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Fixed point theorems of G-fuzzy contractions in fuzzy
metric spaces endowed with a graph

Satish Shukla

Abstract. Let (X,M, ∗) be a fuzzy metric space endowed with a graph G
such that the set V (G) of vertices of G coincides with X. Then we define a
G-fuzzy contraction on X and prove some results concerning the existence
and uniqueness of fixed point for such mappings. As a consequence of the
main results we derive some extensions of known results from metric into
fuzzy metric spaces. Some examples are given which illustrate the results.

1 Introduction
The concept of fuzzy sets was introduced by Zadeh [12]. He considered the nature
of uncertainty in the behaviour of systems possessing fuzzy nature by means of
a fuzzy set. The concept of fuzzy metric space was introduced by Kramosil and
Michálek [7]. George and Veeramani [1] modified the definition of fuzzy metric
spaces due to Kramosil and Michálek. The fixed point theory in fuzzy metric
spaces was started by Grabiec [13] which has become of interest for several authors.
Gregori and Sapena [15] introduced the concept of fuzzy contractive mappings and
proved some fixed point results for fuzzy contractive mappings.

On the other hand, Jachymski [11] introduced the fixed point theory in the
spaces endowed with a graph. The fixed point results on the spaces endowed with
a graph generalize and unify several known results in the literature, e.g., the fixed
point results on the spaces endowed with a partial order [3], [8], [10] and the fixed
point results for the cyclic mappings (see [6] and [11]).

In this paper, we introduce the G-fuzzy contractions as an extension of Banach
G-contraction (see [11]) in fuzzy metric spaces and prove some fixed point results
for such mappings in complete fuzzy metric spaces in the sense of Grabiec [13].
Our results are the extension of results of Jachymski [11] and a generalization of
result of Gregori and Sapena [15] in fuzzy metric spaces.

2010 MSC: 54H25, 47H10
Key words: graph, partial order, fuzzy metric space, contraction, fixed point
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2 Preliminaries
Firstly, we recall some known definitions and the properties about the fuzzy metric
spaces.

Definition 1 (Schweizer and Sklar [4]). A binary operation T : [0, 1] × [0, 1] →
[0, 1] is called a t-norm if the following conditions are satisfied:

(T1) T (a, b) = T (b, a);

(T2) T (a, b) ≤ T (c, d) for a ≤ c, b ≤ d;

(T3) T (T (a, b), c) = T (a, T (b, c));

(T4) T (a, 0) = 0, T (a, 1) = 1;

for all a, b, c, d ∈ [0, 1].

For a, b ∈ [0, 1], instead of T (a, b) we will use the infix notation a ∗ b. For
a1, a2, . . . , an ∈ [0, 1] and n ∈ N, the product a1 ∗ a2 ∗ · · · ∗ an will be denoted by∏n
i=1 ai. For the details concerning t-norms the reader is referred to [5], [14].

In the present paper we will use the following definition of a fuzzy metric space:

Definition 2 (George and Veeramani [1]). A triple (X,M, ∗) is called a fuzzy met-
ric space if X is a nonempty set, ∗ is a continuous t-norm and M : X2 × (0,∞)→
[0, 1] is a fuzzy set satisfying following conditions:

(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);

(GV5) M(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping;

for all x, y, z ∈ X and s, t > 0.

Example 1 (George and Veeramani [1]). Let (X, d) be a metric space, then the
triple (X,Md, ∗) is a fuzzy metric space, where a ∗ b = ab for all a, b ∈ [0, 1] and

Md(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X, t > 0.

Md is called the standard fuzzy metric induced by the metric d.

Let (X,M, ∗) be a fuzzy metric space. An open ball B(x, r, t) with center x ∈ X
and radius r, 0 < r < 1 and t > 0 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} .

The collection {B(x, r, t) : x ∈ X, 0 < r < 1, t > 0} is a neighbourhood system for
the topology τ on X induced by the fuzzy metric M .

For topological properties of a fuzzy metric space in the sense of George and
Veeramani the reader is referred to [1].
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Remark 1 (George and Veeramani [2]). Let (X,M, ∗) be a fuzzy metric space,
then the function M(x, y, ·) is a nondecreasing function.

Theorem 1 (George and Veeramani [1]). Let (X,M, ∗) be a fuzzy metric space,
and τ be the topology induced by the fuzzy metric. Then for a sequence {xn} in X,
xn → x if and only if

∀t>0 lim
n→∞

M(xn, x, t) = 1 .

In this paper, we use the following definitions of Cauchy sequence and complete
fuzzy metric space.

Definition 3 (Grabiec [13]). Let (X,M, ∗) be a fuzzy metric space and {xn} be a
sequence in X. Then {xn} is called a Cauchy sequence if

∀t>0 ∀p>0 lim
n→∞

M(xn+p, xn, t) = 1 .

A complete fuzzy metric space is a fuzzy metric space in which every Cauchy
sequence is convergent.

Definition 4 (Gregori and Sapena [15]). Let (X,M, ∗) be a fuzzy metric space.
A mapping T : X → X is called t-uniformly continuous if for all r ∈ (0, 1) there
exists s ∈ (0, 1) such that

∀x,y∈X ∀t>0

[
M(x, y, t) ≥ 1− s ⇒ M(Tx, Ty, t) ≥ 1− r

]
.

Remark 2. If T is t-uniformly continuous then it is uniformly continuous for the
uniformity generated by M , thus it is continuous for the topology deduced from M .
For the details concerning a uniform structure in a fuzzy metric space, see [15].

Definition 5 (Gregori and Sapena [15]). Let (X,M, ∗) be a fuzzy metric space.
A mapping T : X → X is called a fuzzy contractive mapping if there exists λ ∈ (0, 1)
such that

∀x,y∈X ∀t>0
1

M(Tx, Ty, t)
− 1 ≤ λ

[
1

M(x, y, t)
− 1

]
. (1)

It is obvious that if T is a fuzzy contractive mapping then it is t-uniformly
continuous and so continuous.

Following concepts about the graphs are similar to those in [11].
Let (X,M, ∗) be a fuzzy metric space. Let ∆ denote the diagonal of the Carte-

sian product X × X. Consider a directed graph G such that the set V (G) of its
vertices coincides with X, and the set E(G) of its edges contains all loops, i.e.,
E(G) ⊇ ∆. We assume G has no parallel edges, so we can identify G with the pair
(V (G), E(G)). Moreover, we may treat G as a weighted graph by assigning to each
edge the fuzzy distance between its vertices.

By G−1 we denote the conversion of a graph G, i.e., the graph obtained from G
by reversing the direction of edges. Thus we have

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)} .
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The letter G̃ denotes the undirected graph obtained from G by ignoring the direc-
tion of edges. Actually, it will be more convenient for us to treat G̃ as a directed
graph for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1) . (2)

If x and y are vertices in a graph G, then a path in G from x to y of length l is a
sequence (xi)

l
i=0 of l + 1 vertices such that x0 = x, xl = y and (xi−1, xi) ∈ E(G)

for i = 1, . . . , l. A graph G is called connected if there is a path between any two
vertices of G. A graph G is weakly connected if G̃ is connected. For a graph G
such that E(G) is symmetric and x is a vertex in G, the subgraph Gx consisting
of all edges and vertices which are contained in some path beginning at x is called
the component of G containing x. In this case V (Gx) = [x]G, where [x]G is the
equivalence class of a relation R defined on V (G) by the rule: yRz if there is a
path in G from y to z. Clearly, Gx is connected.

Now we can state our main results.

3 Main results
Throughout this section we assume that X is nonempty set, G is a directed graph
such that V (G) = X and E(G) ⊇ ∆.

First we define the Cauchy equivalent sequence and G-fuzzy contraction in fuzzy
metric spaces.

Definition 6. Let (X,M, ∗) be a fuzzy metric space and G be a graph. Two se-
quences (xn)n∈N and (yn)n∈N in X are said to be Cauchy equivalent if each of them
is a Cauchy sequence and lim

n→∞
M(xn, yn, t) = 1 for all t > 0.

Definition 7. Let (X,M, ∗) be a fuzzy metric space and G be a graph. The map-
ping T : X → X is said to be a G-fuzzy contraction if the following conditions
hold:

(GF1) ∀x,y∈X
(
(x, y) ∈ E(G)⇒ (Tx, Ty) ∈ E(G)

)
, i.e., T is edge-preserving;

(GF2) ∃λ∈(0,1) ∀x,y∈X ∀t>0

(
(x, y) ∈ E(G)⇒ 1

M(Tx, Ty, t)
− 1

≤ λ
[

1

M(x, y, t)
− 1

])
,

where λ is called the contractive constant of T.

An obvious consequence of symmetry of M(·, ·, t) and (2) is the following re-
mark.

Remark 3. If T is a G-fuzzy contraction then it is both a G−1-fuzzy contraction
and a G̃-fuzzy contraction.

Example 2. Any constant function T : X → X, that is Tx = c, x ∈ X, where
c ∈ X is fixed, is a G-fuzzy contraction with arbitrary value of λ ∈ (0, 1) since
E(G) contains all the loops.



Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph 5

Example 3. Any fuzzy contractive mapping is a G0-fuzzy contraction with the
same contractive constant, where the graph G0 is defined by E(G0) = X ×X.

Example 4. Let (X, d) be a metric space endowed with a partial order v and
T : X → X be an ordered contraction, i.e.,

∃λ∈(0,1) ∀x,y∈X
(
x v y ⇒ d(Tx, Ty) ≤ λd(x, y)

)
.

Then T is a Gd-fuzzy contraction in the induced fuzzy metric space (X,Md, ∗) with
contractive constant λ, where Gd = {(x, y) ∈ X ×X : x v y}.

We see that every fuzzy contractive mapping is t-uniformly continuous. Follow-
ing example shows that a G-fuzzy contraction need not be even continuous.

Example 5. Let (R+, d) be the usual metric space of positive reals and (R+,Md, ∗)
be the standard fuzzy metric space induced by d. Let G be the graph defined by
V (G) = X and

E(G) = ∆ ∪ {(x, y) ∈ X ×X : x, y ∈ Q ∩ R+ with x ≤ y}

Let the mapping T : X → X be defined by

Tx =


x

2
, if x ∈ Q ∩ R+;

0, otherwise.

Then it is clear that T is not continuous. Now one can see easily that T is a G-fuzzy
contraction with λ = 1

2 .

Definition 8. Let (X,M, ∗) be a fuzzy metric space and T : X → X be a mapping.
We denote the nth iterate of T on x ∈ X by Tnx and Tnx = TTn−1x for all n ∈ N
with T 0x = x. T is called a Picard operator if T has a unique fixed point u and
lim
n→∞

M(Tnx, u, t) = 1 for all x ∈ X, t > 0. T is called a weakly Picard operator if

for all x ∈ X there exists a fixed point ux ∈ X (which may depend on x) of T such
that lim

n→∞
M(Tnx, ux, t) = 1 for all t > 0.

Note that every Picard operator is a weakly Picard operator. Also, the fixed
point of a weakly Picard operator may not be unique. In further discussion, we
will denote the set of all fixed points of T by FixT . A subset A ⊂ X is said to be
T -invariant if T (A) ⊂ A.

The following lemma will be useful in sequel.

Lemma 1. Let T : X → X be a G-fuzzy contraction, then given x ∈ X and y ∈
[x]G̃, we have lim

n→∞
M(Tnx, Tny, t) = 1 for all t > 0.
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Proof. Let x ∈ X and y ∈ [x]G̃. Then by definition there exists a path (xi)
m
i=0 in G̃

from x to y, i.e., x0 = x, xm = y and (xi, xi−1) ∈ E(G̃) for i = 1, 2, . . . ,m. By Re-
mark 3, T is a G̃-fuzzy contraction. Therefore by (GF1) we have (Tnxi, T

nxi−1) ∈
E(G̃) and by (GF2), for i = 1, 2, . . . ,m and t > 0 we have

1

M(Tnxi−1, Tnxi, t)
− 1 ≤ λn

[
1

M(xi−1, xi, t)
− 1

]
. (3)

Now we can choose a strictly decreasing sequence (an)n∈N of positive numbers such

that
∞∑
i=1

ai = 1 and then using (3) we obtain

M(Tnx, Tny, t) = M
(
Tnx0, T

nxm,

∞∑
i=1

ait
)

≥M
(
Tnx0, T

nxm,

m∑
i=1

ait
)
≥

m∏
i=1

M(Tnxi−1, T
nxi, ait)

≥
m∏
i=1

[
1

1− λn + λn

M(xi−1,xi,ait)

]
.

As λ ∈ (0, 1) we obtain lim
n→∞

M(Tnx, Tny, t) = 1 for all t > 0. �

The following theorem shows the equivalency of connectedness of graph and the
convergence of an iterative sequences in fuzzy metric spaces.

Theorem 2. The following statements are equivalent:

(i) G is weakly connected;

(ii) for anyG-fuzzy contraction T : X → X, given x, y ∈ X the sequences (Tnx)n∈N
and (Tny)n∈N are Cauchy equivalent;

(iii) for any G-fuzzy contraction T : X → X, card(FixT ) ≤ 1.

Proof. (i)⇒(ii): Let T be a G-fuzzy contraction and x, y ∈ X then by hypothesis
G is weakly connected, therefore [x]G̃ = X and so T px ∈ [x]G̃ for all p ∈ N. Now by
Lemma 1, we have (Tnx)n∈N is a Cauchy sequence. Similarly, (Tny)n∈N is a Cauchy
sequence. Since [x]G̃ = X therefore by Lemma 1, we have lim

n→∞
M(Tnx, Tny, t) = 1

for all t > 0. Hence the sequences (Tnx)n∈N and (Tny)n∈N are Cauchy equivalent.
(ii)⇒(iii): Let x, y ∈ FixT, where T is a G-fuzzy contraction. Since x, y ∈

FixTn and we have M(x, y, t) = M(Tnx, Tny, t). So by assumption x = y.

(iii)⇒(i): Suppose (iii) holds but G is not weakly connected, i.e., G̃ is dis-
connected. Let u ∈ X, then both the sets [u]G̃ and X \ [u]G̃ are nonempty. Let
v ∈ X \ [u]G̃ and define a mapping T : X → X by

Tx =

{
u, if x ∈ [u]G̃;
v, if x ∈ X \ [u]G̃.
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Now clearly FixT = {u, v}. We show that T is a G-fuzzy contraction. If (x, y) ∈
E(G) then by the definition we have [x]G̃ = [y]G̃, so either x, y ∈ [u]G̃ or u, v ∈
X \ [u]G̃. In both the cases we have Tx = Ty and so (Tx, Ty) ∈ E(G) (since
E(G) ⊇ ∆) and (GF1) is satisfied. Also, M(Tx, Ty, t) = 1 for all t > 0 so (GF2)
is satisfied. Thus T is a G-fuzzy contraction and card(FixT ) = 2 > 1. This
contradiction proves the result. �

The following corollary is an immediate consequence of the above theorem.

Corollary 1. Let (X,M, ∗) be a complete fuzzy metric space. Then the following
statements are equivalent:

(i) G is weakly connected;

(ii) for any G-fuzzy contraction T : X → X, there is x∗ ∈ X such that lim
n→∞

Tnx =

x∗ for all x ∈ X.

The proof of following proposition is similar as for the metric case (see, e.g., [11]).

Proposition 1. Assume that T : X → X is a G-fuzzy contraction such that for
some x0 ∈ X we have Tx0 ∈ [x0]G̃. Let G̃x0 be the component of G̃ containing x0.

Then [x0]G̃ is T -invariant and T |[x0]G̃
is a G̃x0-fuzzy contraction. Moreover, if

x, y ∈ [x0]G̃, then the sequences (Tnx)n∈N and (Tny)n∈N are Cauchy equivalent.

Definition 9. Let (X,M, ∗) be a fuzzy metric space and G be a directed graph,
T : X → X be a mapping and x, x∗ ∈ X. Then we say that the 4-tuple (X,M, ∗, G)
have the property (PT ) if for any sequence (Tnx)n∈N, which converges to x∗ with
(Tnx, Tn+1x) ∈ E(G) for all n ∈ N there exists is a subsequence (T knx)n∈N with
(T knx, x∗) ∈ E(G) for n ∈ N.

Theorem 3. Let (X,M, ∗) be a complete fuzzy metric space and G be a directed
graph and let the 4-tuple (X,M, ∗, G) have the property (PT ). Let T : X → X
be a G-fuzzy contraction and XT = {x ∈ X : (x, Tx) ∈ E(G)}, then the following
statements hold:

(A) if x ∈ XT , then T |[x]G̃ is a Picard operator;

(B) if XT 6= ∅ and G is weakly connected, then T is a Picard operator;

(C) FixT 6= ∅ if and only if XT 6= ∅;

(D) if T ⊆ E(G), then T is a weakly Picard operator.

Proof. To prove (A) let x ∈ XT . By definition of XT , (x, Tx) ∈ E(G) and so we
have Tx ∈ [x]G̃. Now by Proposition 1, we have T : [x]G̃ → [x]G̃ and T is a G̃x-fuzzy

contraction and if y ∈ G̃x then (Tnx)n∈N and (Tny)n∈N are Cauchy equivalent and
so (Tnx)n∈N is a Cauchy sequence. By completeness of X and Theorem 1 there
exists x∗ ∈ X such that

lim
n→∞

M(Tnx, x∗, t) = 1 for all t > 0 . (4)
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Since (x, Tx) ∈ E(G) we have (x, Tx) ∈ E(G̃) and so by (GF1) we have

(Tnx, Tn+1x) ∈ E(G) for all n ∈ N . (5)

Now by property (PT ) there exists a subsequence (T knx)n∈N such that (T knx, x∗) ∈
E(G) for all n ∈ N. Hence, (x, Tx, T 2x, . . . , T knx, x∗) is a path in G and so in G̃.
Therefore, x∗ ∈ [x]G̃. Using (GF2) we have

1

M(T kn+1x, Tx∗, t)
− 1 ≤ λ

[
1

M(T knx, x∗, t)
− 1

]
for all t > 0. Using the above inequality we obtain

M(x∗, Tx∗, t) ≥M(x∗, T kn+1x, t/2) ∗M(T kn+1x, Tx∗, t/2)

≥M(x∗, T kn+1x, t/2) ∗

[
1

1− λ+ λ
M(Tknx,x∗,t/2)

]
.

Letting n→∞ and using (4) in the above inequality we obtain M(x∗, Tx∗, t) = 1
for all t > 0. Thus Tx∗ = x∗, i.e., x∗ ∈ [x]G̃ is a fixed point of T and so by
Theorem 2, T |[x]G̃ is a Picard operator.

To prove (B) let XT 6= ∅ and G is weakly connected then [x]G̃ = X for all
x ∈ XT and so by (A) T is a Picard operator.

To prove (C), note that if FixT 6= ∅ then there is some x ∈ FixT then Tx = x
and E(G) ⊇ ∆ we have (x, Tx) ∈ E(G). So x ∈ XT and FixT ⊆ XT 6= ∅. If
XT 6= ∅, then by (A) for any x ∈ XT , T |[x]G̃ is a Picard operator and so FixT 6= ∅.

To prove (D) if T ⊆ E(G), then (x, Tx) ∈ E(G) for all x ∈ X and so X = XT .
Now the result follows from (A). �

In the above theorem, if x ∈ XT then T |[x]G̃ is a Picard operator, but if G is not
weakly connected then T need not be a Picard operator on X, i.e., the fixed point
of T need not be unique. The following example illustrates the above Theorem.

Example 6. Let X =
{ 1

2n
: n ∈ N

}
= Xo ∪ Xe, where Xo =

{ 1

2n
: n ∈ No

}
,

Xe =
{ 1

2n
: n ∈ Ne

}
and No, Ne are the set of all odd and even natural numbers

respectively. Let ∗ be the product norm, i.e., a ∗ b = ab for all a, b ∈ [0, 1]. Define
the fuzzy set M : X2 × (0,∞)→ [0, 1] by

M(x, y, t) =

{
1, if x = y;

xy, otherwise
∀t > 0 .

Let T : X → X be a mapping defined by

T

(
1

2n

)
=


1

2
, if x ∈ No;

1

4
, if x ∈ Ne.
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Let G be the graph with V (G) = X and

E(G) = (Xo ×Xo) ∪ (Xe ×Xe).

Then it is easy to see that T is a G-fuzzy contraction with arbitrary λ ∈ (0, 1)
and by definition of T the condition (PT ) holds. Note that for all k ∈ No we have
1

2k
∈ XT and

[
1

2k

]
G̃

= Xo and T |Xo
is a Picard operator. Similarly,

1

2k
∈ XT and[

1

2k

]
G̃

= Xe for all k ∈ Ne and T |Xe is a Picard operator.

Now it is easy to see that G is not weakly connected and T is not a Picard

operator on X since FixT =
{1

2
,

1

4

}
. Also, T ⊆ E(G) and T is a weakly Picard

operator on X.

The next example shows that the results of this paper generalize the corre-
sponding classical concepts in the classical metric space.

Example 7. Let X =
{ 1

22n
: n ∈ N0

}
, N0 = N ∪ {0}. Then the triple (X,Md, ∗) is

a fuzzy metric space, where a ∗ b = ab for all a, b ∈ [0, 1] and

M(x, y, t) =

{
1, if x = y ;

xy, otherwise
for all t > 0 .

Note that there exists no metric d on X satisfying M(x, y, t) =
t

t+ d(x, y)
. There-

fore, this fuzzy metric is not a standard fuzzy metric induced by a metric (in the
sense of George and Veeramani [1]). Define a mapping T : X → X by

T

(
1

22n

)
=


1

22n−1 , if n ∈ N ;

1

2
, if n = 0 .

Let G be the graph with V (G) = X and

E(G) = {(x, y) ∈ X ×X : x ≤ y} .

Then it is easy to see that T is a G-fuzzy contraction with λ ∈ [1/2, 1). Also, the
property (PT ) is satisfied trivially and XT 6= ∅. By definition, the graph G is weakly

connected and by (B) of Theorem 3, T is a Picard operator with FixT =

{
1

2

}
.

On the other hand, T is not a Banach contraction with respect to the usual
metric d, and therefore it is not a fuzzy contractive mapping with respect to the
standard fuzzy metric M(x, y, t) = t

t+d(x,y) induced by d. To see this, take the

points x = 1
4 , y = 1

16 ∈ X and then T fails to be a Banach contraction with respect
to d.
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Now we give some consequences of Theorem 3. The following corollary is the
fuzzy metric version and an improvement of the result of Nieto and Rodríguez-
López [9].

Corollary 2. Let (X,M, ∗) be a complete fuzzy metric space and � be a partial
order defined on X. Let T : X → X be a nondecreasing mapping (i.e., x � y ⇒
Tx � Ty) such that the following contractive condition is satisfied:

∃λ∈(0,1) ∀x,y∈X ∀t>0

(
x � y ⇒ 1

M(Tx, Ty, t)
− 1 ≤ λ

[
1

M(x, y, t)
− 1

])
.

Assume that the following condition holds:

if there is a nondecreasing sequence (xn)n∈N in X which converges to x ∈ X and
xn+1 � xn for all n ∈ N, then xn � x or x � xn for all n ∈ N. (P ′)

If there exists x0 ∈ X such that x0 � Tx0 or Tx0 � x0, then T has a fixed
point in X.

Proof. Let G be the graph defined by V (G) = X and

E(G) = {(x, y) ∈ X ×X : x � y ∨ y � x}.

Then since T is nondecreasing (GF1) holds and by the contractive condition (GF2)
also holds. Therefore T is a G-fuzzy contraction. Also (P ′) implies (PT ) and by
assumption (x0, Tx0) ∈ E(G) so x0 ∈ XT . Therefore by (A) of Theorem 3, T |[x0]G̃
is a Picard operator and so has a fixed point in T |[x0]G̃

. �

Recently, Kirk et al. [16] introduced the idea of cyclic contractions and estab-
lished fixed point results for such mappings.

Let X be a nonempty set, m a positive integer, Ai, i = 1, 2, . . . ,m are nonempty
subsets of X and T :

⋃m
i=1Ai →

⋃m
i=1Ai be a mapping, then B =

⋃m
i=1Ai is said

to be a cyclic representation of B with respect to T if

T (A1) ⊂ A2 , T (A2) ⊂ A3 , . . . , T (Am) ⊂ T (A1)

and then T is called a cyclic operator [16].
The following corollary is the fuzzy metric version of the result of Kirk et al. [16].

Corollary 3. Let (X,M, ∗) be a complete fuzzy metric space, m be a positive in-
teger, Ai, i = 1, 2, . . . ,m be nonempty closed subsets of X and B =

⋃m
i=1Ai be a

cyclic representation of B with respect to T. Suppose Am+i = Ai for all i ∈ N and
following condition holds:

∃λ∈(0,1)
(
x ∈ Ai , y ∈ Ai+1 , i = 1, 2, . . . ,m

⇒ 1

M(Tx, Ty, t)
− 1 ≤ k

[
1

M(x, y, t)
− 1

])
.

Then T has a unique fixed point x∗ ∈
⋂m
i=1Ai.
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Proof. Since B =
⋃m
i=1Ai is closed so (B,M, ∗) is complete. Let G be the graph

defined by V (G) = B and

E(G) = ∆ ∪
{

(x, y) ∈ B ×B : x ∈ Ai ∧ y ∈ Ai+1 : i = 1, 2, . . . ,m
}
.

Then since B =
⋃m
i=1Ai is a cyclic representation of B with respect to T, so (GF1)

holds and by the given contractive condition (GF2) also hold. Now it is easy to see
that the sequence (Tnx)n∈N has infinitely many terms in each Ai, i = 1, 2, . . . ,m so
if (Tnx)n∈N converges to x∗ then x∗ ∈

⋂m
i=1Ai. Therefore (PT ) holds good. Note

that if x ∈ B then (x, Tx) ∈ E(G) therefore T ⊆ E(G) and by (D) of Theorem 3,
T has a fixed point. Uniqueness follows from the contractive condition and the fact
that if x ∈ FixT then x ∈

⋂m
i=1Ai. �
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