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Abstract. This paper presents a superconvergence result based on projection method for
stabilized finite element approximation of the Stokes eigenvalue problem. The projection
method is a postprocessing procedure that constructs a new approximation by using the
least squares method. The paper complements the work of Li et al. (2012), which establishes
the superconvergence result of the Stokes equations by the stabilized finite element method.
Moreover, numerical tests confirm the theoretical analysis.
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1. Introduction

Recently, there has been growing interest in the finite element approximations of

the Stokes eigenvalue problem. At the time of writing this paper, numerous works

devoted to this problem exist (see [12], [2], [20], [24], [3], [9], [10], and the references

cited therein). This problem is as follows: Find (u, p;λ) such that

(1.1) −ν∆u+∇p = λu in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded, convex and open subset of R2 with a boundary ∂Ω, u =

(u1(x), u2(x)) represents the velocity vector, p = p(x) the pressure, ν > 0 the viscos-

ity and λ ∈ R the eigenvalue.
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The idea of the stabilized finite element method based on the projection of the

pressure onto the piecewise constant space was proposed in [1], [15] for the sta-

tionary Stokes equations. This stabilization does not require any edge-based data

structure or any subdivision of a mesh into patches for the local jump formulation.

Besides, it does not require any approximation of derivatives or any specification

of mesh-dependent parameters. Hence, the resulting stabilized method can easily

be formulated. This paper first recalls the stabilized finite element method for the

Stokes eigenvalue problem approximated by using the lowest equal-order finite ele-

ments P1 −P1 [15]. Then a superconvergence result based on projection method for

this stabilized finite element method of the Stokes eigenvalue problem is presented.

The main purpose of this article is to establish a superconvergence result for the

stabilized finite element method for the Stokes eigenvalue problem by the projection

method proposed and analyzed previously in [22], [21]. The projection method is

a postprocessing procedure that constructs a new approximation by using the method

of least squares surface fitting. Some details of this projection method can be found

in the works of Chen and Wang [4], Heimsund et al. [8], Ye et al. [23], [5], [6], Liu

and Yan [19], Li et al. [18], [14], [13], [16], [17] and Huang et al. [11]. Li et al.

have used a local coarse mesh L2-projection to establish the superconvergence of

a stabilized finite element approximation for the Stokes equations. So this paper can

be considered a sequel and a complement of the work of Li et al. in [17].

2. Preliminaries

We introduce the following Hilbert spaces:

X = H1
0 (Ω)

2, Y = L2(Ω)2, M = L2
0(Ω) =

{

q ∈ L2(Ω):

∫

Ω

q dx = 0

}

.

The spaces L2(Ω)m, m = 1, 2, are equipped with the L2-scalar product (·, ·) and the

L2-norm ‖ · ‖0. The space X is endowed with the usual scalar product (∇u,∇v) and

the norm ‖∇u‖0. Standard definitions are used for the Sobolev spaces W
m,p(Ω),

with the norm ‖ · ‖m,p, m, p > 0. We will write Hm(Ω) for Wm,2(Ω) and ‖ · ‖m for

‖ · ‖m,2.

We define continuous bilinear forms a(·, ·) and d(·, ·) on X × X and X × M ,

respectively, by

a(u, v) = ν(∇u,∇v), ∀u, v ∈ X,

and

d(v, q) = (q, div v), ∀ v ∈ X, ∀ q ∈ M,
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and a generalized bilinear form B((·, ·); (·, ·)) on (X ×M)× (X ×M) by

B((u, p); (v, q)) = a(u, v)− d(v, p) + d(u, q), ∀ (u, p), (v, q) ∈ X ×M.

With the above notation, the variational formulation of problem (1.1) reads as

follows: Find (u, p;λ) ∈ (X×M)×R with ‖u‖0 = 1, such that for all (v, q) ∈ X×M ,

(2.1) B((u, p); (v, q)) = λ(u, v).

Moreover, the bilinear form d(·, ·) satisfies the inf-sup condition for all q ∈ M

sup
v∈X

|d(v, q)|

‖∇v‖0
> β1‖q‖0,

where β1 is a positive constant depending only on Ω.

3. A stabilized mixed finite element method

Let h be a real positive parameter tending to 0. The finite element subspace

Xh×Mh of X×M is characterized by Kh, a partitioning of Ω into triangles K with

the mesh size h, assumed to be uniformly regular in the usual sense. Then we define

Xh = {u ∈ C0(Ω)2 ∩X : u|K ∈ P1(K)2, ∀K ∈ Kh},

Mh = {q ∈ C0(Ω) ∩M : q|K ∈ P1(K), ∀K ∈ Kh},

where P1(K) represents the space of linear functions on K.

Note that the lowest equal-order pair does not satisfy the discrete inf-sup condition

sup
vh∈Xh

d(vh, qh)

‖∇vh‖0
> β2‖qh‖0, ∀ qh ∈ Mh,

where the constant β2 > 0 is independent of h. In order to fulfil this condition,

a stabilized generalized bilinear term is used:

Bh((uh, ph); (v, q)) = B((uh, ph); (v, q))−G(ph, q),

where G(ph, q) can be defined (see [1]) by

(3.1) G(ph, q) = (ph −Πhph, q −Πhq), ph, q ∈ Mh,

with the local pressure projection Πh defined by

(p, qh) = (Πhp, qh), ∀ p ∈ L2(Ω), qh ∈ Wh.
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Here Wh ⊂ L2(Ω) denotes the piecewise constant space associated with the trian-

gulation Kh. The following properties of the projection operator Πh can be proved

[15], [14]:

‖Πhp‖0 6 c1‖p‖0, ∀ p ∈ L2(Ω),(3.2)

‖p−Πhp‖0 6 c2h‖p‖1, ∀ p ∈ H1(Ω).(3.3)

Subsequently, c (with or without a subscript) will denote a positive constant which

is independent of mesh parameters and may stand for different values at its different

occurrences.

Now, the corresponding discrete variational formulation of (2.1) for the Stokes

eigenvalue problem is recast: Find (uh, ph;λh) ∈ (Xh × Mh) × R with ‖uh‖0 = 1,

such that for all (v, q) ∈ Xh ×Mh,

(3.4) Bh((uh, ph); (v, q)) = λh(uh, v).

Since the convergence of the finite element approximation to the eigenvalue prob-

lem depends on the regularity of the original eigenvalue problem, here and hereafter

we assume that the regularity of the eigenfunction is (u, p) ∈ H2(Ω)2 ×H1(Ω). By

well-established techniques for eigenvalue approximation [2], [24], [20] and for the

stabilized mixed finite element method [1], [17], [15], one has the following result.

Theorem 3.1. Let (u, p;λ) be an eigenvalue pair of (2.1). Then, (uh, ph;λh) in

(3.4) satisfies the error estimates

|λ− λh| 6 c3(ν‖∇(u − uh)‖0 + ‖p− ph‖0)
2,(3.5)

ν‖u− uh‖0 + h(ν‖∇(u− uh)‖0 + ‖p− ph‖0) 6 c4h
2(ν‖u‖2 + ‖p‖1).(3.6)

4. Superconvergence analysis

The L2-projection is a post-processing technique introduced by Wang [21] for the

standard Galerkin method. The basic idea is to project the approximate solution

to another finite dimensional space on a different, but coarser mesh. The difference

in the two mesh sizes can be used to achieve a superconvergence after the post-

processing procedure.

Now, we introduce other two partitions K̺i
with mesh sizes ̺i, where h ≪ ̺i

(i = 1, 2). Assume that the ̺i and h have the relationship

̺i = hσi
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with σi ∈ (0, 1). The parameter σi will play an important role later in achieving

a superconvergence for the stabilized finite element approximation (uh, ph). Let U̺1

and V̺2
be any two finite dimensional spaces which consist of piecewise polynomials

of degree s and t, respectively, associated with the partitions K̺1
and K̺2

.

Subsequently, define Q̺1
and R̺2

to be the L2-projectors from L2(Ω)2 onto the

spaces U̺1
and V̺2

, respectively. Roughly speaking, the post-processing of the sta-

bilized finite element approximation (uh, ph) is simply given by their L
2-projections:

(Q̺1
u, v) = (u, v), ∀u ∈ L2(Ω)2, v ∈ U̺1

,

(R̺2
p, q) = (p, q), ∀ p ∈ L2(Ω), q ∈ V̺2

.

Here we assume that all eigenvalues have ascent and their geometric multiplicity

is one. So, an argument similar to that in [3], [12] yields the following theorem based

on the results of [17].

Theorem 4.1. Under the assumptions of Theorem 3.1, if ̺1, σ1, and h satisfy

̺1 = O(hσ1 ) with σ1 = 2/(s+ 1), then

‖u−Q̺1
uh‖0 6 ch2(‖u‖s+1 + ‖p‖1)

and

‖∇̺1
(u −Q̺1

uh)‖0 6 ch2s/(1+s)(‖u‖s+1 + ‖p‖1),

where ∇̺1
is defined element-wise over the partition K̺1

. Furthermore, if ̺2, σ2,

and h satisfy ̺2 = O(hσ2 ) with σ2 = 2/(t+ 2), then

‖p−R̺2
ph‖0 6 ch2(t+1)/(t+2)(‖u‖2 + ‖p‖t+1).

Using the above results, we propose an eigenvalue approximation based on pro-

jection method. The scheme is as follows:

(4.1) λ̂h = Bh((Q̺1
uh, R̺2

ph); (Q̺1
uh, R̺2

ph)).

Lemma 4.1 ([10]). Let (u, p;λ) be an eigenvalue pair of (2.1). For any w ∈ X\{0}

and s ∈ M,

B((w, s); (w, s))

(w,w)
− λ =

B((w − u, s− p); (w − u, s− p))

(w,w)
− λ

(w − u,w − u)

(w,w)
.
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Theorem 4.2. Under the assumptions of Theorem 3.1, let λ̂h be defined by (4.1).

Then

|λ− λ̂h| 6 c(h4s/(1+s) + h4(t+1)/(t+2)).

P r o o f. In view of Lemma 4.1, we see that

(4.2) λ̂h − λ

=
B((Q̺1

uh − u,R̺2
ph − p); (Q̺1

uh − u,R̺2
ph − p))−G(R̺2

ph, R̺2
ph)

(Q̺1
uh, Q̺1

uh)

− λ
(Q̺1

uh − u,Q̺1
uh − u)

(Q̺1
uh, Q̺1

uh)
−

Bh((Q̺1
uh, R̺2

ph); (Q̺1
uh, R̺2

ph))

(Q̺1
uh, Q̺1

uh)

+Bh((Q̺1
uh, R̺2

ph); (Q̺1
uh, R̺2

ph)).

Moreover, due to Theorem 4.1, we have

B((Q̺1
uh − u,R̺2

ph − p); (Q̺1
uh − u,R̺2

ph − p))

(Q̺1
uh, Q̺1

uh)
(4.3)

6 ch4s/(1+s)(‖u‖s+1 + ‖p‖1)
2,

λ
(Q̺1

uh − u,Q̺1
uh − u)

(Q̺1
uh, Q̺1

uh)
6 ch4(‖u‖s+1 + ‖p‖1)

2.(4.4)

Utilizing (3.1)–(3.3), we arrive at

(4.5)
G(R̺2

ph, R̺2
ph)

(Q̺1
uh, Q̺1

uh)
=

(‖R̺2
ph − p‖0 + ‖p−Πhp‖0 + ‖Πhp−Πh(R̺2

ph)‖0)
2

‖Q̺1
uh‖20

6 c(h+ h2(t+1)/(t+2))2(‖u‖2 + ‖p‖t+1)
2.

Moreover, by the definition of the L2-projection and the fact that ‖uh‖0 = 1, we

obtain

Bh((Q̺1
uh, R̺2

ph); (Q̺1
uh, R̺2

ph))−
Bh((Q̺1

uh, R̺2
ph); (Q̺1

uh, R̺2
ph))

(Q̺1
uh, Q̺1

uh)

= Bh((Q̺1
uh, R̺2

ph); (Q̺1
uh, R̺2

ph))
(

1−
1

(Q̺1
uh, Q̺1

uh)

)

,

and

( 1

(Q̺1
uh, Q̺1

uh)
− 1

)

=
1

‖Q̺1
uh‖20

(1− ‖Q̺1
uh‖

2
0)

=
1

‖Q̺1
uh‖20

(‖uh‖
2
0 − ‖Q̺1

uh‖
2
0)

=
1

‖Q̺1
uh‖20

(uh +Q̺1
uh, uh −Q̺1

uh)
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=
1

‖Q̺1
uh‖20

(uh −Q̺1
uh, uh −Q̺1

uh)

=
1

‖Q̺1
uh‖20

‖uh −Q̺1
uh‖

2
0 6 ch4(‖u‖s+1 + ‖p‖1)

2.

The above inequality is deduced by Theorems 3.1, 4.1, and the triangle inequality.

Thus, the above inequality and (4.3)–(4.5) lead directly to

|λ− λ̂h| 6 c(h4s/(1+s) + h4(t+1)/(t+2)).

�

5. Numerical experiments

In this section we present numerical experiments to check the numerical theory

developed in the previous sections and exhibit the superconvergence results of the

stabilized mixed finite element approximation for the Stokes eigenvalue problem by

L2-projection. The stabilized method is characterized by using linear polynomial

functions for both the velocity and the pressure field. The stabilized term is defined

by local Gauss integration [15] as

G(ph, q) =
∑

K∈Kh

{
∫

K,2

phq dx−

∫

K,1

phq dx

}

, ∀ ph, q ∈ Mh,

where
∫

K,i g(x) dx indicates a local Gauss integral over K that is exact for polyno-

mials of degree i = 1, 2. In particular, the trial function ph ∈ Mh must be projected

to a piecewise constant space Wh defined below when i = 1 for any q ∈ Mh.

In the given experiment, the pressure and velocity are approximated by the lowest

equal-order finite element pairs defined with respect to the same uniform triangu-

lation. And the algorithms are implemented using public domain finite element

software [7] with some of our additional codes. From Theorem 3.1, we know that

the stabilized finite element solutions (uh, ph;λh) have the optimal error estimates.

Moreover, in order to achieve superconvergence for the numerical solutions, an L2-

projection is applied. The key of this technique is to project a finite element space

onto other finite element space based on a high order of polynomials on the coarse

mesh. In Table 1, we present the superconvergence results for the stabilized finite

element numerical solutions by Theorems 3.1 and 4.2.

FEM type FEM solutions σ1 σ2 λ-rate

P1 − P1 λh — — 2

P2 − P1 λ̂h 2/3 2/3 8/3

Table 1. Superconvergence results of P1 − P1 by L
2-projection
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Let the computation be carried out in the region Ω = {(x, y) : 0 < x, y < 1}. We

consider the Stokes eigenvalue problem in the case of the viscidity ν = 1, and it

will be numerically solved by the stabilized mixed method on uniform mesh. Here,

we just consider the first eigenvalue of the Stokes eigenvalue problem for the sake

of simplicity. The exact solution of this problem is unknown. Thus, we take the

numerical solution by the standard Galerkin method (P2 − P1 element) computed

on a very fine mesh (6742 grid points) as the “exact” solution for the purpose of

comparison. Here, we take λ = 52.3447 as the first exact eigenvalue.

The results of P1 − P1 and superconvergence results of P2 − P1 by projecting

P1−P1 to P2 −P1 are tabulated in Table 2. And the convergence rates are reported

in Figure 1. From Table 2 and Figure 1, we can see that the numerical results support

the theoretical analysis well.

1

h
λh

|λ− λh|

λ
λ̂h

|λ− λ̂h|

λ

4 72.316 0.381474 70.591 0.3485111

8 57.395 0.096432 54.597 0.0429883

12 54.608 0.043190 52.848 0.0095694

16 53.620 0.024319 52.515 0.0031972

Table 2. The results of P1 − P1 and superconvergence results of P2 − P1 by projecting
P1 − P1 to P2 − P1

−2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2
−8

−7

−6

−5

−4

−3

−2

−1

0

log(h)

lo
g
(e
rr
or

λ
)

Standard result

Superconvergence

slope = 2

slope = 8/3

Figure 1. The rate analysis for the eigenvalue.
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