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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 3 , PAGES 4 5 0 – 4 6 9

CONSTRAINED ROBUST ADAPTIVE STABILIZATION
FOR A CLASS OF LOWER TRIANGULAR SYSTEMS
WITH UNKNOWN CONTROL DIRECTION

Jianglin Lan, Weijie Sun and Yunjian Peng

This paper studies the constrained robust adaptive stabilization problem for a class of lower
triangular systems with unknown control direction. A robust adaptive feedback control law
for the systems is proposed by incorporating the technique of Barrier Lyapunov Function with
Nussbaum gain. Such a controlled system arises from the study of the constrained robust output
regulation problem for a class of output feedback systems with the unknown control direction
and a nonlinear exosystem. An application of the constrained robust adaptive stabilization
design leads to the solution of the constrained robust output regulation problem in the sense that
the output tracking error is constrained within the prescribed barrier limit while asymptotically
approaching to zero and the closed loop signals are all bounded for all the time. A numerical
example is provided to illustrate the performance of the proposed control.

Keywords: Barrier Lyapunov Function, output regulation, nonlinear exosystem, Nuss-
baum gain

Classification: 93E12, 62A10

1. INTRODUCTION

The stabilization design problem for nonlinear systems has been paid great attention
since 1980s, see [9, 11, 14] and their references therein. Various techniques and insights
have been extensively issued, among which the small-gain control and backstepping de-
sign method as well as their new developments have been well applied and shown their
great effectiveness [9, 10, 11]. Recently, a framework has been proposed transforming
the original output regulation problem into a stabilization problem for an augmented
system based on the internal model principle [8]. Such a framework brings forward new
stabilization problem for nonlinear systems [3, 20] and much more challenging stabiliza-
tion issues [4, 12, 21]. As such, the constrained robust adaptive stabilization problem to
be considered in this paper for the lower triangular system is just closely related to the
constrained robust output regulation problem for a class of output feedback systems in
Section 4.

The stabilization problem to be considered in this paper is much more challenging
than the previous ones. Two new technical issues have to be addressed here. The first
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challenging issue is imposed by the fact that the aimed output is not only required to
asymptotically approach to zero, but also expected to be guaranteed within some desired
region during its transient period. The second issue concerns the unknown control
coefficient b(w), which needs to be estimated by employing some adaptive parameter
update law. It is in this sense that the problem addressed in this paper is called the
constrained robust adaptive stabilization problem.

The raise of the constrained stabilization problem is motivated by the fact that physi-
cal systems are greatly influenced by many factors such as physical geometry constraints
[15, 21]. For example, for the electrostatic torsional micromirror in microscale, since the
durability of the micromirror plays a major role in deciding reliability and longevity of
a micromirror trauma surgery device [6], scanning control of the movable micromirror
is required to avoid its collision with the fixed bottom electrodes in order to reduce sur-
face damage at each contact and greatly increase the device lifetime [15, 21]. Recently,
[28] dealt with the enhanced output regulation performance for the linear systems with
input saturation and [21] studied the robust output regulation problem for a one degree
of freedom electrostatic microelectromechanical systems model with output constraints.

As for the issue of the control coefficient, in some particular cases, its direction
can be known, which clearly offers convenience for the control design. Actually, under
the conditions that the plant is stable and the high-frequency probing signals can be
introduced into the system, the high-frequency gain can be identified off-line before
applying the control design to the system. However, it is not realistic to make the
assumption that the control direction is known in the general case. For instance, due
to the existence of the parameter variation, the real values of the system parameters
needed for the control design might not be obtained precisely and such a fact could lead
the control direction to be unknown which makes the controller design less effectiveness.
Therefore, the adaptive control problem with unknown control direction has gained
great attention for the past decades, and large numbers of works either on the output
regulation problem or stabilization problem for nonlinear systems with unknown control
direction have been published, see [12, 13, 26, 27] and their references therein.

Considering the two issues of the output constraint and the unknown control direction,
techniques of Barrier Lyapunov Function and Nussbaum gain will be incorporated to
handle them. The Barrier Lyapunov Function technique has been proved to be efficient in
solving the variable constrained problems [21, 23] and the Nussbaum gain method is the
standard way to handle the unknown sign of the high-frequency gain [12, 13, 16, 26, 27].

The reminder of this paper is organized as follows. In Section 2, the constrained
robust adaptive stabilization problem is formulated and some preliminaries are made.
In Section 3, a robust adaptive feedback control law is designed to solve the constrained
robust adaptive stabilization problem described in Section 2. In Section 4, the con-
strained robust adaptive stabilization design proposed in Section 3 is applied to solve
the constrained robust adaptive output regulation problem for a class of output feed-
back systems subject to the unknown control direction and a nonlinear exosystem. In
Section 5, a numerical example is provided to illustrate the effectiveness of the proposed
control design. Finally, the conclusion is given in Section 6.
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2. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of lower triangular nonlinear systems

Ż = F (Z, x1, v, w)
ẋ1 = f1(Z, x1, v, w) + b(w)x2

ẋi = fi(x1, . . . , xi) + xi+1, i = 2, . . . , r − 1
ẋr = fr(x1, . . . , xr) + ū

y = x1 (1)

where Z ∈ Rn and x = (x1, . . . , xr)> with xi ∈ R, i = 1, . . . , r, are the states, b(w) is
the control coefficient, ū ∈ R is the control input, y ∈ R is the output, w ∈ Rnw is the
constant uncertain parameter, and v : [0, ∞) → Rq is a smooth bounded time-varying
function. Suppose that all the functions F (·) and fi(·), i = 1, . . . , r, in (1) are sufficiently
smooth, and F (0, 0, v, w) = 0.

The constrained robust adaptive stabilization problem addressed in this paper can
be defined as follows.

Definition 2.1. (Constrained Robust Adaptive Stabilization Problem) Given any com-
pact set Ω ⊂ Rq × Rnw and some smooth positive definite time-varying function kb1(t)
with the property that 0 < kb1(t) ≤ K̄b0 and whose time derivatives satisfy |k(i)

b1
(t)| ≤ K̄bi

for positive constants K̄bi
, i = 0, . . . , r−1, for all t ≥ 0, find a feedback control law for the

lower triangular system (1) to ensure that the closed loop system satisfies the following
properties:

P1. For all (v, w) ∈ Ω, the solution of the closed loop system exists and is bounded
for all t ≥ 0.

P2. The output y asymptotically approaches to zero, i. e., limt→∞ x1 = 0. In partic-
ular, if the initial output satisfies |x1(0)| < kb1(0), then |x1(t)| < kb1(t) for all t ≥ 0.

In what follows, a constrained robust adaptive stabilization design will be proposed to
solve this constrained robust adaptive stabilization problem. To this end, some assump-
tions about system (1) and a lemma based on the results in [23] and [26] are established
firstly in the following.

Assumption 2.1. For all w ∈ Rnw , b(w) 6= 0 and there exist positive constants bm and
bM such that bm < |b(w)| < bM .

Assumption 2.2. For any compact subset Ω ⊂ Rq×Rnw , there exists some C1 function
U0(Z) satisfying α0Z(‖Z‖) ≤ U0(Z) ≤ ᾱ0Z(‖Z‖) for some class K∞ functions α0Z(·)
and ᾱ0Z(·) such that, for all (v, w) ∈ Ω, the derivative of U0(Z) along the trajectory of
the subsystem Ż = F (Z, x1, v, w) satisfies

U̇0(Z) ≤ −α(‖Z‖) + δ0γ0(x1)

with some unknown positive constant δ0, some known class K∞ functions α(·) satisfying
lims→0+ sup(α−1(s2)/s) < ∞, and a known smooth positive definite function γ0(x1).
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Remark 2.1. From Assumption 2.2, it can be concluded that the subsystem Ż =
F (Z, x1, v, w) is input-to-state stable, considering x1 as the input and Z as the state.
By employing the changing supply functions technique in [18], for any smooth function
∆(Z) > 0, there exists some C1 function U(Z) satisfying αZ(‖Z‖) ≤ U(Z) ≤ ᾱZ(‖Z‖)
with some class K∞ functions αZ(·) and ᾱZ(·) such that, for all (v, w) ∈ Ω, the following
inequality holds

U̇(Z) ≤ −∆(Z)‖Z‖2 + δγ(x1)x2
1

with some unknown positive constant δ and a known smooth positive definite function
γ(x1).

Lemma 2.1. For any positive definite function kb1(t), let Z = {x1(t) ∈ R : |x1(t)| <
kb1(t)} ⊂ R and N = Rl ×Z ⊂ Rl+1 be open sets. Consider the system

ζ̇ = h(t, ζ) (2)

where ζ = (χ, x1)> ∈ N , and h : R+ × N → Rl+1 is piecewise continuous in t, locally
Lipschitz in ζ, and uniformly in t, on R+ × N . Suppose that there exist functions
U : Rl → R+ and V1 : Z → R+, which are continuously differentiable and positive
definite in their respective domains, such that

V1(x1) →∞ as |x1| → kb1 (3)
ϕ1(‖χ‖) ≤ U(χ) ≤ ϕ2(‖χ‖)

where ϕ1(·) and ϕ2(·) are class K∞ functions. Let V (ζ) = V1(x1) + U(χ) and |x1(0)| <
kb1(0). If the following holds

V (ζ) ≤
∫ t

0

(2b(w)N(k(τ)) + c)k̇(τ) dτ + const, ∀ t ∈ [0, tf ) (4)

where k(·) is a smooth function defined on [0, tf ), N(·) is an even smooth Nussbaum-type
function, b(w) is a nonzero constant that takes values in the unknown closed interval
I = [bm, bM ] with 0 /∈ I for each fixed w ∈ Rnw , c is any positive number and const is
some suitable constant, then V (ζ) is bounded and x1(t) ∈ Z for all t ≥ 0.

P r o o f . According to the Theorem 5.4 in [19], it can be seen that the conditions on
function h(·) ensure that there exists a unique maximal solution ζ(t) on time interval
[0, tf ), which indicates the existence of V (ζ) for all t ∈ [0, tf ).

By the proof of Lemma 1 in [26] and from the inequality (4), the boundedness of
k(t) on [0, tf ) can be concluded. Thus, V (ζ) and

∫ t

0
(2b(w)N(k(τ)) + c)k̇(τ) dτ are also

bounded on [0, tf ). From the definition that V (ζ) = V1(x1)+U(χ) with positive definite
functions V1(x1) and U(χ), it is known that V1(x1) is also bounded on t ∈ [0, tf ). Thus,
it can be seen from (3) that |x1| 6= kb1 , which yields the fact that x1(t) ∈ Z, for all
t ∈ [0, tf ), if |x1(0)| < kb1(0).

In this respect, it is obvious that there exists a compact subsect Θ ⊆ N ensures
that the maximal solution ζ(t) of the system (2) fulfills that ζ(t) ∈ Θ for all t ∈ [0, tf ).
Further, the Proposition C.3.6 in [19] indicates that ζ(t) is actually defined on the interval
[0,∞), which directly leads to the conclusion that V (ζ) is bounded and x1(t) ∈ Z for
all t ≥ 0. �
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3. CONSTRAINED ROBUST ADAPTIVE STABILIZATION DESIGN

In this section, a robust adaptive feedback control law will be proposed to solve the
constrained robust adaptive stabilization problem described in Section 2. The techniques
of Barrier Lyapunov Function and Nussbaum gain are to be combined to handle the
nontrivial issues of the constrained output x1 and the unknown control coefficient b(w).

For simplicity, the following notations f1 = f1(Z, x1, v, w), α1 = α1(x1, k, kb1), fi =
fi(x1, . . . , xi), αi = αi(x1, . . . , xi, k, kb1 , b̂), i = 2, 3, . . . , r, and ρx1 = ρ(x̃1, kb1), are used
during the design procedure.

Step 1. Define x̃1 = x1 and

α1 = N(k)(k2
b1 − x̃2

1)ρx1 x̃1

N(k) = k2 cos(k)
k̇ = ρx1 x̃

2
1

x̃2 = x2 − α1

where N(k) is a Nussbaum-type function and ρx1 is some smooth function to be given
later.

Consider the following Barrier Lyapunov Function candidate

Vblf = log
k2

b1

k2
b1
− x̃2

1

. (5)

It can be calculated that

V̇blf =
2x̃1

k2
b1
− x̃2

1

(
˙̃x1 − x̃1

k̇b1

kb1

)
≤

( 2
(k2

b1
− x̃2

1)2
+

( k̇b1

kb1

)2)
x̃2

1 + f2
1 +

2b(w)x̃1x̃2

k2
b1
− x̃2

1

+ 2b(w)N(k)k̇. (6)

Remark 3.1. It could be concluded that Vblf is a suitable Barrier Lyapunov Function
candidate according to [23]. On one hand, for all x̃1 ∈ (−kb1 , kb1), it is obvious that
Vblf ≥ 0 and Vblf = 0 if and only if x̃1 = 0. Thus, Vblf is continuous and positive definite
in the set (−kb1 , kb1). On the other hand, Vblf →∞ whenever |x̃1| → kb1 .

Let V1 = U(Z) + Vblf . According to Remark 2.1 and the inequality (6), we have

V̇1 = U̇(Z) + V̇blf

≤ −∆(Z)‖Z‖2 +
(
δγ(x̃1) +

2
(k2

b1
− x̃2

1)2
+

( k̇b1

kb1

)2)
x̃2

1 + f2
1 +

2b(w)x̃1x̃2

k2
b1
− x̃2

1

+2b(w)N(k)k̇.
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Step 2. Define

α2 = −f2 − x̃2 +
∂α1

∂k
k̇ +

∂α1

∂kb1

k̇b1 + b̂
∂α1

∂x̃1
x2 −

1
4
(
∂α1

∂x̃1
)2x̃2

x̃3 = x3 − α2

γ1 = −∂α1

∂x̃1
x̃2x2

where b̂ is designed to estimate the unknown b(w).
Consider the Lyapunov function

V2 = V1 + x̃2
2 + (b̂− b(w))2.

Note that

x̃2
˙̃x2 = x̃2(ẋ2 − α̇1)

= x̃2

(
f2 + x̃3 + α2 − (

∂α1

∂x̃1

˙̃x1 +
∂α1

∂k
k̇ +

∂α1

∂kb1

k̇b1)
)

≤ x̃2x̃3 − x̃2
2 + f2

1 + (b̂− b(w))
∂α1

∂x̃1
x̃2x2,

then it can be calculated that

V̇2 = V̇1 + 2x̃2
˙̃x2 + 2(b̂− b(w))˙̂b

≤ −∆(Z)‖Z‖2 +
(
δγ(x̃1) +

2 + b2(w)
(k2

b1
− x̃2

1)2
+

( k̇b1

kb1

)2)
x̃2

1 + 2b(w)N(k)k̇

+2(b̂− b(w))(˙̂b− γ1) + 3f2
1 − x̃2

2 + 2x̃2x̃3.

Step i. Further define

αi = −fi − x̃i−1 − x̃i +
∂αi−1

∂k
k̇ +

∂αi−1

∂kb1

k̇b1 +
∂αi−1

∂b̂
γi−1 +

i−1∑
j=2

∂αi−1

∂x̃j

˙̃xj

−
(
b̂−

i−2∑
j=2

x̃j+1
∂αj

∂b̂

)∂αi−1

∂x̃1
x2 −

1
4
(
∂αi−1

∂x̃1
)2x̃i

x̃i+1 = xi+1 − αi

γi−1 = γi−2 −
∂αi−1

∂x̃1
x2x̃i

with i = 3, . . . , r, and xr+1 = ū ∈ R.
Letting Vi = Vi−1 + x̃2

i yields

V̇i ≤ −∆(Z)‖Z‖2 +
(
δγ(x̃1) +

2 + b2(w)
(k2

b1
− x̃2

1)2
+

( k̇b1

kb1

)2)
x̃2

1 + 2b(w)N(k)k̇

+2(b̂− b(w))(˙̂b− γi−1) + (2i− 1)f2
1 −

i∑
j=2

x̃2
j + 2x̃ix̃i+1.
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At the end of the design, by taking the control law ū = αr,
˙̂
b = γr−1 and noting

x̃r+1 = 0, it can be obtained that

V̇r ≤ −∆(Z)‖Z‖2 +
(
δγ(x̃1) +

2 + b2(w)
(k2

b1
− x̃2

1)2
+

( k̇b1

kb1

)2)
x̃2

1 + 2b(w)N(k)k̇

+(2r − 1)f2
1 −

r∑
j=2

x̃2
j .

Denote zr = (2r − 1)f2
1 . Since f1(Z, x1, v, w) satisfies f1(0, 0, v, w) = 0, by Lemma

7.8 of [7] and Taylor Theorem, there exist a positive constant s1, some smooth function
∆1(Z) and a known smooth function φ(x̃1) such that

zr ≤ ∆1(Z)‖Z‖2 + s1φ(x̃1)x̃2
1.

Choose ∆(Z) ≥ ∆1(Z) + 1. Taking c ≥ max
(
δ, s1, 2 + b2(w),

(
k̇b1
kb1

)2)
and ρx1 ≥

γ(x̃1) + φ(x̃1) + 1
(k2

b1
−x̃2

1)
2 + 1 gives cρx1 ≥ δγ(x̃1) + s1φ(x̃1) + 2+b2(w)

(k2
b1
−x̃2

1)
2 +

(
k̇b1
kb1

)2

. Thus,
we get

V̇r ≤ (2b(w)N(k) + c)k̇ − ‖Z‖2 −
r∑

j=2

x̃2
j . (7)

Denote x̃c = (Z, x̃, b̂)> with x̃ = (x̃1, . . . , x̃r)>. Applying Lemma 2.1 to the inequal-
ity (7) leads to the conclusion that Vr(x̃c), k and

∫ t

0
(2b(w)N(k(τ)) + c)k̇(τ) dτ are all

bounded on [0,∞). Since Vr(x̃c) is a positive definite function of x̃c, x̃c is bounded for all
t ≥ 0. According to this, all the signals of the closed loop system (1) are bounded due to
the boundedness of v and w. Furthermore, it can be known that (Ż, ˙̃x) are bounded and
square integrable on [0,∞). By Barbalat’s Lemma, it is known that (Z, x̃) approaches
to zero as t →∞. As a result, the output x1(t) converges to zero asymptotically. From
Lemma 2.1, what can also be seen is that if |x̃1(0)| < kb1(0), then |x̃1(t)| < kb1(t) for
all t ∈ [0,∞). To sum up, the following theorem for the constrained robust adaptive
stabilization problem can be given.

Theorem 3.1. Under Assumption 2.1 and Assumption 2.2, the following robust adap-
tive feedback control law solves the constrained robust adaptive stabilization problem
of the system (1)

ū = αr

k̇ = ρx1 x̃
2
1

˙̂
b = γr−1 (8)

with i = 3, . . . , r,

N(k) = k2 cos(k)

γ1 = −∂α1

∂x̃1
x2x̃2

γi−1 = γi−2 −
∂αi−1

∂x̃1
x2x̃i
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α1 = N(k)(k2
b1 − x̃2

1)ρx1 x̃1

α2 = −f2 − x̃2 +
∂α1

∂k
k̇ +

∂α1

∂kb1

k̇b1 + b̂
∂α1

∂x̃1
x2 −

1
4
(
∂α1

∂x̃1
)2x̃2

αi = −fi − x̃i−1 − x̃i +
∂αi−1

∂k
k̇ +

∂αi−1

∂kb1

k̇b1 +
∂αi−1

∂b̂
γi−1 +

i−1∑
j=2

∂αi−1

∂x̃j

˙̃xj

−
(
b̂−

i−2∑
j=2

x̃j+1
∂αj

∂b̂

)∂αi−1

∂x̃1
x2 −

1
4
(
∂αi−1

∂x̃1
)2x̃i.

Remark 3.2. The proposed constrained robust adaptive stabilization design offers us
a greater flexibility to incorporate various desired constraint areas for the aimed con-
strained output. In fact, any function kb1(t) that is smooth positive definite, monotone
decreasing, asymptotically converges to a positive steady value when time approaches
to infinity, and whose time derivatives satisfy |k(i)

b1
(t)| ≤ K̄bi

for positive constants
K̄bi

, i = 0, . . . , r−1, for all t ≥ 0, can be a candidate. Many functions satisfy such prop-
erties, e. g. kb1(t) = 1

t+c + ε with some suitable positive constants c and ε. However,
due to easy physical realization, the constraint barrier kb1(t) we select in practice may
be much more to be an exponential function kb1(t) = Le−ct + ε with L, ε and c some
positive constants. Its corresponding constraint area for the output is shown in Figure 1.
Though kb1(t) can also be chosen to be static defined as a positive constant depending on
the allowed worst case constant bound of the output x1(t), i. e., maxt≥0{|x1(t)|}, as can
be seen from Figure 1, the exponential convergence constraint theoretically imposes a
much more stringent requirement on the transient behavior of the output than the static
constraint L+ε. And the shorter time for the output to approach zero could be expected
by an appropriate selection of the exponential convergence rate c and parameter ε.

Remark 3.3. We can compare the initial output requirement of Barrier Lyapunov
Function based design with that of Quadratic Lyapunov Function. According to Lemma
2.1, from the inequality (7) and the definition of Vblf in the equation (5), it can be seen
that, for all t ≥ 0, |x̃1(t)| < kb1(t) if the initial output requirement satisfies the inequality

|x̃1(0)| < kb1(0). (9)

However, the initial output requirement is more stringent with Quadratic Lyapunov
Function design. If we replace the Barrier Lyapunov Function Vblf with x̃2

1 and let
Vr =

∑r
i=1 x̃2

i + U(Z) + (b̂− b(w))2, then the controller obtained is in the same form as
the equation (8) except that ρx1 = β, α1 = N(k)ρx1 x̃

2
1 with some positive constant β.

The inequality (7) can also be obtained and further reduced into

V̇r ≤ (2b(w)N(k) + c)k̇.

Integrating both sides of the above inequality over [0, t), for all t ≥ 0, gives

Vr(t) ≤
∫ t

0

(2b(w)N(k(τ)) + c)k̇(τ) dτ + Vr(0).
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Fig. 1. The constraint area.

Since there exists some positive constant N0 such that
∫ t

0
(2b(w)N(k(τ))+c)k̇(τ) dτ ≤ N0

for all t ≥ 0, it can be obtained that 0 ≤ Vr(t) ≤ V̄r with the upper bound

V̄r = N0 + ᾱZ(‖Z(0)‖) +
r∑

j=1

x̃2
j (0) + 2(b̂2(0) + b2

M )

= M0 +
r∑

j=1

x̃2
j (0) (10)

where M0 = N0 + ᾱZ(‖Z(0)‖) + 2(b̂2(0) + b2
M ). Additionally, it holds that |x̃1(t)| ≤√

V̄r. Thus, a sufficient condition for |x̃1(t)| < kb1(t) is
√

V̄r < kb1(t). Since kb1(t) is
monotone decreasing, it holds that kb1(t) ≤ kb1(0), and then also V̄r < k2

b1
(0). Finally,

together with the equation (10), the initial output requirement with Quadratic Lyapunov
Function can be given as

|x̃1(0)| <

√√√√k2
b1

(0)−M0 −
r∑

j=2

x̃2
j (0). (11)

Comparing the inequality (11) with the inequality (9), it is apparent that the initial
output requirement is much more stringent when employing the Quadratic Lyapunov
Function, due to its relationship with M0 and

∑r
j=2 x̃2

j (0). Noting the fact that the
virtual control functions α1, α2, . . . , αr are associated with

∑r
j=2 x̃2

j , the control pa-
rameters in α1, α2, . . . , αr should be selected carefully so as to satisfy the condition
k2

b1
(0)−M0 −

∑r
j=2 x̃2

j (0) > 0. And even if such a condition were satisfied, the allowed
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feasible initial condition that guarantees the satisfaction of the constrained output is
much smaller than employing the Barrier Lyapunov Function technique.

4. APPLICATION TO CONSTRAINED ROBUST OUTPUT REGULATION
PROBLEM

In this section, the proposed control design in Section 3 will be applied to solve the
constrained robust output regulation for a class of nonlinear systems in the following
output feedback form

ẋ = F (w)x + G(y, v, w) + g(w)u + D1(v, w)
ẏ = H(w)x + K(y, v, w) + D2(v, w)
e = y − q(v, w) (12)

where (x, y)> ∈ Rn is the state, u ∈ R and y ∈ R are the input and output, respectively,
and e ∈ R is the tracking error, w ∈ Rnw is the uncertain parameter. The exogenous
signal v ∈ Rq is generated by the nonlinear exosystem

v̇ = a(v). (13)

It is assumed that the system (12) holds a uniform relative degree r ≥ 2. The
control coefficient g(w) 6= 0 and there exist positive constants gm and gM such that
gm < |g(w)| < gM for all w ∈ Rnw . All the functions in the system (12) are sufficiently
smooth with G(0, v, w) = 0, K(0, v, w) = 0, D1(0, w) = 0, D2(0, w) = 0 and q(0, w) = 0,
while F (w) is Hurwitz for all w ∈ Rnw . To have the problem well posed, it is further
assumed that the solution of the exosystem (13) starting from any initial state v(0)
exists for all t ≥ 0 and is globally bounded. The typical cases are those nonlinear
systems which exhibit (chaotic) attractors or asymptotically stable limit cycles.

As in [5], since a(0) = 0, the nonlinear exosystem (13) can be decomposed as

a(v) = A1v +
K∑

k=2

Akvak(v)

with some integer K ≥ 2, some matrices Ak ∈ Rq×q, and some sufficiently smooth
functions ak(v) : Rq → R satisfying ak(0) = 0.

The constrained robust output regulation problem studied in this section is to design
a robust adaptive output feedback control law u for the system composed of (12) and (13)
such that, all the closed loop signals are bounded and the output y could asymptotically
track the reference signal q(v, w), i. e., limt→∞ e(t) = 0, and furthermore, the constraint
barrier of the tracking error will not be violated, i. e., |e(t)| < kb1(t) for all t ≥ 0.

It is well known that the output regulation problem for output feedback systems can
be converted into a stabilization problem for augmented lower triangular systems. The
existence of a suitable internal model is the key to achieve such a conversion [2, 5]. For
the linear exosystem case, the work [7] has given several conditions for the existence of
the internal model. When the exosystem is nonlinear, it is more complicated and difficult
to find an appropriate internal model. But for the reason that the output regulation
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technique would have a much wider practical application with a nonlinear exosystem,
the output regulation problem for nonlinear systems under a nonlinear exosystem has
attracted great attention recently, see [5, 20, 22, 25] and their references therein. Though
[5, 22] have proposed the kind of internal model that involves the exogenous signal, it is
not zero input asymptotically stable [20]. Recently, another kind of internal model also
involving the exogenous signal is given in [25], which is zero input globally asymptotically
stable and consequently can achieve the global stabilization for the augmented system.
In this section, the kind of internal model given in [25] will be introduced to handle the
constrained robust output regulation problem for the system (12) subject to a nonlinear
exosystem and a unknown control coefficient.

By introducing a dynamic extension and performing the coordinate transformation
like that in [14], the system (12) can be converted into a familiar lower triangular form

ż = F̄ (w)z + Ḡ(y, v, w) + D̄1(v, w)
ẏ = H̄(w)z + K̄(y, v, w) + b(w)ξ1 + D̄2(v, w)
ξ̇i = −λiξi + ξi+1, i = 1, . . . , r − 2

ξ̇r−1 = −λr−1ξr−1 + u

e = y − q(v, w) (14)

with the control coefficient b(w) and the functions F̄ (w), Ḡ(y, v, w), D̄1(v, w), H̄(w),
K̄(y, v, w) and D̄2(v, w) defined in [7].

In this respect, by employing the internal model principle in [25], the robust output
regulation problem for the system (12) with output error constraint can be further
converted into a robust stabilization problem for a transformed augmented system with
output constraint. To achieve this, a few standard assumptions are listed.

Assumption 4.1. For all v ∈ Rq and w ∈ Rnw , there exists a sufficiently smooth
function z(v, w) with z(0, 0) = 0 such that

∂z(v, w)
∂v

a(v) = F̄ (w)z(v, w) + Ḡ(q(v, w), v, w)q(v, w) + D̄1(v, w). (15)

Remark 4.1. It is noticed that, unlike the special case where a(v) is linear and the
power series approach [1, 7] can be well applied to obtain the solution of the regulator
equations, the solution of the equation (15) with nonlinear exosystem remains difficult
[17] or impossible even in the case where all functions in (15) are of polynomial nonlin-
earity.

Assumption 4.1 guarantees that the regulator equations associated with the extended
system (14) and the nonlinear exosystem (13) have a global solution given as

y(v, w) = q(v, w)

Ξ1(v, w) =
1

b(w)
(Lay(v, w)− H̄(w)z(v, w)− K̄(y(v, w), v, w)− D̄2(v, w))

Ξi(v, w) = LaΞi−1(v, w) + λi−1Ξi−1(v, w), i = 2, . . . , r − 1
u(v, w) = LaΞr−1(v, w) + λr−1Ξr−1(v, w)
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where Lay(v, w) and LaΞi(v, w) are the Lie derivatives of y(v, w) and Ξi along a(v),
respectively.

Assumption 4.2. There exist some integer s and sufficiently smooth scalar functions
bi(v), i = 1, . . . , s, such that

dsΞ1(v, w)
dts

= b0(v)Ξ1(v, w) + b1(v)
dΞ1(v, w)

dt
+ . . . + bs−1(v)

ds−1Ξ1(v, w)
dts−1

.

Under Assumption 4.2, a steady-state input generator with output Ξ1 can be given
as

dτ(v, w)
dt

= Φ(v)τ(v, w)

Ξ1(v, w) = Γτ(v, w)

with τ(v, w) = (τ1, τ2, . . . , τs)> = (Ξ1, Ξ̇1, . . . ,Ξs−1
1 )>, Φ(v) =

 bs−1(v)
... Is−1

b0(v) 0

 and

Γ = [1 0 . . . 0]. Moreover, the matrix Φ(v) can be rewritten as Φ(v) = Φb + b(v)Γ,

with Φb =

 0
... Is−1

0 0

 and b(v) =

 bs−1(v)
...

b0(v)

.

Since the pair (Φb,Γ) is observable, for any Hurwitz matrix M ∈ Rs×s and N ∈ Rs×1

such that (M,N) is controllable, there is a unique and nonsingular matrix T satisfying
the Sylvester equation TΦb −MT = NΓ. Let θ(v, w) = Tτ(v, w) and β1(θ) = Γ(T−1θ),
then θ̇(v, w) = TΦ(v)T−1θ(v, w). Further, let βi(θ, v) = ∂βi−1(θ,v)

∂θ θ̇ + ∂βi−1(θ,v)
∂v a(v) +

λi−1βi−1(θ, v), i = 2, . . . , r. It is noticed that the functions βi, i = 1, . . . , r, are indepen-
dent on b(w). Denote N(v) = N + Tb(v), an internal model of the system (14) with the
output ξ1 [25] is

η̇ = Mη + N(v)ξ1. (16)

Performing on the augmented system composed of (14) and (16) the following coor-
dinate and input transformation

z̄ = z − z(v, w)
e = y − q(v, w)

ξ̄1 = ξ1 − β1(η)
ξ̄i = ξi − βi(η, v), i = 2, . . . , r − 1
η̄ = η − θ(v, w)−N(v)b−1(w)e
ū = u− βr(η, v)
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yields the augmented system in a lower triangular form

˙̄z = F̄ (w)z̄ + G̃(x1, v, w)
˙̄η = Mη̄ + f0(z̄, η̄, x1, v, w)

ẋ1 = f1(z̄, η̄, x1, v, w) + b(w)x2

ẋi = fi(x1, . . . , xi, η, v) + xi+1, i = 2, . . . , r − 1
ẋr = fr(x1, . . . , xr, η, v) + ū (17)

where x = (x1, . . . , xr)> = (e, ξ̄1, . . . , ξ̄r−1)>, Ψ = ΓT−1,

G̃(x1, v, w) = Ḡ(q(v, w) + x1, v, w)− Ḡ(q(v, w), v, w)

K̃(x1, v, w) = K̄(q(v, w) + x1, v, w)− K̄(q(v, w), v, w)

f0(z̄, η̄, x1, v, w) = MN(v)b−1(w)x1 −N(v)b−1(w)(H̄(w)z̄ + K̃(x1, v, w))
−N (1)(v)b−1(w)x1

f1(z̄, η̄, x1, v, w) = H̄(w)z̄ + K̃(x1, v, w) + b(w)Ψ
(
η̄ + N(v)b−1(w)x1

)
fi(x1, . . . , xi, η, v) = −∂βi−1(η, v)

∂η
N(v)ξ̄1 − λi−1ξ̄i−1, i = 2, . . . , r.

Denote Z = (z̄, η̄)>, then the system (17) can be rewritten as

Ż = F (Z, x1, v, w)
ẋ1 = f1(Z, x1, v, w) + b(w)x2

ẋi = fi(x1, . . . , xi, η, v) + xi+1, i = 2, . . . , r − 1
ẋr = fr(x1, . . . , xr, η, v) + ū (18)

where F (Z, x1, v, w) =
[

F̄ (w)z̄ + G̃(x1, v, w)
Mη̄ + f0(z̄, η̄, x1, v, w)

]
.

Now, the solution of the stabilization problem with constraint on the output x1

for the system (18) directly determines the solution of the original constrained robust
output regulation problem for the system (12). It can be seen that the system (18)
is actually in the form of the system (1) with the output x1 except that the functions
fi(x1, . . . , xi, v, η), i = 2, 3, . . . , r are associated with v and η. But it has no impact on
employing the proposed control design in Section 3 due to the availability of v and η.
Also, since F (w) is Hurwitz for all w and M is also a Hurwitz matrix, by Lemma 3.1
of [24], Assumption 2.2 is satisfied with α(‖Z‖) = ‖Z‖2, some known smooth positive
definite function γ0(x1) and some positive constant δ0 depending on w and v(0).

Thus, applying Theorem 3.1 to the system (18) gives the following theorem.

Theorem 4.1. Under Assumption 4.1 and Assumption 4.2, the feedback control law
composed of (8) and (16) solves the constrained robust output regulation problem for
the system (14) with the nonlinear exosystem (13).
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5. AN EXAMPLE

In order to illustrate its effectiveness, the proposed control design is applied to solve the
constrained robust output regulation problem for the following system.

ż = −z + 2wv1y + v2
2 − 2(1 + w)v1v2

ẏ = wz − v1y + b(w)ξ1 + v1v2 − v1 − wv2
2 − v2

ξ̇1 = −ξ1 + u

e = y − v2 (19)

where w represents the uncertain parameter and b(w) represents the unknown control
coefficient. The exogenous signal is generated by

v̇1 = v1 −
v3
1

3
+ v2

v̇2 = −v1. (20)

Let us first show that the system composed of (19) and (20) satisfies Assumption
4.1. In fact, it can be verified that the solution of the regular equations is z(v, w) = v2

2 ,
y(v, w) = v2, Ξ1(v, w) = 1

b(w)v2 and u(v, w) = 1
b(w) (v2 − v1). Also, since d2Ξ1(v,w)

dt2 =

−Ξ1(v, w) + (1 − v2
1
3 )dΞ1(v,w)

dt , Assumption 4.2 is satisfied with Γ = [1 0] and Φ(v) =[
1− v2

1
3 1

−1 0

]
. Choosing the controllable pair (M,N) as M =

[
−2 1
−1 0

]
, N =

[
2
1

]
and solving the Sylvester equation TΦb − MT = NΓ gives T =

[
1 0
0 1

]
and the

following internal model

η̇ =
[
−2 1
−1 0

]
η +

[
3− v2

1
3

0

]
ξ1. (21)

With the above T , we can get β1(η) = η1, β2(η, v) = (2 − v2
1
3 )η1 + η2. Then by

performing the coordinate and input transformation

z̄ = z − z(v, w)
e = y − v2

ξ̄1 = ξ1 − β1(η)
η̄ = η − θ(v, w)−N(v)b−1(w)e
ū = u− β2(η, v)

on the system composed of (19) and (21) and letting Z = (z̄, η̄)>, x = (x1, x2)> =
(e, ξ̄1)>, it yields the following lower triangular system in the form of (18)

Ż = F (Z, x1, v, w)
ẋ1 = f1(Z, x1, v, w) + b(w)x2

ẋ2 = f2(x1, x2, v) + ū
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where

F (Z, x1, v, w) =

 2wv1

(− 5
9v3

1 + 4
3v2

1 + 2
3v1v2 + 3v1 − 6)b−1(w)

( 1
3v2

1 − 3)b−1(w)

x1

+

 −1 0 0
(− 1

3v2
1 + 3)b−1(w) −2 1

0 −1 0

Z

f1(Z, x1, v, w) = (−1
3
v2
1 − v1 + 3)x1 + [w b(w) 0]Z

f2(x1, x2, v) = −x2 − (3− v2
1

3
)x1.

According to Theorem 4.1, a specific controller for the system composed of (19) and
(20) is

u = α2 + β2(η, v)
k̇ = ρx1 x̃

2
1

˙̂
b = −∂α1

∂x̃1
x̃2x2

η̇ =
[
−2 1
−1 0

]
η +

[
3− v2

1
3

0

]
ξ1

N(k) = k2 cos(k), ρx1 = 40
(
1 +

1
(k2

b1
− x̃2

1)2
)

α1 = N(k)(k2
b1 − x̃2

1)ρx1 x̃1

α2 = x2 + (3− v2
1

3
)x1 − x̃2 +

∂α1

∂k
k̇ +

∂α1

∂kb1

k̇b1 + b̂
∂α1

∂x̃1
x2 −

1
4
(
∂α1

∂x̃1
)2x̃2

x1 = e, x2 = ξ1 − β1(η)
x̃1 = e, x̃2 = ξ1 − β1(η)− α1.

The computer simulation is carried out with initial conditions (z(0), y(0), ξ1(0)) =
(0.5, 3.5, 0), (k(0), b̂(0), η(0)) = 0 and v(0) = (3, 3), and the parameters w = 1.5 and
|b(w)| = 1. The constraint barrier of the tracking error e(t) is selected as kb1(t) =
3.0e−0.06t + 0.1.

The simulation results under conditions where b(w) = 1 or b(w) = −1 are shown in
Figures 2 to 6. The tracking performance of the system composed of (19) and (20) is
shown in Figures 2 to 3, from which we can see that the tracking error e(t) asymptotically
approaches to zero while keeping in the prescribed constraint barrier kb1(t) for all t ≥ 0.
Figure 4 shows the portraits of the Nussbaum function, while Figures 5 to 6 give the
states of the closed loop system. It can be seen that the proposed control design has
a satisfactory performance.
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Fig. 2. Output of the system with b(w) = 1 and b(w) = −1.
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Fig. 3. Tracking error of the system with b(w) = 1 and b(w) = −1.



466 J. LAN, W. SUN AND Y. PENG

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time(sec)

 

 

N(k) for b(w)=1

k for b(w)=1

N(k) for b(w)=-1

k for b(w)=-1

Fig. 4. Nussbaum gain with b(w) = 1 and b(w) = −1.
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Fig. 5. States of the system with b(w) = 1.
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Fig. 6. States of the system with b(w) = −1.

6. CONCLUSION

In this paper, a feedback control design has been presented for the constrained robust
adaptive stabilization problem for a class of lower triangular nonlinear systems without a
prior knowledge of the control direction. Such a controlled problem arises from studying
the constrained robust output regulation problem for a class of output feedback systems
subject to a nonlinear exosystem and the unknown control direction. Thus an application
of the main result leads to the solvability conditions of the output regulation problem.
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