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Abstract. This article presents an idea in the finite element methods (FEMs) for obtain-
ing two-sided bounds of exact eigenvalues. This approach is based on the combination of
nonconforming methods giving lower bounds of the eigenvalues and a postprocessing tech-
nique using conforming finite elements. Our results hold for the second and fourth-order
problems defined on two-dimensional domains.

First, we list analytic and experimental results concerning triangular and rectangular
nonconforming elements which give at least asymptotically lower bounds of the exact eigen-
values. We present some new numerical experiments for the plate bending problem on
a rectangular domain. The main result is that if we know an estimate from below by non-
conforming FEM, then by using a postprocessing procedure we can obtain two-sided bounds
of the first (essential) eigenvalue. For the other eigenvalues λl, l = 2, 3, . . ., we prove and
give conditions when this method is applicable. Finally, the numerical results presented
and discussed in the paper illustrate the efficiency of our method.

Keywords: eigenvalue problem; nonconforming finite element method; conforming finite
element method; postprocessing; lower bound
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1. Introduction and preliminaries

Let V and H be Hilbert spaces with functions defined on a polygonal domain

Ω ⊂ R
2, where V ⊂ H with a compact embedding.

Let also a(·, ·) be a symmetric, V -elliptic and continuous bilinear form on V × V ,

and b(·, ·) a bilinear form on H × H which is continuous, symmetric, and positive

definite.

The research has been supported by the Bulgarian National Science Fund under grant
DFNI-I01/5.
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We define inner products and norms on H by b(·, ·) and ‖ · ‖b =
√
b(·, ·) and on V

by a(·, ·) and ‖ · ‖a =
√
a(·, ·), respectively.

Consider the weak form of eigenvalue problems of the self-adjoint second- or fourth-

order elliptic differential operator: Find a number λ ∈ R and a function u ∈ V ,

‖u‖b = 1, such that

(1.1) a(i)(u, v) = λb(u, v), ∀ v ∈ V,

where i = 1 and i = 2 correspond to the second- and fourth-order problem, respec-

tively. In (1.1) the form b(·, ·) is the usual L2-inner product:

b(u, v) = (u, v) =

∫

Ω

uv dx, ‖u‖b = ‖u‖0,Ω.

In the case of the second-order operator, we consider V = H1
0 (Ω) and H = L2(Ω),

where H1
0 (Ω) = {v ∈ H1(Ω): v|∂Ω

= 0}, see e.g. ([10], p. 659), and

(1.2) a(1)(u, v) =

∫

Ω

∇u · ∇v dx.

It is well known that problem (1.1), (1.2) has a countable sequence of real eigen-

values 0 < λ1 6 λ2 6 . . ., and the corresponding eigenfunctions u1, u2, . . . can be

assumed to satisfy ‖ui‖b = 1; (ui, uj) = δij , i, j > 1.

The eigenfunctions uj belong to the Besov space B
1+r,∞
2 (Ω), and in particular to

the Sobolev space H1+r−ε(Ω) for the small parameter ε > 0, where r = 1 if Ω is

convex and r = π/ω (with ω being the largest inner angle of Ω) otherwise [9].

As the fourth-order problem we consider the plate vibration problem, i.e. the

eigenvalue problem (1.1) with V = H2
0 (Ω), H = L2(Ω), where H2

0 (Ω) = {v ∈
H2(Ω): v|∂Ω

= ∂νv|∂Ω
= 0}, see ([10], p. 660), and

(1.3) a(2)(u, v) =

∫

Ω

(σ∆u∆v + (1− σ)(2∂12u∂12v + ∂11u∂11v + ∂22u∂22v)) dx,

where σ ∈ [0, 0.5) is the Poisson ratio. Clearly, the bilinear form a(2)(u, v) is sym-

metric and according to [13], it is also continuous and H2
0 (Ω)-elliptic. The problem

(1.1), (1.3) has an infinite number of eigenvalues λj , all being strictly positive, having

finite multiplicity and showing no finite accumulation point [10]. We arrange them

as 0 < λ1 6 λ2 6 . . . → ∞.
For the second and fourth order elliptic eigenvalue problems it is well known that

the eigenvalues computed by using the standard conforming FEM are always above

the exact ones. This fact comes from the minimum-maximum characterization of
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the eigenvalues (see for example [10], p. 699). Therefore, it is an important problem

to find methods which give lower bounds of the eigenvalues. However, before the

year 2000, only few results in this direction have been obtained and mainly for finite

difference methods [15]. It seems natural to look among nonconforming methods

ways for obtaining bounds from below and this will be our starting point. Indeed, if

the finite element space is not contained in the Hilbert space where the continuous

variational problem is formulated, it is not clear in advance whether the eigenvalues

of the discretized problem approximate the eigenvalues of the continuous problem

from below or from above.

Let us emphasize that it is valuable to find an interval as small as possible which

the exact eigenvalue belongs to. But, obviously, it would be undesirably expensive

to compute the eigenvalues twice—once using nonconforming FEM approximations

and then by means of a conforming one.

Here, we propose a new procedure for determining bilateral finite element estimates

for the eigenvalues. Our approach has two principal advantages:

(i) Usually, the exact eigenvalues are unknown. So, in numerical methods it is

always valuable to obtain two-sided bound of any unknown quantity. Moreover,

if the interval is small enough one could take the arithmetical mean or an

extrapolation formula using the lower and upper bounds.

(ii) We use nonconforming FEM avoiding C0- or C1-continuity for the second- or

fourth-order eigenvalue problem, respectively. Then we apply a simple postpro-

cedure in order to obtain a bound from above.

The paper is organized as follows. In the next section we state the results concern-

ing lower bounds of eigenvalues. They are divided into two subsections: a survey

devoted to using nonconforming finite elements in eigenvalue problems of second- and

fourth-order problems. Here we discuss some new numerical results. In Section 3 we

prove the main result, namely, the proposed postprocessing giving an estimate from

above of the eigenvalue. Finally, we illustrate the efficiency of the presented method

by numerical results.

2. Lower bounds of eigenvalues using nonconforming FEMs

Let τh be a regular mesh of the domain Ω (see [13], p. 131) such that any two

triangles (or rectangles) in τh share at most a vertex or an edge. Let h denote

the mesh-size parameter, namely h = max
K∈τh

hK , with hK being the diameter of the

triangle/rectangle K and K ∈ τh being affine equivalent to a reference element K̂.

We suppose that the family of triangulations τh satisfies the usual shape regularity
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condition, i.e., there exists a constant α > 0 such that hK/̺K 6 α where ̺K is the

diameter of the largest ball contained in K.

By Vh, Vh ⊂ H , Vh 6⊂ V , we denote a nonconforming finite dimensional space.

The nonconforming finite element approximation of (1.1) states: Find a number

λh ∈ R and a function uh ∈ Vh, ‖uh‖b = 1, such that

(2.1) a
(i)
h (uh, vh) = λhb(uh, vh), ∀ vh ∈ Vh,

where a
(i)
h (·, ·) is the mesh-dependent bilinear form defined by

a
(i)
h (u, v) =

∑

K∈τh

a
(i)
K (u, v), i = 1, 2,

and a
(i)
K denotes the restriction of a

(i) on K ∈ τh.

2.1. Second-order eigenvalue problem. In this case the a(1)-form in (2.1) is

defined by (1.2). We will consider some nonconforming finite elements for which

we will investigate whether and under which conditions they give lower bounds for

computed eigenvalues.

Piecewise linear finite element of Crouzeix-Raviart (C-R) is a well-known triangu-

lar element, for which the degrees of freedom (interpolation conditions) are function

values at the three midpoints of the edges. The nonconforming Crouzeix-Raviart

element space, proposed by Crouzeix and Raviart [14], is defined by

V C-R
h = {v : v|K ∈ P1 is continuous at the midpoints of the edges of K,

∀K ∈ τh and v = 0 at the midpoints of the edges l ∈ ∂Ω},

where Pk denotes the space of polynomials of degree less than or equal to k, k > 0

is integer and τh is a triangular mesh.

Armentano and Durán [8] proved that the Crouzeix-Raviart element results in a

lower bound in the singular eigenfunction case. In [38] it was established that the use

of Crouzeix-Raviart element gives lower bounds not only in the singular eigenfunction

case, but also in the smooth eigenfunction case. Some numerical experiments have

been also carried out on both an L-shaped domain and the unit square.

The authors proved estimates from below of this element (Figure 1(a)) for the

Laplace operator eigenvalues of problems defined on convex [4] and nonconvex [6]

domains.

Extension of Crouzeix-Raviart element (EC-R)—this element (Figure 1(b)), intro-

duced in [7], [23] (see also [5], [26]) is an extension of the previous one. The degrees
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Figure 1. Nonconforming finite elements: (a) FE of Crouzeix-Raviart; (b) Extended FE of
Crouzeix-Raviart; (c) Qrot1 -element; (d) EQrot1 -element

of freedom of an EC-R element are

1

|lj|

∫

lj

v ds, j = 1, 2, 3 and
1

|K|

∫

K

v dx,

for any test function v, and lj , j = 1, 2, 3, being the edges of the triangle K ∈ τh,

where

|lj| =
∫

lj

ds and |K| =
∫

K

dx.

The EC-R finite element space is defined by (see [7], [23], [26])

V EC-R
h =

{
v ∈ L2(Ω): v|K ∈ span{1, x, y, x2 + y2}, v is integrally continuous

on the edges of K, ∀K ∈ τh and
∫
l
v ds = 0 for any edge l ⊂ ∂Ω

}
.

In [5] it is proved that the eigenvalues obtained by means of this element are always

less than the eigenvalues obtained using an element of Crouzeix-Raviart (the so-called

effect of the enriched variational spaces). From this fact it follows that the extension

of the Crouzeix-Raviart element gives lower bounds for the exact eigenvalues in case

for which it is valid for the Crouzeix-Raviart element. It is to be noted here that

this fact is also proved in [26].

Rotated bilinear element (Qrot
1 ) is a rectangular element proposed by Rannacher

and Turek [31] (Figure 1(c)). For any test function v, the degrees of freedom could
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be presented by
1

|lj|

∫

lj

v ds,

where lj , j = 1, 2, 3, 4, are the edges of any K ∈ τh.

The Qrot
1 -element space is defined by

V
Qrot

1

h = {v ∈ L2(Ω): v|K ∈ span{1, x, y, x2 − y2}, v is integrally continuous on Ω}.

In 2005 Liu and Yan [25] made the following numerical observation for the eigen-

value problem (1.1), (1.2) using a Qrot
1 -element:

⊲ On the square domain, numerical eigenvalues λ1,h and λ4,h approximate the cor-

responding exact eigenvalues from below, while λ2,h and λ3,h approximate them

from above.

⊲ On the L-shaped domain, numerical eigenvalues λ1,h and λ3,h approximate the

corresponding exact eigenvalues from below, while λ2,h and λ4,h approximate them

from above.

Again in [25], Liu and Yan explained the phenomenon for the square domain.

Until 2010, the phenomenon for the L-shaped domain [38] was not analyzed. Huang,

Li, and Lin [17], [20] proposed a new expansion of approximated eigenvalues on the

unit square under the uniform mesh and gave some numerical results.

Extension of rotated bilinear element (EQrot
1 )—this element represents an exten-

sion of the previous one. The degrees of freedom of EQrot
1 are

1

|lj |

∫

lj

v ds, j = 1, 2, 3, 4 and
1

|K|

∫

K

v dx,

where v is a test function and K ∈ τh (Figure 1(d)).

The EQrot
1 -element space is defined by (see [19], [21])

V
EQrot

1

h = {v ∈ L2(Ω): v|K ∈ span{1, x, y, x2, y2}, v is integrally continuous on Ω}.

The properties of an EQrot
1 -element are under consideration in a number of works.

In 2005, Liu and Yan [25] provided some numerical results for this element, which

approximates eigenvalues of the Laplace operator from below. Lin and Lin proved

in their book [19] (2006) that when Ω is a rectangular domain and τh is a uniform

rectangular mesh, the EQrot
1 -element eigenvalues give lower bounds of the exact

eigenvalues for a mesh size small enough.

2.2. Fourth-order eigenvalue problem. For fourth-order elliptic problems,

conforming FEMs require C1-continuity, which usually leads to complicated ele-

ment construction [12]. In order to avoid C1-difficulty, nonconforming finite element
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methods are often preferred. Besides, they provide the only way how to obtain finite

element approximations from below for the exact eigenvalues.

Adini element (A) is a C0-rectangular plate element [1]. The degrees of freedom

for this element are the values of the test function v and its first-order derivatives

∂1v, ∂2v at the four vertices aj , j = 1, 2, 3, 4, of any rectangle K ∈ τh (Figure 2(a)).

a1 a2

a3a4

K

(a)

a1 a2

a3

(b)

K

a1 a2

a3a4

K

(c)

Figure 2. Nonconforming FEs for plate bending problems: (a) Adini FE; (b) Morley FE;
(c) Morley rectangular FE.

The Adini finite element space is

V A
h = {v ∈ C0(Ω): v|K ∈ P3 + span{x3y, xy3}, K ∈ τh, v, ∂1v and ∂2v are

continuous at element vertices and are equal to zero on boundary nodes},

where τh is a rectangular mesh.

Let us observe that V A
h ⊂ C0, V A

h 6⊂ H2(Ω).

The numerical examples provided by Rannacher [30] in 1979 show that for the

plate vibration problem on a rectangular domain, the Adini element approximates

the exact eigenvalues from below. This fact was proved by Yang [37] in 2000 in case

of uniform mesh.

However, there are some exceptions, e.g., the Adini element approximates from

above under mixed boundary conditions (u = ∂νu = 0 on one side and free boundary

conditions on the other three sides) on a square domain.
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For the special case of the biharmonic operator, Lin and Lin [19] proved in 2006

that the Adini element approximates exact eigenvalues from below. Numerical evi-

dence for this case was provided by Rannacher [30].

The Morley Element (M) is a triangular element proposed in [27] for the plate

bending problem. The nodal parameters are the function values at the vertices aj ,

j = 1, 2, 3, of the triangle K ∈ τh and the first derivatives in normal direction at the

midside nodes (Figure 2(b)):

v(aj), ∂νv
(ai + aj

2

)
, i, j = 1, 2, 3, i 6= j, for v ∈ C1(K), K ∈ τh.

The Morley finite element space is

V M
h = {v ∈ L2(Ω): v|K ∈ P2, K ∈ τh, v is continuous at the vertices of K,

∂νv is continuous at the midpoints of edges of K,

v and ∂νv are equal to zero on the boundary nodes}.

The values at the midside nodes could be replaced by

1

|lj |

∫

lj

∂νv ds,

where lj is an edge of K which is opposite to the vertex aj , j = 1, 2, 3. Then v ∈ VM
h

should be integrally continuous on the edges of the elements from τh.

Among the nonconforming elements for plate bending problems, the triangular

Morley element is the simplest one [27], [33]. It is particularly attractive for fourth

order problems because of its low number of degrees of freedom and simple structure.

The Morley element and its convergence can be found in [11], [12], [18], [32]. The

continuity of this element is very weak—it is not even of class C0.

Rannacher [30] provided numerical results for plate vibration problems, which

indicated that, beside the Adini element, the Morley element can be used to obtain

lower bounds of eigenvalues. Recently, this theoretical result has been proved by Lin

and Xie [22].

Morley Rectangular Elements (M rect):

Recently, a number of rectangular analogues of Morley elements were introduced

and studied (see, e.g. [34], [35], [39]).

Let τh consist of rectangles with edges parallel to the coordinate axes and let

K ∈ τh be a rectangle with vertices aj and edges lj , j = 1, 2, 3, 4. If we choose the

set of degrees of freedom to consist of the function values at the vertices aj of K ∈ τh
and the first derivatives in normal direction at the midside nodes bj , j = 1, 2, 3, 4, of

lj (Figure 2(c)):

v(aj), ∂νv(bj), j = 1, 2, 3, 4,
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for v ∈ C1(K), K ∈ τh, then the finite element space associated with the Morley

rectangle is [39]

V Mrect

h = {v ∈ L2(Ω): v|K ∈ PK , K ∈ τh, v is continuous at the vertices of K,

∂νv is continuous at the midpoints of edges of K,

v and ∂νv are equal to zero on the boundary nodes}.

It is easy to see that an interpolation-equivalent choice for degrees of freedom is

(see [35])

v(aj),
1

|lj |

∫

lj

∂νv ds, j = 1, 2, 3, 4.

There are two variants for the polynomial space PK reported in the literature:

⊲ One way is to use (see, e.g. [34], [39])

(2.2) P(1)
K = P2 + span{x3, y3}.

⊲ Another variant for the polynomial space is [28]

(2.3) P(2)
K = P2 + span{x3 − 3xy2, y3 − 3yx2}.

The latter choice is motivated by the fact that∆v is constant onK for any v ∈ PK ,

since x3 − 3xy2 and y3 − 3yx2 are the unique polynomials of degree greater than or

equal to 3 which are harmonic.

There are no theoretical results showing that the Morley rectangle approximates

the exact eigenvalues from below. However, here we give numerical experiments

which verify convincingly this fact.

Finally, for the fourth order eigenvalue problems, both Adini and Morley elements

give one and the same order of convergence (see, for example [18]). Namely, let

u ∈ H4(Ω) be the exact eigenfunction and let uh be the corresponding approximate

solution obtained by (2.1), (1.3), then

‖u− uh‖2,h,Ω 6 Ch(|u|3,Ω + h|u|4,Ω),

where ‖ · ‖2,h,Ω is the second-order mesh-dependent Sobolev norm.
Also (obviously ‖ · ‖0,h,Ω = ‖ · ‖0,Ω)

‖u− uh‖0,Ω 6 Ch2(|u|3,Ω + h|u|4,Ω).

In this case, the essential H2-norm determines the eigenvalue estimates, i.e.

|λ− λh| = O(h2).

379



This order of convergence is also valid for the Morley rectangle with the polynomial

space (2.2) [39]. As far as we know, there are no theoretical investigations for the

Morley rectangle with the polynomial space (2.3).

For Adini element applied to the uniform mesh, there is an improved accuracy

result [18]:

(2.4) ‖u− uh‖2,h,Ω 6 Ch2|u|4,Ω.

As we mentioned above, here we present some new numerical results concerning es-

timates from below for Adini and Morley rectangles and their comparison. Moreover,

the a-form (1.3) is used where different values of the Poisson ratio are taken.

Let Ω be the unit square. We solve numerically the plate bending problem (2.1),

(1.3) for σ = 0.1, 0.2, 0.3, 0.4, respectively, as well as for the special case when σ = 0.

The numerical experiments are implemented by means of the Adini element and

the Morley rectangular element in its two versions (2.2) and (2.3) for the finite

element space, which we will denote by numbers 1 and 2, respectively.

The domain is uniformly divided into n2 rectangles, where n = 4, 8, 12, 16, respec-

tively, so that it should be mentioned here that the estimate (2.4) is valid when the

Adini element is used.

In Tables 1–5 we give results for the approximations of the first three eigenvalues.

The results for any eigenvalue form an increasing sequence when the mesh parameter

h =
√
2/n decreases. Our numerical results show that both the Morley rectangles

give eigenvalues less than those obtained by the Adini element. According to (2.4)

in case of a uniform mesh the Adini element approximates more accurately any

eigenvalues λj than the Morley rectangle. The numerical test confirms that Morley

rectangles give an approximation of the exact eigenvalues from below (see [22]).

n FE λ1,h λ2,h λ3,h

Adini 1185.55 4944.32 4994.39
4 Morley Rect. 1 1075.86 4481.46 4481.46
Morley Rect. 2 1003.06 4107.34 4107.34

Adini 1254.15 5164.79 5219.99
8 Morley Rect. 1 1223.11 5017.69 5017.69
Morley Rect. 2 1187.88 4770.16 4770.16

Adini 1274.36 5258.87 5308.86
12 Morley Rect. 1 1261.18 5205.06 5205.06
Morley Rect. 2 1243.09 5068.72 5068.72

Adini 1283.20 5307.71 5342.19
16 Morley Rect. 1 1275.56 5280.65 5280.65
Morley Rect. 2 1264.83 5197.49 5197.49

Table 1. Approximations of first three eigenvalues for plate bending problem when σ = 0
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n FE λ1,h λ2,h λ3,h

Adini 1176.59 4906.11 4960.54
4 Morley Rect. 1 1067.04 4441.57 4441.57
Morley Rect. 2 965.42 3880.74 3880.74

Adini 1250.23 5143.91 5203.53
8 Morley Rect. 1 1220.11 5002.25 5002.25
Morley Rect. 2 1172.22 4667.86 4667.86

Adini 1272.33 5246.43 5301.07
12 Morley Rect. 1 1259.76 5197.45 5197.45
Morley Rect. 2 1235.16 5014.04 5014.04

Adini 1282.02 5299.82 5337.72
16 Morley Rect. 1 1274.75 5276.20 5276.20
Morley Rect. 2 1260.15 5164.37 5164.37

Table 2. Approximations of first three eigenvalues for plate bending problem when σ = 0.1

n FE λ1,h λ2,h λ3,h

Adini 1167.39 4866.17 4926.19
4 Morley Rect. 1 1057.62 4398.95 4398.95
Morley Rect. 2 921.45 3627.59 3627.59

Adini 1246.19 5122.27 5186.87
8 Morley Rect. 1 1216.86 4985.49 4985.49
Morley Rect. 2 1152.81 4544.04 4544.04

Adini 1270.22 5233.34 5293.22
12 Morley Rect. 1 1258.22 5189.14 5189.14
Morley Rect. 2 1225.18 4946.15 4946.15

Adini 1280.79 5291.42 5333.23
16 Morley Rect. 1 1273.86 5271.34 5271.34
Morley Rect. 2 1254.21 5122.82 5122.82

Table 3. Approximations of first three eigenvalues for plate bending problem when σ = 0.2

n FE λ1,h λ2,h λ3,h

Adini 1157.92 4824.14 4891.26
4 Morley Rect. 1 1047.63 4353.81 4353.81
Morley Rect. 2 869.87 3345.01 3345.01

Adini 1242.00 5100.00 5169.97
8 Morley Rect. 1 1213.35 4967.45 4967.45
Morley Rect. 2 1128.38 4392.29 4392.29

Adini 1268.00 5219.44 5285.29
12 Morley Rect. 1 1256.55 5180.16 5180.16
Morley Rect. 2 1212.33 4860.31 4860.31

Adini 1279.50 5282.42 5328.72
16 Morley Rect. 1 1272.89 5266.07 5266.07
Morley Rect. 2 1246.50 5069.57 5069.57

Table 4. Approximations of first three eigenvalues for plate bending problem when σ = 0.3
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n FE λ1,h λ2,h λ3,h

Adini 1148.14 4779.92 4855.63
4 Morley Rect. 1 1037.12 4306.33 4306.33
Morley Rect. 2 809.01 3029.47 3029.47

Adini 1237.63 5076.06 5152.81
8 Morley Rect. 1 1209.58 4948.14 4948.14
Morley Rect. 2 1097.00 4203.31 4203.31

Adini 1265.66 5204.56 5277.29
12 Morley Rect. 1 1254.75 5170.50 5170.50
Morley Rect. 2 1195.37 4749.13 4749.13

Adini 1278.11 5272.64 5324.17
16 Morley Rect. 1 1271.86 5260.39 5260.39
Morley Rect. 2 1236.20 4999.41 4999.41

Table 5. Approximations of first three eigenvalues for plate bending problem when σ = 0.4

3. Main result

In this section, a method giving lower and upper bounds of exact eigenvalues is

presented. Throughout the section we will drop the index i = 1, 2 and will use a(·, ·)
and ah(·, ·) instead of a(i)(·, ·) and a

(i)
h (·, ·), respectively.

We look for λh ∈ R and uh ∈ Vh such that

(3.1) ah(uh, vh) = λh(uh, vh), ∀ vh ∈ Vh.

Let the eigenvalue problem (3.1) be solved by using nonconforming FEMs. Here

Vh 6⊂ V and we adopt that mesh-dependent a-forms are determined by (1.2) or (1.3).

Let λh approximate the corresponding exact eigenvalue λ from below, i.e. λh < λ.

These cases were discussed in the previous section.

Now, we solve an additional elliptic problem with a solution w̃h ∈ Ṽh using the

conforming FEM, in which the right-hand side is the approximate eigenfunction

uh ∈ Vh obtained from (3.1):

(3.2) a(w̃h, ṽh) = (uh, ṽh), ∀ ṽh ∈ Ṽh.

Here Ṽh ⊂ V and consequently we replace the a-form ah(·, ·) by a(·, ·).
If w̃h ∈ Ṽh is a solution of (3.2), we define the number

(3.3) λ̃h =
1

(uh, w̃h)
.

Since Ṽh is the space corresponding to a conforming FEM, i.e. Ṽh ⊂ V , we could

be able to determine the solution w̃ ∈ V of the (continuous) elliptic problem:

(3.4) a(w̃, v) = (uh, v), ∀ v ∈ V.
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Lemma 3.1. Let (λ, u) be an eigenpair of problem (1.1), (1.2) (m = 1) or (1.1),

(1.3) (m = 2) with b(u, v) = (u, v). Let also (λh, uh) be the corresponding solution

of (3.1), the eigenfunctions being normalized: (u, u) = (uh, uh) = 1.

Then λ̃h approximates the exact eigenvalue λ. More precisely (here and further

C > 0 is independent of the mesh parameter h),

(3.5) |λ− λ̃h| 6 C(‖u− uh‖20,Ω + ‖w̃ − w̃h‖2m,Ω), m = 1, 2.

P r o o f. Consider the solution operator for the boundary value problem T :

L2(Ω) → V , defined by u = T f , u ∈ V , for any f ∈ L2(Ω), where

a(u, v) = (f, v), ∀ v ∈ V.

Obviously, a(u, v) and (u, v) are symmetric forms. Consequently (see, e.g. [10])

a(T u, v) = a(u, T v), ∀u, v ∈ Hm(Ω), m = 1, 2,

(T u, v) = (u, T v), ∀u, v ∈ L2(Ω).

Thus, the operator T is symmetric and positive. It immediately follows from the
Ritz representation theorem (a(·, ·) is an inner product on V ) that T is bounded.
By analogy with (3.3), from (3.4) we define

λ̃ =
1

(w̃, uh)
=

1

(T uh, uh)
.

From the equality

a(T u, v) = (u, v), ∀ v ∈ V,

it follows that a(T u, u) = (u, u) = 1 where u is an exact eigenfunction. On the other

hand, this function is a solution of a(u, T u) = λ(u, T u). Consequently,

λ =
1

(T u, u)

in view of the fact that the operator T is symmetric.
Therefore,

(3.6)
1

λ
− 1

λ̃
= (T u, u)− (T uh, uh)

= (T u, u)− (T uh, uh) + (T (u− uh), u− uh)− (T (u − uh), u− uh)

= 2(T u, u− uh)− (T (u− uh), u− uh).
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We estimate the last two terms:

(3.7) 2(T u, u− uh) =
2

λ
(1− (u, uh))

=
1

λ
((u, u)− 2(u, uh) + (uh, uh))

=
1

λ
(u− uh, u− uh) =

1

λ
‖u− uh‖20,Ω.

Since the operator T is bounded, we have

(3.8) |(T (u− uh), u− uh)| 6 ‖T ‖‖u− uh‖20,Ω.

Finally, from (3.6), (3.7) and (3.8) we obtain

(3.9) |λ− λ̃| 6 C‖u− uh‖20,Ω.

By the same argument, it follows that

1

λ̃
− 1

λ̃h

= (w̃, uh)− (w̃h, uh) = a(w̃, w̃)− a(w̃h, w̃h).

Since w̃h ∈ Ṽh, w̃ ∈ V are solutions of the elliptic problems (3.2) and (3.4),

respectively, we have a(w̃ − w̃h, w̃h) = 0, because Ṽh ⊂ V .

Consequently,

1

λ̃
− 1

λ̃h

= a(w̃, w̃)− a(w̃h, w̃h)− 2a(w̃ − w̃h, w̃h)

= a(w̃, w̃)− 2a(w̃, w̃h) + a(w̃h, w̃h)

= a(w̃ − w̃h, w̃ − w̃h).

The continuity of the a-form on Hm(Ω) leads to the inequality

|λ̃− λ̃h| 6 C‖w̃ − w̃h‖2m,Ω, m = 1, 2.

This estimate and (3.9) prove the lemma. �

R em a r k 3.1. It is important to emphasize that the estimate (3.5) could easily

result in superconvergence order. Indeed, the optimal order of convergence of the

eigenvalues is O(‖u − uh‖2m,Ω), where u is the corresponding exact eigenfunction.

Obviously ‖u − uh‖20,Ω has higher order of accuracy and, moreover, it is easy to
obtain the same high order of convergence for ‖w̃ − w̃h‖2m,Ω (see [2], [3], [29], [36]).

Now, we will present the final step of our idea described as nonconforming-

conforming approach to eigenvalues approximation.
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Theorem 3.1. Let the conditions of Lemma 3.1 be fulfilled. If λ1,h obtained by

the nonconforming FEM approximates the first (essential) eigenvalue λ1 from below,

then λ̃1,h determined by (3.3) gives an upper bound of λ1, i.e.

(3.10) λ1,h 6 λ1 6 λ̃1,h.

P r o o f. First, we present results which concern any eigenpair (λ, u). So we

drop the indices 1, 2, . . . Let us introduce the function ũh = λ̃hw̃h, where w̃h is the

solution of (3.2) and λ̃h is determined by (3.3). Then

(3.11) (uh, ũh) = λ̃h(uh, w̃h) = 1.

Next, we have

(3.12) a(ũh, ũh) = λ̃2
ha(w̃h, w̃h) = λ̃2

h(uh, w̃h) = λ̃h.

Let us set

0 6 ε(h) = ‖uh − ũh‖20,Ω = (uh, uh)− 2(uh, ũh) + (ũh, ũh).

Therefore, having in mind that (uh, uh) = 1, from (3.11) we get (ũh, ũh) = 1+ε(h).

By virtue of (3.12), it follows that

λ1 = min
v∈V

v 6=0

a(v, v)

(v, v)
6

a(ũ1,h, ũ1,h)

(ũ1,h, ũ1,h)
=

a(ũ1,h, ũ1,h)

1 + ε(h)
6 a(ũ1,h, ũ1,h) = λ̃1,h,

which proves the theorem. �

Theorem 3.2. Consider the second order eigenvalue problem (1.1), (1.2). Let

(λl,h, ul,h), l = 2, 3, . . ., be the solution of (3.1) obtained using some of the following

nonconforming finite elements: C-R, EC-R, Qrot
1 and EQrot

1 . Let for any integer l > 2

the eigenfunctions be normalized (ul, ul) = (ul,h, ul,h) = 1 and let the partitions be

quasiuniform. Then, if we solve the problem (3.2) using linear/bilinear conforming

finite elements,

(3.13) λl,h 6 λl 6 λ̃l,h, l = 2, 3, . . .

P r o o f. Let R denote the Rayleigh quotient, let u ∈ V be an eigenfunction

corresponding to λ and ‖w‖a =
√
a(1)(w,w). Then for any exact eigenvalue λ and

any function w ∈ V we shall use the following equality (see [10], p. 701):

(3.14) R(w) − λ =
‖w − u‖2a
‖w‖20,Ω

− λ
‖w − u‖20,Ω
‖w‖20,Ω

.
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For l = 2, 3, . . . , Nh, Nh = dimVh, from (3.12) and (ũl,h, ũl,h) = 1+ε(h) we obtain

λ̃l,h − λl = a(1)(ũl,h, ũl,h)− λl >
a(1)(ũl,h, ũl,h)

(ũl,h, ũl,h)
− λl.

Now, in (3.14) we take λ = λl, w = ũl,h, and u = ul. Then we get

(3.15) λ̃l,h − λl > R(ũl,h)− λl =
‖ũl,h − ul‖2a
‖ũl,h‖20,Ω

− λl

‖ũl,h − ul‖20,Ω
‖ũl,h‖20,Ω

.

We have to estimate the first term on the right-hand side of (3.15) from below and

the second from above.

Let us introduce the elliptic projection operator R̃h : V → Ṽh defined by

a(1)(u− R̃hu, ṽh) = 0, ∀ ṽh ∈ Ṽh.

Obviously, by Friedrichs’ inequality,

(3.16) ‖ũl,h − ul‖0,Ω 6 C‖ũl,h − R̃hul‖a + ‖R̃hul − ul‖0,Ω.

We consider both terms on the right-hand side of (3.16).

For the first we obtain

(3.17) ‖ũl,h − R̃hul‖2a = a(1)(ũl,h − R̃hul, ũl,h − R̃hul)

= (λ̃l,hul,h − λlul, ũl,h − R̃hul)

6 C‖λ̃l,hul,h − λlul‖0,Ω‖ũl,h − R̃hul‖a
6 (λ̃l,h‖ul,h − ul‖0,Ω + |λ̃l,h − λl|‖ul‖0,Ω)‖ũl,h − R̃hul‖a.

Taking into account that (3.1) is solved by nonconforming finite elements specified

by the conditions of the theorem, from (3.17) we conclude that [8], [16]

(3.18) ‖ũl,h − R̃hul‖a 6 Ch2r‖ul‖1+r,

where r = π/ω if Ω is a non-convex polygonal domain and ω is its maximal interior

angle (12 < r < 1) and r = 1 when Ω is a convex domain. It is worth noting that the

last inequality gives an estimate of a superconvergent type.

For the second term on the right-hand side of (3.16) we take into account that Ṽh

is constructed using linear/bilinear conforming finite elements, consequently for the

elliptic projection operator R̃h the following estimate is valid [16]:

‖R̃hul − ul‖0,Ω 6 Ch2r‖ul‖1+r,Ω.
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The last inequality, (3.18) and (3.16) give the following estimate concerning the

second term on the right-hand side of (3.15):

‖ũl,h − ul‖0,Ω 6 Ch2r‖ul‖1+r,Ω.

On the other hand, with regard to the first term in the right-hand side of (3.15),

we get

‖ũl,h − ul‖2a = a(1)(ũl,h − ul, ũl,h − ul) = a(1)((ũl,h − R̃hul)

+ (R̃hul − ul), (ũl,h − R̃hul) + (R̃hul − ul))

= a(1)(ũl,h − R̃hul, ũl,h − R̃hul) + a(1)(R̃hul − ul, R̃hul − ul)

+ 2a(1)(ũl,h − R̃hul, R̃hul − ul)

= ‖ũl,h − R̃hul‖2a + ‖R̃hul − ul‖2a > ‖R̃hul − ul‖2a.

Finally, we use the estimate

‖R̃hul − ul‖a > Ch,

which is valid for linear/bilinear conforming finite elements. This estimate is proved

by Q. Lin, H.Xie, and J.Xu [24] for quasiuniform partitions of Ω.

So, we proved that

‖ũl,h − ul‖0,Ω 6 Ch2r, r ∈ (12 , 1],

and

‖ũl,h − ul‖a > Ch,

consequently, the first term in (3.15) is dominant and then λ̃l,h > λl. �

Now we present a postprocessing algorithm which will give two-sided bounds of

the exact eigenvalues.

Algorithm.

(i) Solve the eigenvalue problem (3.1) by nonconforming FEM for (λh, uh) ∈ R×Vh

and (uh, uh) = 1 with λh giving lower bound of the exact eigenvalue;

(ii) Solve the elliptic problem (3.2) and find the solution w̃h;

(iii) Determine the approximate eigenvalue λ̃h by means of (3.3).

As a result of the algorithm given above, it will follow that

λl ∈ (λl,h, λ̃l,h), l = 1, 2, . . .
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R em a r k 3.2. The proposed algorithm gives a simple method for obtaining two-

sided bounds of the exact eigenvalues (3.10) and (3.13). The main idea is to imple-

ment a postprocessing procedure based on solving an elliptic problem by a conforming

FEM instead of employing a conforming eigenproblem solver.

Finally, let us illustrate the efficiency of the presented approach for obtaining

two-sided bounds for the first eigenvalue. Consider the fourth-order problem with

σ = 0 and σ = 0.2. Initially, we use the Adini finite element giving a lower bound

of the eigenvalue (see Section 2). Then the conforming method will be applied with

Bogner-Fox-Schmidt element.

The unit square is uniformly divided into n2 rectangle elements. The numerical

experiments are implemented for n = 4, 6, 8, 10, 12, 14, 16.

In Table 6 the approach is demonstrated for the essential eigenvalues when σ = 0.2

and σ = 0. These results confirm the statement of Theorem 3.1. The sequence {λ1,h}
increases, while {λ̃1,h} decreases. Here, the exact eigenvalues for σ = 0.2 are not

known. Concerning the case σ = 0, the exact smallest eigenvalue is approximately

λ1 = 1295 (see [19], [30]).

σ = 0.2 σ = 0

n λ1,h λ̃1,h λ1,h λ̃1,h

4 1167.392908 1632.978596 1185.550861 1629.661664
6 1215.208358 1539.581756 1227.814307 1542.266216
8 1246.188992 1481.631502 1254.152526 1478.265953
10 1263.205943 1430.888621 1268.538691 1425.992665
12 1270.220003 1395.200465 1274.357984 1371.319310
14 1276.904152 1361.499261 1279.910030 1336.316003
16 1280.793015 1331.814826 1283.199186 1313.671528

Table 6. Results for the essential eigenvalue with σ = 0.2 and σ = 0
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