

a
+ = {x ∈ R

m : x =

(x1, . . . , xm−1, xm), xm > a|x′|, a > 0}, x′ = (x1, . . . , xm−1). (We write u+ to show

the solution is defined in Ca
+ only.)

By definition, the space Hs(Ca
+) consists of distributions from Hs(Rm), whose

support belongs to Ca
+. The norm in the space H

s(Ca
+) is induced by the norm from

Hs(Rm). The right-hand side f is chosen from the space Hs−α
0 (Ca

+); by definition

the space Hs
0(C

a
+) is the space of distributions on Ca

+ admitting a continuation to

Hs(Rm). The norm in the space Hs
0(C

a
+) is defined by

‖f‖+s = inf ‖lf‖s,

where the infimum is taken over all continuations lf on the whole Rm.
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The symbol
∗

Ca
+ denotes the conjugate cone for C

a
+:

∗

Ca
+ = {x ∈ R

m : x = (x′, xm), axm > |x′|},

Ca
− ≡ −Ca

+; T (C
a
+) denotes the radial tube domain over the cone C

a
+, i.e., the domain

in the complex space Cm of type Rm + iCa
+.

Further, let us define a special multi-dimensional singular integral by the formula

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′, ym) dy′ dym
(|x′ − y′|2 − a2(xm − ym + iτ)2)m/2

.

To describe the solvability picture for the equation (1.3) we will introduce the

following

Definition. By wave factorization for A(ξ), satisfying the condition (1.2), we

mean its representation in the form

A(ξ) = A6=(ξ)A=(ξ)

where the factors A6=(ξ), A=(ξ) satisfy the following conditions:

1) A6=(ξ), A=(ξ) are defined for all admissible values ξ ∈ R
m, without, may be,

the points {ξ ∈ R
m : |ξ′|2 = a2ξ2m};

2) A6=(ξ), A=(ξ) admit analytical continuations into the radial tube domains

T (
∗

Ca
+), T (

∗

Ca
−), respectively, with estimates

|A±1
6= (ξ + iτ)| 6 c1(1 + |ξ|+ |τ |)±æ,

|A±1
= (ξ − iτ)| 6 c2(1 + |ξ|+ |τ |)±(α−æ), ∀ τ ∈

∗

Ca
+.

The number æ ∈ R is called the index of wave factorization.

Everywhere below we will suppose that the wave factorization mentioned exists.

2. Solving procedure

Now we will consider the equation (1.3) for the case æ−s = n+δ, n ∈ N, |δ| < 1/2,

only. A general solution can be constructed as follows. After wave factorization for

the symbol with preliminary Fourier transform we write

A6=(ξ)ũ+(ξ) +A−1
= (ξ)ũ−(ξ) = A−1

= (ξ)l̃f(ξ),

where u−(x) = lf(x)− u+(x), lf is an arbitrary continuation of f to the whole R
m.
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One can see that A−1
= (ξ)l̃f(ξ) belongs to the space H̃s−æ(Rm), and if we choose

the polynomial Q(ξ) satisfying the condition

|Q(ξ)| ∼ (1 + |ξ|)n,

then Q−1(ξ)A−1
= (ξ)l̃f(ξ) will belong to the space H̃−δ(Rm).

Further, according to the theory of the multi-dimensional Riemann problem [2],

we can decompose the last function into two summands (jump problem):

Q−1A−1
= l̃f = f+ + f−,

where f+ ∈ H̃(Ca
+), f− ∈ H̃(Rm \Ca

+).

So, we have

Q−1A6=ũ+ +Q−1A−1
= ũ− = f+ + f−,

or

Q−1A6=ũ+ − f+ = f− −Q−1A−1
= ũ−.

In other words,

A6=ũ+ −Qf+ = Qf− −A−1
= ũ−.

The left-hand side of the equality belongs to the space H̃−n−δ(Ca
+), and the right-

hand side belongs to H̃−n−δ(Rm \ Ca
+), hence

(2.1) F−1(A6=ũ+ −Qf+) = F−1(Qf− −A−1
= ũ−),

where the left-hand side belongs to H−n−δ(Ca
+), and the right-hand side belongs

to H−n−δ(Rm \ Ca
+), therefore we conclude immediately that (2.1) is a distribution

supported on ∂Ca
+.

The main tool now is to define the form of the distribution.

Let us denote by Ta the transformation R
m −→ R

m of the type






t1 = x1,

...

tm−1 = xm−1,

tm = xm − a|x′|

(obviously, it one-to-one transforms ∂Ca
+ into the hyperplane xm = 0).

Then the function

TaF
−1(A6=ũ+ −Qf+)
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will be supported on the hyperplane tm = 0 and belong to H−n−δ(Rm). Such

distribution is the linear span of the Dirac mass-function and its derivatives [2] and

looks as
n−1∑

k=0

ck(t
′)δ(k)(tm).

It is left to find out, what is the Fourier image of the operator Ta. Explicit

calculations give simple answer:

FTau = Vaũ,

where Va is a special operator (roughly speaking it is a pseudodifferential operator

denoted by e−ia|ξ′|ξm), and further one can construct the general solution for our

pseudodifferential equation(1.3).

Lemma 2.1. Va = FTaF
−1.

P r o o f. It follows from the relations

(FTau)(ξ) =

∫

Rm

e−ix·ξu(x1, . . . , xm−1, xm − a|x′|) dx

=

∫

Rm

e−iy′ξ′e−i(ym+a|y′|)ξmu(y1, . . . , ym−1, ym) dy

=

∫

Rm−1

e−ia|y′|ξme−iy′ξ′ û(y1, . . . , ym−1, ξm) dy′,

where û denotes the Fourier transform with respect to the last variable, and the

Jacobian of Ta is equal to 1 everywhere except the origin and bounded.

According to the properties of the Fourier transform the product of two functions

becomes their convolution. Roughly speaking the operator Va is a convolution for

m− 1 variables, and a multiplier for the last variable. This proves the theorem. �

Lemma 2.2. T−1
a = T−a, V

−1
a = V−a.

P r o o f. It follows immediately from the definition of Ta and the previous lemma.

�

Notice that distributions supported on conical surface and their Fourier transforms

were considered in [2], but the author did not find the multi-dimensional analogue

of the theorem on a distribution supported at a single point in all issues of his

book.
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3. Construction

The following result is valid.

Theorem 3.1. The Fourier image of the general solution of the equation (1.3) is

given by the formula

ũ(ξ) = A−1
6= (ξ)Q(ξ)GmQ−1(ξ)A−1

= (ξ)l̃f(ξ)

+A−1
6= (ξ)V−aF

( n∑

k=1

ck(x
′)δ(k−1)(xm)

)
,

where ck(x
′) ∈ Hsk(Rm−1) are arbitrary functions, sk = s − æ + k − 1/2, k =

1, 2, . . . , n, lf is an arbitrary continuation of f on Hs−α(Rm).

P r o o f. Let us go back to equality (2.1). If we now apply the operator Ta to

both the left and right hand sides then these will be distributions supported on the

hyper-plane xm = 0. The form of such a distribution is well-known, see [1], and the

operator Va does not change the order of the H
s-space. Thus,

TaF
−1(A6=ũ+ −Qf+) =

n∑

k=1

ck(x
′)δ(k−1)(xm),

and after Fourier transform

FTaF
−1(A6=ũ+ −Qf+) = F

( n∑

k=1

ck(x
′)δ(k−1)(xm)

)
.

Further, taking into account Lemmas 2.1 and 2.2 we complete the proof. �

Starting from this representation one can suggest different statements of boundary

value problems for the equation (1.3).

4. Boundary conditions

Let us consider a very simple case, when f ≡ 0, a = 1, n = 1. Then the formula

above takes the form

ũ(ξ) = A−1
6= (ξ)V−1c̃0(ξ

′).

We consider separately the following construction. According to the Fourier trans-

form our solution is

(4.1) u(x) = F−1{A−1
6= (ξ)V−1c̃0(ξ

′)}.
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Let us suppose we put the Dirichlet boundary condition on ∂C1
+, i.e.,

(Pu)(y) = g(y),

where g is a given function on ∂C1
+, P is the restriction operator on the boundary,

so we know the solution on the boundary ∂C1
+.

Thus,

Tu(x) = TF−1{A−1
6= (ξ)V−1c̃0(ξ

′)} = V1{A
−1
6= (ξ)V−1c̃0(ξ

′)},

and we know that (P ′Tu)(x′) ≡ v(x′), where P ′ is the restriction operator on the

hyperplane xm = 0.

The relation between the operators P ′ and F is well-known [1]:

(FP ′u)(ξ′) =

∫ ∞

−∞

ũ(ξ′, ξm) dξm.

Returning to the formula (4.1) we obtain

(4.2) ṽ(ξ′) =

∫ ∞

−∞

{V1{A
−1
6= (ξ)V−1c̃0(ξ

′)}}(ξ′, ξm) dξm,

where ṽ(ξ′) is a given function. Hence, the equation (4.2) is an integral equation for

determining c0(x
′).

Let us note that for the two-dimensional case the author earlier obtained certain

integral equations for determining the unknown functions, and study these equations

by Mellin transform reducing them to a system of linear difference equations [5].

The Neumann boundary condition leads to an analogous integral equation.

Studying these integral equations will be the topic of forthcoming papers of the

author.

A c k n ow l e d g em e n t. Many thanks to referee for his/her helpful corrections

and suggestions.
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