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ON THE CHANGE OF ENERGY CAUSED BY CRACK

PROPAGATION IN 3-DIMENSIONAL ANISOTROPIC SOLIDS
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Abstract. Crack propagation in anisotropic materials is a persistent problem. A general
concept to predict crack growth is the energy principle: A crack can only grow, if energy
is released. We study the change of potential energy caused by a propagating crack in
a fully three-dimensional solid consisting of an anisotropic material. Based on methods of
asymptotic analysis (method of matched asymptotic expansions) we give a formula for the
decrease in potential energy if a smooth inner crack grows along a small crack extension.
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1. Introduction

Still today, crack propagation in structural components is a problem in many ar-

eas of modern engineering. While there are many ideas how to predict crack growth

for plane problems, the situation is much more complicated in three dimensions and

especially in anisotropic materials. A very general approach is the energy principle.

Formulated by Griffith in 1921, a crack can only advance, if energy can be released

[12]. Whereas this fracture criterion is easy to understand, the precise mathematical

formulation and also the practical application in numerical simulations is still a chal-

lenge. Recent developments [1] give asymptotic formulas for the change of potential

energy caused by crack propagation for plane problems and for plane cracks in three

dimensional situations [2]. In this work we generalize these ideas to smooth crack

surfaces of arbitrary shape completely contained in three-dimensional solids.

This work is based on investigations of the collaborative research center SFB Transre-
gio 30, supported by the DFG.
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Problems of this kind were considered by many authors since the early works of

Irwin, Sih and co-workers, see e.g. [15], [27], [26], [13], [10]. Three-dimensional crack

problems were intensively discussed by Leblond, Lazarus and co-workers [20], [19],

see also [11] and the literature cited there for more details. We also want to refer to

[3] for a deeper discussion about the energy principle.

We consider an anisotropic structure with an inner crack. The solid is represented

by a bounded domain G ⊂ R
3 with polygonal boundary ∂G, by n(x) we denote

the exterior unit normal vector in x ∈ ∂G. To describe the crack we fix a smooth

simply connected submanifold Ξ ⊂ R
3 with boundary Γ and to avoid technicalities

we assume that Ξ is parameterized in the form

Ξ := {(x1, x2, H(x1, x2)) : (x1, x2) ⊂ U},

where U ⊂ R
2 is a smoothly surrounded simply connected domain, andH is a smooth

function defined on U at least. For a point x ∈ Ξ we must distinguish between the

approximation of x by points where x3 > H(x1, x2) or x3 < H(x1, x2), hence we

understand Ξ as a union of two surfaces Ξ+, Ξ− with unit normal vectors

(1.1) n±(x1, x2) = ±
1√

1 + |∇H(x1, x2)|2
(∇H(x1, x2),−1)⊤

for x ∈ Ξ±. It is convenient to think of vectors in R3 always as columns, ⊤ indicates

the transposition. Since we deal with an internal crack we require Ξ = Ξ∪Γ ⊂ G, we

put Ω := G \ Ξ, hence ∂Ω = ∂G ∪ Ξ+ ∪ Ξ− ∪ Γ, while the crack front is represented

by the simple closed smooth curve Γ (see Figure 1).

Figure 1. Elastic solid Ω with an inner crack Ξ.
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We assume that the solid is under the influence of an external loading p, for

simplicity no body forces are present, the crack surfaces are traction free and we

deal with a linear elastic material behavior, which leads to the following Neumann

problem:

(1.2) −∇ · σ(u;x) = 0, x ∈ Ω,

σ(u;x) · n(x) = 0, x ∈ Ξ+ ∪ Ξ−,

σ(u;x) · n(x) = p(x), x ∈ ∂G,

where u = (u1, u2, u3)
⊤ denotes the displacement field. The dot “ ·“ indicates the

usual matrix vector multiplication. The strain tensor ε(u;x) = 1
2 (∇u + (∇u)⊤) is

related to the stress tensor σ by Hooke’s law:

(1.3) σij(u;x) =

3∑

k,l=1

aklij εkl(u;x), i, j = 1, 2, 3,

where the rank-4 tensor A = (aklij )i,j,k,l=1,2,3 contains the elastic moduli and fulfills

the usual symmetry and positivity conditions. We assume that p is smooth and

self-balanced such that a solution u ∈ H1(Ω) to problem (1.2) exists, unique up to

rigid motions only.

2. Local curvilinear coordinates

In order to describe possible advance of the crack, we introduce local curvilinear

coordinates in a tubular neighborhood of the crack front Γ. Global Cartesian co-

ordinates are fixed by x = (x1, x2, x3)
⊤. Due to our assumptions on Ξ the crack

front Γ is represented by a closed smooth regular curve which is parameterized by

the arc length s, i.e., Γ = {γ(s) : s ∈ [0, l)}. In each point x(s) ∈ Γ the tangent

vector t(s) = (d/ds)γ(s) and the normal plane perpendicular to t(s) exist and are

well-defined.

In a vicinity of the crack front Γ, the intersection of the normal plane at arc length

s with Ξ defines a curve η(S, s) in R3, which is now parameterized by the arc length

S ∈ [0, δ) for sufficiently small δ. We use the convention η(0; s) = x(s) ∈ Γ. For

S > 0 the tangent T (S; s) = (∂/∂S)η(S; s) on the curve η(·; s) is contained in the

tangential space of the surface Ξ at the point x = η(S; s) ∈ Ξ, moreover |T (S; s)| = 1.

If we set E1(S; s) = T (S; s) and

E3(S; s) := n(η1(S; s), η2(S; s)) := n−(η1(S; s), η2(S; s)),
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i.e., E3 is the unit normal vector (1.1), the so-called Darboux frame {E1(S; s),

E2(S; s), E3(S; s)} is completed by E2(S; s) = E3(S; s) × E1(S; s), see Figure 2.

The Darboux frame defines an orthonormal basis of the Euclidean space attached to

the point η(S; s) of the crack surface Ξ. Because Ξ is a smooth submanifold, for any

arc length parameter s the limits

lim
S→0

Ej(S; s) =: Ej(0; s), j = 1, 2, 3,

exist and are well-defined. Moreover, E2(0; s) is a unit tangent vector to the

crack front, assumming that the curve γ is orientated in such a way that tangent

t(s) = d
dsγ(s) = E2(0; s). Setting n(s) := −E1(0; s), b(s) : = E3(0; s), the frame

{t(s),n(s), b(s)} defines a positively oriented orthonormal basis of R3 at each point

x(s) ∈ Γ, see Figure 2. Due to the Frenet-Serret formulas (see e.g. [18]) the change

of the coordinate frame along the crack front can be calculated as:

(2.1) t′(s) = κg(s)n(s) + κn(s)b(s),

n′(s) = −κg(s)t(s) + τg(s)b(s),

b′(s) = −κn(s)t(s)− τg(s)n(s),

with the normal and geodesic curvature κn(s) := t′(s) · b(s), κg(s) := t′(s) · n(s),

and the geodesic torsion τg(s) := n′(s) · b(s). The normal curvature κn(s) =

cos(∢(t′(s), b(s))) is the curvature of the crack front projected onto the plane spanned

by t(s) and b(s), the geodesic curvature κg(s) is the curvature of the crack front pro-

jected onto the surface’s tangent plane. The geodesic torsion τg(s) is a measure for

the change of the normal on the surface along the crack front. All these quantities

are characteristic of the crack surface itself and are determined by the submanifold Ξ,

see e.g. [18], [4] for more details.

Figure 2. Point P in local coordinates near the crack front Γ.
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Now we are able to define curvilinear coordinates. Since Γ is compact, we can find

δ > 0 such that for every x in the tubular neighborhood

(2.2) Tδ(Γ) := {x ∈ R
3 : dist(x,Γ) < δ}

there exist uniquely determined parameters y1, y2, s such that

(2.3) x = x(s) + y1n(s) + y2b(s) =: Θ(y1, y2, s),

i.e., the vector Y := (y1, y2, s)
⊤ represents the curvilinear coordinates of a point

P ∈ Tδ(Γ). At each point x = Θ(Y ) ∈ Tδ(Γ) the columns {g1, g2, g3} of the matrix

g := (gij) = ∇Y Θ define the so-called covariant basis of the tangent space (≃ R
3).

From (2.1) and (2.3) it is clear that

(2.4) g1(Y ) =
∂Θ(Y )

∂y1
= n(s), g2(Y ) =

∂Θ(Y )

∂y2
= b(s),

g3(Y ) =
∂Θ(Y )

∂s
= (1− κg(s)y1 − κn(s)y2)t(s) + τg(s)(y1b(s)− y2n(s)).

We recall that the Riemannian metric tensor is G = (Gij) = (∇Y Θ)⊤ · (∇Y Θ).

In a similar manner, the rows {g1, g2, g3} of (∇Y Θ)−1 = g−1 = (gij) define the

basis of R3, the so-called contravariant basis. The Jacobian of the transformation

Θ reads |det(∇Y Θ)| =
√
det(G) = |1− κg(s)y1 − κn(s)y2|. Thus, depending on the

curvature, the transformation (2.3) is one-to-one only in a very small neighborhood

around the crack front, since
√
det(G) = 0 for y1κg(s) + y2κn(s) = 1.

The displacement field in Cartesian coordinates u : Ω → R
3 with (smooth enough)

components ui can be rewritten near the crack front in curvilinear coordinates by

the defining relation

(2.5) u(x) = ui(x)ei =: ûi(Y )gi(Y ) = g−⊤(Y ) · û(Y ) for all x = Θ(Y ) ∈ Tδ(Γ)

with sum convention and shorter notation g−⊤ := (g−1)⊤. We assume that compo-

nents of vector fields in global Cartesian coordinates u(x) = (u1(x), u2(x), u3(x))
⊤

are related to the standard unit basis of R3, {e1, e2, e3}, and identify the vector

û = (ûi) with the vector of covariant components, whereas û(Y ) := g−⊤(Y ) · û(Y ) =

u(x) is the field at point x = Θ(Y ) ∈ Tδ(Γ), see e.g. [4] for more details.

405



3. Equilibrium equations in curvilinear coordinates

Using the representation (2.5), the rules of calculus imply

∂jvi(x) = v̂k‖l(Y )gki(Y )glj(Y ), x = Θ(Y ) ∈ Tδ(Γ),

where v̂i‖j(Y ) := ∂j v̂i(Y ) − Γp
ij(Y )v̂p(Y ) is the so-called covariant derivative and

Γp
ij(Y ) := gp(Y ) ·∂igj(Y ) are the Christoffel symbols of the second kind. For deriva-

tives with respect to Y the choice of the basis (2.4) implies

(3.1) ∇Y v̂ = (∂1v̂, ∂2v̂, ∂3v̂), ∂1v̂ =
∂v̂

∂y1
, ∂2v̂ =

∂v̂

∂y2
, ∂3v̂ =

∂v̂

∂s
.

The (covariant) components of the strain tensor in curvilinear coordinates for i, j =

1, 2, 3 are defined by the relation

ε̂ij(û;Y ) =
1

2
(ûi‖j(Y ) + ûj‖i(Y )), x = Θ(Y ) ∈ Tδ(Γ).

In a similar manner, the (contravariant) components of the stress tensor are

σ̂ij(Y ) := σkl(x)g
ik(Y )gjl(Y ), i, j = 1, 2, 3, x = Θ(Y ) ∈ Tδ(Γ).

In curvilinear coordinates Hooke’s law reads:

σ̂ij(Y ) = âklij (Y )ε̂kl(û;Y )

and a short calculation shows

σ̂ij(Y ) = apqkl ε̂mn(û;Y )gmp(Y )gnq(Y )gik(Y )gjl(Y ) =: âmn
ij (Y )ε̂mn(û;Y ).

Put T̂δ(Γ) := {Y : Θ(Y ) ∈ Tδ(Γ)}, then the equations of equilibrium in curvilinear

coordinates are:

−σ̂ij‖j(Y ) = 0 in T̂δ(Γ), i = 1, 2, 3,

where σ̂ij‖j(Y ) := ∂̂j σ̂
ij(Y ) + Γi

pj σ̂
pj(Y ) + Γj

jqσ̂
iq(Y ). Also, transforming the com-

ponents of normal stresses to curvilinear coordinates, boundary conditions on the

crack faces can be formulated as follows:

σ̂ij(Y )n̂±
j (Y ) = 0 in Θ(Y ) = x ∈ Ξ±, i = 1, 2, 3,

where n̂±
j are the covariant components of the outer normal vector on Ξ

±. In curvi-

linear coordinates, we use the operator notation

(3.2) −∇‖ · σ̂(Y ) =: L (Y,∇Y )û(Y ), σ̂(Y ) · n̂(Y ) =: N (Y,∇Y )û(Y ).
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4. Asymptotic behavior near the crack front

The asymptotic behavior near the tip of a crack in a plane structure was investi-

gated in the early works from Williams [29] and Kondrat’ev [16]. These results were

generalized to more complicated geometrical singularities and crack fronts in several

works of Maz’ya, Plamenevsky and Nazarov [21], [24], [17] and also of Costabel &

Dauge and co-workers [9], [5], [6], [7], [8]. The list of authors treating this kind

of problems cannot be complete and we refer also to the works cited in the given

literature.

In order to calculate the asymptotic expansion of the displacement field at the

curved crack front we flatten out the crack and obtain a boundary value problem

with nonconstant coefficients in a wedge with a straight edge and opening angle

equal to 2π for all parameters s, see e.g. [24]. In local curvilinear coordinates y, the

intersection of the normal plane with the crack surface can be represented as the

graph (y1,h(y1, s))
⊤ of a mapping h for which we have the Taylor approximation

(4.1) y1 7→ h(y1, s) =
τg(s)

2
y21 +O(y31), y1 < 0.

The function h can be extended to small positive y1 by h(y1, s) := h(−y1, s), thus

h(·, s) ∈ C2(−δ, δ). Now we introduce a second coordinate transformation to flatten

out the crack surface Ξ near the crack front Γ, namely we put

(4.2) Z := (z1, z2, s)
⊤ = Π(Y ) := (y1, y2 − h(y1, s), s)

⊤, |y| < δ(s).

We introduce the semi-infinite crack

Υ∞ = {z ∈ R
2 : z1 6 0, z2 = 0}

in the plane, and think of Υ∞ = Υ+
∞ ∪Υ−

∞, where Υ
±
∞ denote the upper and lower

surface as usual. The transformation of the boundary value problem (1.2) restricted

to Tδ0(Γ) leads to a boundary value problem

L (Z,∇Z)ũ(Z) = 0, z ∈ R
2 \Υ∞,

N (Z,∇Z)ũ(Z) = 0, z ∈ Υ+
∞ ∪Υ−

∞,

}
|z| < δ(s), s ∈ [0, l),

where û(Y ) =: (∇ZΠ
−1(Z))−⊤ ·ũ(Z), Y = Π−1(Z). It is a classical result that in flat

coordinates near the edge the displacement field admits an asymptotic representation

of the well-known square-root characteristic [22], [5], [7]:

(4.3) ũ(z, s) = C(s) +

3∑

j=1

Kj(s)r
1/2Φj,1(ϕ) +

2∑

j=1

Tj(s)rΦ
j,2(ϕ) +R(s)




−z2
z1

0




+O(r3/2 ln(r)), r → 0,
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where r, ϕ denote plane polar coordinates, i.e., z = r(cos(ϕ), sin(ϕ)). The coefficients

Kj(s), Tj(s) are called stress intensity factors and T -stresses, respectively. C(s) and

R(s) denote rigid motions in the normal plane, depending on the arc length s. The

main asymptotic terms

U j,k(z, s) = rk/2Φj,k(ϕ, s), j = 1, 2, 3, k = 0, 1, 2

can be found as solutions of the homogeneous model problem

(4.4) L
0(∇z , s)U

j,k(z, s) = 0, z ∈ R
2 \Υ∞,

N
0(∇z , s)U

j,k(z, s) = 0, z ∈ Υ+
∞ ∪Υ−

∞,

where the operators are obtained from expanding the coefficients near the crack front:

L (Z,∇Z) = L
0(∇z , s) + L

1(z,∇z, s, ∂s) + . . . ,

N (Z,∇Z) = N
0(∇z, s) + N

1(z,∇z, s, ∂s) + . . . .

Note that the arc length s merely appears as a parameter,

L
0(∇z, s) = L (Z,∇Z)

∣∣
z=0,∂s=0

, N
0(∇z , s) = N (Z,∇Z)

∣∣
z=0,∂s=0

,

hence L 0, N 0 are differential operators acting in the plane, depending only on ∂z1 ,

∂z2 and the elastic constants a
kl
ij with k+ l 6= 6. We refer e.g. to [24] for more details

about higher order terms and the regularity of the coefficients in (4.3).

5. Calculation of stress intensity factors

For calculating stress intensity factors along the crack front, the power-law solu-

tions with finite elastic energy near z = 0

U j,k(z, s) := rk/2Φj,k(ϕ, s), j = 1, 2, 3, k = 0, 1, 2, . . .

have to be normalized in a mechanical reliable sense, see e.g. [25], [23]. There also

exist singular power-law solutions to problem (4.4):

V i,l(z, s) := r−l/2Ψi,l(ϕ, s), i = 1, 2, 3, l = 0, 1, 2, . . . .

These solutions can be normalized by fulfilling an orthogonality condition in the

following sense: for any smooth curve ω ⊂ R
2 around the crack tip connecting the

crack faces and sufficiently smooth vector fields u and v we define the form

Q(u, v;ω) :=

∫

ω

(N 0(∇z, s)u(z, s) · v(z, s)− u(z, s) · N 0(∇z , s)v(z, s)) do,
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where do denotes the surface (line) element. The singular solutions V i,l,0 can be

normalized in such a way that

(5.1) Q(U j,k, V i,l;ω) = δi,jδk,l, i, j = 1, 2, 3, k, l = 0, 1, 2, . . .

where δi,j is the Kronecker symbol and they are called the dual power law solutions.

The integral is path-independent [24]. Following the classical approach of Maz’ya

and Plamenevsky deriving integral formulae for SIFs [21], we look for solutions ζ of

the homogeneous global problem

(5.2) −∇ · σ(ζ;x) = 0, x ∈ Ω, σ(ζ;x) · n(x) = 0, x ∈ ∂Ω.

Since the only solutions u ∈ H1(Ω) of (5.2) are rigid motions, other solutions, the

so-called weight functions, must have singularities at the crack front. For a smooth

function F defined on the crack front there exist solutions of (5.2) with asymptotic

decomposition in flat coordinates

ζ̃j,k(F ;Z) = F (s)r−k/2Ψj,k,0(ϕ, s) +O(r(2−k)/2), k = 1, 2,

see e.g. [24, §11.4, §12.8] for more details. Of main importance for our considerations

is the following integral representation for stress intensity factors, which can be

obtained by the same arguments as in [24, §12.8], [2]:

Theorem 5.1. For any smooth function F (s) on the crack front γ, the following

integral representation hold, see e.g. [2]:

∫

∂G

p(x) · ζj,1(F ;x) dO =

∫

γ

F (s)Kj(s) ds, j = 1, 2, 3,

∫

∂G

p(x) · ζj,2(F ;x) dO =

∫

γ

F (s)Tj(s) ds, j = 1, 2.

6. Energy release caused by crack propagation

Let us assume that the crack has grown along a small area with new crack front

Γ(t). We define the crack extension in local curvilinear coordinates along the crack

front Γ by

Γ(t) := {xt(s) = x(s) + th(s)(cos(ϑ(s))n(s) + sin(ϑ(s))b(s)) : x(s) ∈ Γ}.
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Here, t > 0 is a small time-like parameter and th(s) is the (small) length of the

crack extension at arc length s into direction ϑ(s). The parameter t is independent

of s, h(s) > 0 is a smooth function vanishing on parts of the crack front where no

crack propagation appears. Moreover, ϑ(s) is the kink angle in the normal plane,

for simplicity also assumed to be smooth in the arc length s (compare also with

Figure 2). We assume further that the mapping

Pt : Γ = Γ(0) → Γ(t) with Pt(x(s)) = xt(s)

is one-to-one. Put Ξt = Ξ ∪ {Γ(τ) : 0 6 τ 6 t} and Ωt = G \ Ξt. We remark that

the surface Ξt does not inherit the smoothness of Ξ and is not necessarily a smooth

submanifold of R3, because we allow kinking of the crack front along Γ(0). Moreover,

if h(s) = 0, the new crack front Γ(t) is not necessarily a smooth curve and there can

be points on Γ(t), where local coordinates can not be defined uniquely.

Let ut be the solution to (1.2) where Ω is replaced by Ωt. Our approach to

obtain the change of potential energy for small t is based on the method of matched

asymptotic expansion. We approximate the displacement field ut in some distance

to the crack front in terms of the displacement field u0 and certain functions. Close

to the crack front Γ(t) the influence on the displacements is much larger and here

we approximate ut by solutions of the so-called second limit problem.

In local curvilinear coordinates, we denote the crack shoot by

Υth(s)(ϑ(s)) = {y : 0 < y1 6 th(s) cos(ϑ(s)), y2 = y1 tan(ϑ(s))}.

Transformed to flat coordinates, the crack shoot is not necessarily a straight line

segment and we use the following notation in flat coordinates, see (4.2):

Υth(s)(s) = {z : (z, s) = Π(y, s), y ∈ Υth(s)(ϑ(s))}.

The whole plane without the kinked crack is denoted by

Ωth(s)
∞ (s) = R

2 \ (Υ∞ ∪Υth(s)(s)), s ∈ [0, l).

Introducing stretched coordinates, ξ := t−1z, and sending t → 0, we obtain the

so-called second limit problem in the plane with a semi-infinite kinked crack:

L (ξ,∇ξ, s, ∂s)w(ξ, s) = 0, ξ ∈ Ωh(s)
∞ (s),

N (ξ,∇ξ, s, ∂s)w(ξ, s) = 0, ξ ∈ ∂Ωh(s)
∞ (s), s ∈ [0, l).
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We use the method of matched asymptotic expansions, see [14], [25] and the literature

cited there. Near to the crack shoot we approximate the displacement field ut by an

inner expansion, which reads in plane coordinates

ũt(h−1z, s) = ũt(ξ, s) ∼ w(ξ, s; t) = t1/2w1(ξ, s) + tw2(ξ, s) + . . . .

In some distance to the crack front Γ, the displacement field ut will not differ much

from the displacement field u0 of the initial configuration and here we approximate

the displacement field by an outer expansion:

ut(x) ∼ v(x; t) = u0(x) + v1(x; t) + v2(x; t) + . . . .

Inner and outer expansion approximate the same solution ut only in different regions

and must coincide for small |z| and large |ξ|:

{z : c1t
1/2 < |z| < c2t

1/2}.

Moreover, both expansions must fulfill the elasticity equations. The displacement

field u0 fulfills the boundary conditions on the outer boundary and the functions

vj must be solutions of the homogeneous problem, only nontrivial if singular at the

crack front, and so combinations of the weight functions ζj,k. Decomposing the

operator into a series,

L (ξ,∇ξ, ∂s, s)w(ξ, s; t) = t−3/2
L

0(∇ξ, s)w
1(ξ, s) + t−1

L
0(∇ξ, s)w

2(ξ, s)

+ t−1/2(L 1(ξ,∇ξ, ∂s, s)w
1(ξ, s) + L

0(∇ξ, s)w
3(ξ, s; t)) + . . .

N (ξ,∇ξ, ∂s; s)w(ξ, s; t) = t−1/2
N

0(∇ξ; s)w
1(ξ, s) + N

0(∇ξ; s)w
2(ξ, s)

+ t1/2(N 1(ξ,∇ξ, ∂s; s)w
1(ξ, s) + N

0(∇ξ; s)w
3(ξ, s; t)) + . . .

the equations for the first terms of the inner expansion read

L 0(∇ξ, s)w
k(ξ; s) = 0, ξ ∈ Ω

h(s)
∞ (s),

N 0(∇ξ, s)w
k(ξ; s) = 0, ξ ∈ ∂Ω

h(s)
∞ (s),

k = 1, 2.

We construct the functions w1 and w2. The asymptotic decomposition of u0 near

the crack front rewritten in ξ-coordinates reads

(6.1) ũ0(z, s) = r1/2
( 3∑

j=1

Kj(s)Φ
j,1(ϕ)

)
+ r

( 2∑

j=1

Tj(s)Φ
j,2(ϕ)

)
+ . . .

= t1/2̺1/2
( 3∑

j=1

Kj(s)Φ
j,1(ϕ)

)
+ t̺

( 2∑

j=1

Tj(s)Φ
j,2(ϕ)

)
+ . . .
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and we look for the first two terms in the form

w1(ξ, s) =

3∑

j=1

Kj(s)w
j,1(ξ, s) =

3∑

j=1

Kj(s)(̺
1/2Φj,1(ϕ, s) + wj,1,0(ξ, s)),

w2(ξ, s) =
2∑

j=1

Tj(s)w
j,2(ξ, s) =

2∑

j=1

Tj(s)(̺Φ
j,2(ϕ, s) + wj,2,0(ξ, s)).

If h(s) > 0, the functions ̺k/2Φj,k(ϕ, s), k = 1, 2 do not fulfill homogeneous boundary

conditions on the kink Υh(s)(ϑ(s)) and the equations for w
j,k,0 read

(6.2) L
0(∇ξ, s)w

j,k,0(ξ, s) = 0, ξ ∈ Ωh(s)
∞ (s),

N
0(∇ξ, s)w

j,k,0(ξ, s) = −N
0(∇ξ, s)̺

k/2Φj,k(ϕ, s)

=: gj,k(ξ, s), ξ ∈ ∂Ωh(s)
∞ (s).

To solve these equations and get the dependency on the length h(s) of the kinked

crack, we fix the parameter s and assume h(s) > 0. Now, we transform the problem

to a domain with a crack of fixed length one: ξ := h−1ξ. The boundary value

problem (6.2) transforms to

L
0(∇ξ)W

j,k(ξ, s) = 0, ξ ∈ Ω1
∞(s),

N
0(∇ξ)W

j,k(ξ, s) = Gj,k(ξ, s), ξ ∈ ∂Ω1
∞(s),

where W j,k(ξ, s) = wj,k,0(hξ, s) and the right-hand side Gj,k(ξ, s) = hgj,k(hξ, s).

For readability, we drop the parameter s now. For investigating the solvability

conditions and asymptotic behavior of such solutions, the appropriate framework

are weighted Sobolev spaces. As shown e.g. in [24], [1], [28], there exist unique

solutions W j,k with asymptotic behavior for ̺ → ∞:

W j,k(ξ) =

3∑

i=1

(M j,k
i,1 (Υ(s);h)̺−1/2Ψi,1(ϕ) +M j,k

i,2 (s;h)̺
−1Ψi,2(ϕ)) + . . . .

Here, the coefficients M j,k
i,l (Υ(s);h) depend only on the geometry of the crack shoot

Υ(s) (and elasticity properties at arc length s). Also shown in [24], the coefficients

can be calculated to

M j,k
i,l (Υ(s);h) =

∑

±

(∫

Υ±(ϑ)

W i,l(ξ)N 0(∇ξ)W
j,k(ξ) dS

)

= −hk/2
∑

±

(∫

Υ±(ϑ)

W i,l(ξ)N 0(∇ξ)̺
k/2Φj,k(ϕ) dS

)
=: hk/2M j,k

i,l (Υ(s)).
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We remark M3,2
i,l = M i,l

3,2 = 0. The geometry of the shoot Υ(s) depends on the

curvature of the crack surface Ξ0 and the kink angle ϑ(s) at arc length s. The

elements M j,k
i,l are symmetric in the sense M

j,k
i,l = M i,l

j,k, see e.g. [1], [28].

We remark that if h(s) = 0, the domain is the whole plane with the semi-infinite

crack and the power-law solutions ̺k/2Φj,k(ϕ, s), k = 1, 2, fulfill homogeneous bound-

ary conditions on ∂Ω
h(s)
∞ (s). This means gj,k(ζ, s) = 0 and the coefficients M j,k

i,l are

zero. Of course, if there is no crack extension, there is nothing to do.

The transformation back leads to the asymptotic behavior of the solutions wj,k,0:

wj,k,0(ξ, s) =

3∑

i=1

(h(s)(k+1)/2M j,k
i,1 (ϑ(s))̺

−1/2Ψi,1(ϕ, s)

+ h(s)(k+2)/2M j,k
i,2 (ϑ(s))̺

−1Ψi,2(ϕ, s)) +O(h(s)(k+3)/2̺−3/2), ̺ → ∞.

Rewriting the decomposition at infinity in local coordinates, we find

(6.3) t1/2w1(ξ, s) + tw2(ξ, s) =

3∑

j=1

Kj(s)U
j,1(z, s) +

2∑

j=1

Tj(s)U
j,2(z, s)

+
3∑

i=1

3∑

j=1

[th(s)(Kj(s)M
j,1
i,1 (ϑ(s))V

i,1(z, s))

+ t3/2h(s)3/2(Kj(s)M
j,1
i,2 (ϑ(s))V

i,2(z, s))]

+

3∑

i=1

2∑

j=1

[t3/2h(s)3/2(Tj(s)M
j,2
i,1 (ϑ(s))V

i,1(z, s))

+ t2h(s)2(Tj(s)M
j,2
i,2 (ϑ(s))V

i,2(z, s))] + . . . .

As mentioned previously, the functions v1(·; t) and v2(·; t) in the outer expansion

must contain singular functions at the crack front and have to fulfill the homogeneous

elasticity problem (because the displacement field u0 fulfills boundary conditions).

Comparing the asymptotic decomposition (6.1) with (6.3), we see that

v1(x; t) = t

( 3∑

j=1

ζj,1(aj,1;x)

)
, v2(x; t) = t3/2

( 2∑

j=1

ζj,2(aj,2;x)

)

and the coefficients have to admit an expansion in t and depend on s:

ai,1 = h(s)

( 3∑

j=1

Kj(s)M
j,1
i,1 (ϑ(s))

)
+ t1/2h(s)3/2

( 2∑

j=1

Tj(s)M
j,2
i,1 (ϑ(s))

)
+ . . . ,

ai,2 = h(s)3/2
( 3∑

j=1

Kj(s)M
j,1
i,2 (ϑ(s))

)
+ t1/2h(s)2

( 2∑

j=1

Tj(s)M
j,2
i,2 (ϑ(s))

)
+ . . . .
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With these asymptotic expansions and technical results at hand, the change of energy

can be calculated asymptotically. If we assume that the outer boundary ∂G is

not deformed (much) by the applied load p, the potential energy at time t can be

calculated using Green’s formula as

U(t) = −
1

2

∫

∂G

p(x) · ut(x) dO.

Here, ut denotes the displacement field of Ωt with the crack Ξt. Then the change of

potential energy caused by the propagated crack reads

∆U := U(t) −U(0) = −
1

2

∫

∂G

p(x) · (ut(x)− u0(x)) dO.

Using the outer expansion and formula (5.3), we calculate

∆U = −
1

2

∫

∂G

p(x) · (u0(x) + tv1(x) + t3/2v2(x) − u0(x)) dO +O(t2)

= −
1

2

[
t

∫

∂G

( 3∑

j=1

p(x) · ζj,1(aj,1;x)

)
dO

+ t3/2
∫

∂G

( 2∑

j=1

p(x) · ζj,2(aj,2;x)

)
dO

]
+O(t2)

= −
1

2

[
t

∫

γ

( 3∑

j=1

aj,1(s)Kj(s)

)
ds+ t3/2

∫

γ

( 2∑

j=1

aj,2(s)Tj(s)

)
ds

]
+O(t2)

= −
1

2

[
t

∫

γ

h(s)

( 3∑

i=1

3∑

j=1

Ki(s)M
i,1
j,1(ϑ(s))Kj(s)

)
ds

+ 2t3/2
∫

γ

h(s)3/2
( 3∑

i=1

2∑

j=1

Ki(s)M
i,1
j,2(ϑ(s))Tj(s)

)
ds

]
+O(t2).

This is a generalization of the asymptotic formula for the change of potential energy

given in [1] for plane crack problems to three dimensions and also an extension of the

results for crack surfaces contained in a plane obtained in [2] to arbitrarily shaped

crack surfaces.
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