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Reducibility and irreducibility of Stern
(0, 1)-polynomials1

Karl Dilcher, Larry Ericksen

Abstract. The classical Stern sequence was extended by K. B. Stolarsky
and the first author to the Stern polynomials a(n;x) defined by a(0;x) = 0,
a(1;x) = 1, a(2n;x) = a(n;x2), and a(2n+1;x) = x a(n;x2)+a(n+1;x2);
these polynomials are Newman polynomials, i.e., they have only 0 and 1 as
coefficients. In this paper we prove numerous reducibility and irreducibility
properties of these polynomials, and we show that cyclotomic polynomials
play an important role as factors. We also prove several related results,
such as the fact that a(n;x) can only have simple zeros, and we state a few
conjectures.

1 Introduction
The Stern sequence {a(n)}n≥0 is defined recursively by a(0) = 0, a(1) = 1, and for
n ≥ 1 by

a(2n) = a(n), a(2n+ 1) = a(n) + a(n+ 1). (1)

The sequence starts as 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, . . . See [3] for
some historical remarks and for some properties of this sequence. Perhaps the most
remarkable properties are that the terms a(n), a(n+1) are always relatively prime,
and that each positive reduced rational number occurs once and only once in the
sequence {a(n)/a(n+ 1)}n≥1.

Recently the Stern sequence was extended to two different sequences of polyno-
mials, one by the first author and K. B. Stolarsky [3], and the other independently
by Klavžar, Milutinović and Petr [8]. These sequences are quite different from each
other, but both have interesting and useful properties. In this paper we will only
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consider the sequence introduced in [3]; it is defined recursively by a(0;x) = 0,
a(1;x) = 1, and for n ≥ 1 by

a(2n;x) = a(n;x2) , (2)

a(2n+ 1;x) = x a(n;x2) + a(n+ 1;x2) . (3)

We call the polynomial a(n;x) the n-th Stern (0, 1)-polynomial. However, if there
is no danger of confusion with the polynomials of Klavžar et al., we will simply refer
to them as Stern polynomials, as we do in the remainder of this paper. Numerous
properties of these polynomials can be found in [3] and [4]; here we only repeat the
obvious properties

a(n; 0) = 1 (n ≥ 1), a(n; 1) = a(n) (n ≥ 0) , (4)

where the second identity follows from comparing (2), (3) with (1). Also, for all
m ≥ 0 we have

a(2m;x) = 1 , (5)

and the identities (2), (3) immediately give

a(2n+ 1;x) = x a(2n;x) + a(2n+ 2;x) . (6)

To obtain an expression for the degree of a(n;x), we let e(n) denote the highest
power of 2 dividing n. Then for n ≥ 1,

deg a(n;x) =
n− 2e(n)

2
, (7)

and in particular deg a(2n+ 1;x) = n. Another important property of these Stern
polynomials is the fact that they are (0, 1)-polynomials, also known as Newman
polynomials, which is not the case for the Stern polynomials of Klavžar et al. Tables
of a(n;x) for 1 ≤ n ≤ 32 can be found in both [3] and [4], and Table 1 shows the
irreducible factors (if any) of these polynomials.

While reducibility and irreducibility properties of the sequence of Klavžar et al.
have been studied (see [17] and [20]), only one irreducibility result of limited scope
is known for the other sequence.

Proposition 1 ([3]). If p is a prime and 2 is a primitive root modulo p, then a(p;x)
is an irreducible polynomial over the rationals.

Table 1 indicates that relatively few Stern polynomials are reducible. How-
ever, we are going to show that several infinite classes of these polynomials are
in fact reducible. Other infinite classes of polynomials will be proven irreducible.
Throughout this paper, reducibility and irreducibility is assumed to be over the
rationals.

This paper is structured as follows. In Section 2 we are going to prove reducibil-
ity and irreducibility results for certain binomials, trinomials and quadrinomials
among the Stern polynomials; part of this will be based on several known irre-
ducibility results. In Section 3 we will prove reducibility and irreducibility for two
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n a(n;x) n a(n;x)
1 1 17 (x4 + x3 + x2 + x+ 1)(x4 − x3 + 1)
2 1 18 x8 + x4 + x2 + 1
3 x+ 1 19 x9 + x8 + x5 + x4 + x3 + x+ 1
4 1 20 (x2 + x+ 1)(x2 − x+ 1)(x4 − x2 + 1)
5 x2 + x+ 1 21 x10 + x9 + x8 + x6 + x5 + x2 + x+ 1
6 x2 + 1 22 x10 + x8 + x6 + x2 + 1
7 x3 + x+ 1 23 x11 + x9 + x8 + x7 + x3 + x+ 1
8 1 24 x8 + 1
9 x4 + x2 + x+ 1 25 (x2 − x+ 1)(x10 + x9 + x8 + x7 − x5

10 (x2 + x+ 1)(x2 − x+ 1) −x4 + 2x2 + 2x+ 1)
11 x5 + x4 + x3 + x+ 1 26 x12 + x10 + x4 + x2 + 1
12 x4 + 1 27 x13 + x12 + x11 + x5 + x4 + x3 + x+ 1
13 x6 + x5 + x2 + x+ 1 28 x12 + x4 + 1
14 x6 + x2 + 1 29 x14 + x13 + x6 + x5 + x2 + x+ 1
15 x7 + x3 + x+ 1 30 x14 + x6 + x2 + 1
16 1 31 x15 + x7 + x3 + x+ 1

Table 1: a(n;x) and their factorizations, 1 ≤ n ≤ 31.

special classes of Stern polynomials with increasing numbers of terms. In Section 4
we derive several new identities for the Stern polynomials which will be used later.
Section 5 is devoted to results concerning divisibility by x2±x+1, and in Section 6
these results are extended to more general classes of cyclotomic factors. Section 7
deals with the question of the existence of multiple factors and multiple zeros, along
with some brief general remarks on the distribution of zeros of Stern polynomials.
We conclude this paper with some further remarks and conjectures in Section 8.

2 Binomials, trinomials and quadrinomials

In this section we will deal with the smallest Stern polynomials, in the sense of
having the least number of terms. By the second part of (4) and the fact that
we are dealing with (0,1)-polynomials, the number of terms of a(n;x) is just the
number a(n) in the Stern sequence. We can therefore use known results for this
sequence. First we note that a(n) = 1 if and only if n = 2m, m ≥ 0. So by (5) the
only monomial that can occur is the constant polynomial 1.

Next we use an observation by Lehmer [9] which essentially says that, given an
integer k ≥ 2, the number of integers n in the interval 2k−1 ≤ n ≤ 2k for which
a(n) = k is ϕ(k), where ϕ denotes Euler’s totient function. Furthermore, it is the
same number in any subsequent interval between two consecutive powers of 2. This
means that there are exactly ϕ(2)+ϕ(3)+ϕ(4) = 5 classes of binomials, trinomials
and quadrinomials. Their smallest elements (by degree) can be found in Table 1,
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and all others are generated from them by (2). These classes are

a(3;x) = x+ 1 , a(3 · 2k;x) = x2
k

+ 1 ; (8)

a(5;x) = x2 + x+ 1 , a(5 · 2k;x) = x2
k+1

+ x2
k

+ 1 ; (9)

a(7;x) = x3 + x+ 1 , a(7 · 2k;x) = x3·2
k

+ x2
k

+ 1 ; (10)

a(9;x) = x4 + x2 + x+ 1 , a(9 · 2k;x) = x2
k+2

+ x2
k+1

+ x2
k

+ 1 ; (11)

a(15;x) = x7 + x3 + x+ 1 , a(15 · 2k;x) = x7·2
k

+ x3·2
k

+ x2
k

+ 1 . (12)

We deal with these classes in sequence.

Proposition 2. The polynomials a(3 · 2k;x) are irreducible for all k ≥ 0.

Proof. There are two ways of proving this. First, it is known that x2
k

+ 1 is
the cyclotomic polynomial Φ2k+1(x), and as such it is irreducible. Second, it is
easy to see that all coefficients of a(3 · 2k;x + 1) are even, except for the leading
coefficient 1, and that the constant coefficient is 2. This shifted polynomial is
therefore 2-Eisenstein for any k, and is thus irreducible. �

Proposition 3. We have x2 + x + 1 | a(5 · 2k;x) for all k ≥ 0. In other words,
a(5;x) = x2 + x+ 1 is the only irreducible polynomial in this class.

Proof. Using the factorization

x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1) (13)

with x replaced by x2
k

, we get

a(5 · 2k+1;x) =
(
x2

k+1

− x2
k

+ 1
)
a(5 · 2k;x) .

The result now follows immediately by induction. �

Proposition 3 could also be obtained from a short paper by Tuckerman [19].
The situation for the trinomials in (10) is quite different, as the following result
shows.

Proposition 4. The polynomials a(7 · 2k;x) are irreducible for all k ≥ 0.

For k = 0, the polynomial is easily verified to be irreducible; it is also a special
case of Theorem 1 in [18]. For the cases k ≥ 1 we apply Theorem 4 in [18] which
we state as a lemma.

Lemma 1 (Selmer). If f(x) = xn + axm + b (m < n) is an irreducible trinomial
satisfying one of the two sets of conditions

23 - a, 2 - b, n 6= 2m, or a ≡ 1 or 2 (mod 4), 2 | b , (14)

then f(x2) is also irreducible.
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We now prove the proposition by induction on k. The base case k = 0 has
already been established; assume now that a(7 ·2k;x) is irreducible for some k ≥ 0.
By (2) we have a(7 · 2k+1;x) = a(7 · 2k;x2), and by (10) the first condition in (14)
is clearly satisfied. Hence a(7 · 2k+1;x) is also irreducible, and we are done.

Proposition 5. The polynomials a(9 · 2k;x) and a(15 · 2k;x) are irreducible for all
k ≥ 0. In other words, all Stern quadrinomials are irreducible.

This is a fairly easy consequence of a result of Finch and Jones [7] which we
quote as another lemma.

Lemma 2 (Finch and Jones). The polynomial xa + xb + xc + 1 is reducible if and
only if exactly one of the integers a/2ν , b/2ν , c/2ν is even, where gcd(a, b, c) = 2νm
with m odd.

We apply this lemma to the polynomials in (11) and (12), noting that in both
cases we have ν = k. In the first case the three quotients in the lemma are 4, 2, 1,
while in the second case they are 7, 3, 1. This proves irreducibility in all cases.

In closing we mention that the irreducibility of a(15·2k;x) could also be obtained
from a result of Ljunggren [10, p. 69] (corrected in [13]).

3 Stern polynomials with index 2k ± 1
In this section we deal with two further classes of Stern polynomials for which we
can obtain some interesting reducibility results. In contrast to the polynomials in
the previous section, these have increasing numbers of terms. In [3] it was shown
that

a(2k − 1;x) = 1 + x+ x3 + x7 + · · ·+ x2
k−1−1, (15)

a(2k + 1;x) = 1 + x+ x2 + x4 + · · ·+ x2
k−1

; (16)

both follow quite easily, by induction, from (2), (3) and (5).

3.1 The polynomials a(2k − 1;x)

This special case is essentially the same as a sequence of polynomials Pn(x) which
was studied by K. Mahler [11]:

x · a(2n − 1;x) = Pn(x) :=

n−1∑
j=0

x2
j

. (17)

In particular, Mahler studied divisibility of the polynomials Pn(x) by cyclotomic
polynomials Φk(x). He used a classical result by L. Fuchs (1863) which gives a
complete characterization of the pairs (n, k) for which Φk(x) | Pn(x). Using a
different approach, in [1] we gave a more explicit version of the result of Mahler
and Fuchs. In what follows we give a brief summary of these results, using the
notation of Stern polynomials, via (17).

The multiplicative order of 2 modulo an integer m, which we denote by t(m)
following Mahler and others, plays an important role in most of these results. We
recall that t(m) is the smallest positive integer t for which 2t ≡ 1 (mod m). The
main result in [1] can now be stated as follows.
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Proposition 6. Let p ≥ 3 be a fixed prime. Then for all m ≥ 1 we have

Φp(x
2t(p)m−1)

∣∣ a(2t(p)pm − 1;x) . (18)

As an illustration we state the smallest case, p = 3. Since Φ3(x) = x2 + x + 1
and t(3) = 2, we immediately get, for all m ≥ 1,

x2
2m+1−2 + x2

2m−1 + 1
∣∣ a(26m − 1;x) .

Using standard properties of cyclotomic polynomials, we can factor the left-
hand side of (18), which gives the following more explicit expression.

Corollary 1. Let n be such that n = t(p)pm for some prime p ≥ 3 and integer
m ≥ 1. Then a(2n − 1;x) is divisible by all Φd(x) with d | p(2t(p)m − 1) and
pu(p)+1 | d, where u(p) is the highest power of p dividing 2t(p)m − 1.

This, together with the following result, gives all cyclotomic factors of the poly-
nomials a(2n − 1;x).

Proposition 7. If Φk(x) | a(2n− 1;x) for some n, then Φk(x) | a(2nm− 1;x) for all
integers m ≥ 1.

The fact that these results give all cyclotomic factors of all a(2n − 1;x) was
proved in [1], using Mahler’s and Fuchs’s results. See [1] also for a table of admis-
sible pairs (n, k). To conclude our discussion of the polynomials a(2n − 1;x), we
state the following consequence of the above results; see [1], where a more general
version is obtained.

Corollary 2. For all m ≥ 1 we have∏
3k|6m
k≥1

Φ3k+1(x)
∣∣ a(26m − 1;x) .

In particular, Stern polynomials can have arbitrarily many irreducible factors.

Finally, some further remarks on the polynomials a(2n − 1;x) can be found in
Subsection 8.4.

3.2 The polynomials a(2k + 1;x)

Computations show that these polynomials, as given in (16), are divisible by 1 +
x + · · · + xk when k = 1, 2, 4, 10, 12, 18, 28, . . . At first sight there seems to be
no pattern to this sequence, but we quickly notice that k + 1 is always a prime.
Furthermore, based on our knowledge of Proposition 1, we were able to identify this
sequence of primes. When k = 1 or 2, the divisibility observation holds trivially
since a(21 + 1;x) = 1 + x and a(22 + 1;x) = 1 + x + x2. For k ≥ 2 we can prove
the following result, where we set k + 1 = p, an odd prime.
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Proposition 8. Let p ≥ 3 be a prime which has 2 as a primitive root. Then

(1 + x+ x2 + · · ·+ xp−1)
∣∣ a(2p−1 + 1;x) .

In particular, if p ≥ 5 is such a prime, then a(2p−1 + 1;x) is reducible.

Proof. If 2 is a primitive root of p, then 20, 21, . . . , 2p−2 is a reordering of 1, 2, . . . ,
p− 1 (mod p). Therefore with (16) we have

a(2p−1 + 1;x) = 1 +

p−2∑
j=0

x2
j

≡ 1 +

p−1∑
j=1

xj (mod xp − 1).

Since (xp−1 + · · ·+x+ 1)(x−1) = xp−1, this shows that a(2p−1 + 1;x) is divisible
by xp−1 + · · ·+ x+ 1. �

Computations indicate that those polynomials a(2k±1;x) that were not proven
reducible in this section seem to be irreducible. In Section 6 we will reformulate
Proposition 8 in terms of cyclotomic polynomials and extend it to larger classes of
Stern polynomials. See also Subsection 8.4 for another remark on the polynomials
a(2k + 1;x).

4 Identities for Stern polynomials
Both the (numerical) Stern sequence and the sequence of Stern polynomials have a
great deal of internal structure which manifests itself through various identities. In
addition to the elementary identities (1)–(6) which all involve just one parameter,
the following identities, involving two or three parameters, were obtained in [3]
and [4]: For all k ≥ 0 and 0 ≤ j ≤ 2k we have

a(2k + j;x)− xja(2k − j;x) = a(j;x) (19)

(see [3, Lemma 2.1]), and for 0 ≤ k ≤ n and 0 ≤ j ≤ 2k we have

a(2n − j;x)− a(2k − j;x) = x2
k−ja(j;x)a(2n − 2k;x) (20)

(see [4, Proposition 2.1]). It is the purpose of this section to derive extensions or
generalizations of these identities which will be applicable for our purposes. We
prove four identities, two of which extend (19) and (20).

Proposition 9. For all integers k ≥ 0, 0 ≤ j ≤ 2k, and odd m ≥ 1 we have

a(m2k + j;x) + xja(m2k − j;x) =
(
a(j;x) + 2xja(2k − j;x)

)
a(m2k;x) . (21)

Proof. We first treat the case j = 0 separately; it reduces to

a(m2k;x) + a(m2k;x) =
(
a(0;x) + 2a(2k;x)

)
a(m2k;x) ,

which is trivially true by (5) and the fact that a(0;x) = 0. Assuming now that
j ≥ 1, we prove (21) by induction on k. The base case k = 0, j = 1 reduces to

a(m+ 1;x) + xa(m− 1;x) = (a(1;x) + 2xa(0;x)) a(m;x) .
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We note that the expression in large parentheses on the right is identically 1, and
since m is odd, this identity is therefore equivalent to (6).

Now assume that (21) holds for some k − 1 and all 0 ≤ j ≤ 2k−1. For the
induction step we first let j be even, say j = 2`, with 0 ≤ ` ≤ 2k−1. Then using
the reduction formula (2), the identity (21), with j = 2`, becomes

a(m2k−1 + `;x2) + (x2)`a(m2k−1 − `;x2)

=
(
a(`;x2) + 2(x2)`a(2k−1 − `;x2)

)
a(m2k−1;x2) . (22)

This identity holds by the induction hypothesis, with x replaced by x2. Second, we
let j be odd, say j = 2` + 1. Then the polynomials a(m2k + j;x), a(m2k − j;x),
a(j;x), a(2k − j;x) in (21) have odd index; hence we use (6) to rewrite (21) as
follows:

xa(m2k + 2`;x) + a(m2k + 2`+ 2;x)

+ x2`+1
[
xa(m2k − 2`− 2;x) + a(m2k − 2`;x)

]
= [xa(2`;x) + a(2`+ 2;x)

+2x2`+1
(
xa(2k − 2`− 2;x) + a(2k − 2`;x)

)]
a(m2k;x).

This holds when both the following identities hold:

xa(m2k + 2`;x) + x2`+1a(m2k − 2`;x)

=
[
xa(2`;x) + 2x2`+1a(2k − 2`;x)

]
a(m2k;x) , (23)

a(m2k + 2`+ 2;x) + x2`+2a(m2k − 2`− 2;x)

=
[
a(2`+ 2;x) + 2x2`+2a(2k − 2`− 2;x)

]
a(m2k;x) . (24)

To deal with (23), we divide both sides by x and use the reduction formula (2).
This gives us (22) which holds by the induction hypothesis. Similarly, we use (2)
for all terms in (24), which gives (22) with ` replaced by ` + 1. This is still valid
by the induction hypothesis since j = 2` + 1 ≤ 2k implies 2` ≤ 2k − 2, and thus
` ≤ 2k−1 − 1 and `+ 1 ≤ 2k−1, as required. Both (23) and (24) are therefore true,
which completes the proof by induction. �

Proposition 10. For all integers m ≥ 1, k ≥ 0, and 0 ≤ j ≤ 2k we have

a(m2k − j;x)− a(2k − j;x)a(m2k;x) = x2
k−ja(j;x)a((m− 1)2k;x) . (25)

Proof. As in the previous proof we treat the case j = 0 separately; the identity
(25) then reduces to

a(m2k;x)− a(2k;x)a(m2k;x) = x2
k

a(0;x)a((m− 1)2k;x) ,

and with (5) and a(0;x) = 0 we see that both sides are identically 0. Now assume
that j ≥ 1; we prove (25) by induction on k. The base case k = 0, j = 1 is

a(m− 1;x)− a(0;x)a(m;x) = x0a(1;x)a((m− 1);x) ,
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and we see that both sides are identical. (Note that, in contrast to Proposition 9,
we do not require m to be odd).

Next, assume that (25) holds for some k − 1 and all 0 ≤ j ≤ 2k−1. For the
induction step we proceed exactly as in the proof of Proposition 9, distinguishing
between the cases j even and j odd. We leave the details to the reader. �

Remark. The case m = 1 in (25) is trivially true, as both sides are identically 0.
When m = 2n−k, then (25) implies (20) if we take (5) into account.

We obtain the following consequence from (25) if we replace j by 2k − j and
then m by m+ 1.

Corollary 3. For all integers m ≥ 0, k ≥ 0, and 0 ≤ j ≤ 2k we have

a(m2k + j;x)− xja(2k − j;x)a(m2k;x) = a(j;x)a((m+ 1)2k;x) . (26)

We note that (26) with m = 1 gives (19), once again taking (5) into account.
The final result in this section is of a slightly different nature, but will also be
needed later.

Proposition 11. Let k ≥ 0 be an integer and m ≥ 1 an odd integer. Then

2a((m+ 1)2k;x)− a(m2k;x) = a(m;−x2
k

) . (27)

Proof. By (2) we have a(2n;−x) = a(n; (−x)2) = a(n;x2) = a(2n;x), and there-
fore (6) gives

a(2n+ 1;−x) = a(2n+ 2;x)− x a(2n;x) (28)

We now iterate the reduction formula (2):

2a((m+ 1)2k;x)− a(m2k;x) = a(m+ 1;x2
k

) +
(
a(m+ 1;x2

k

)− a(m;x2
k

)
)

= a(m+ 1;x2
k

)− x2
k

a(m− 1;x2
k

) = a(m;−x2
k

) ,

where we have first used (6) and then (28), keeping in mind that m is odd. This
completes the proof of (27). �

5 Divisibility by x2 ± x + 1

In the next section we will show that each of the “allowable” polynomials 1 + x+
x2 + · · · + xp−1 in Proposition 8, as well as their alternating analogues 1 − x +
x2 − · · · + xp−1, divide infinite classes of the Stern polynomials a(n;x). Since the
largest proportion of reducible Stern polynomials are divisible by x2 ± x + 1, we
will treat this case separately, and in greater detail, including relevant tables. This
is also done to illustrate the methods of proof, which rely on a repeated use of the
identities from the previous section.
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5.1 Divisibility by x2 + x + 1

We begin with a general observation. If a(n;x) is reducible for some n then, by
(2), a(2n;x) is also reducible. But we can say more: If x2 +x+ 1 | a(n;x), then by
the factorization (13) we also have x2 + x+ 1 | a(2n;x). We may therefore restrict
our attention to odd indices n.

We observe by computation that x2 + x + 1 divides a(n;x) only when n is
divisible by 5. We therefore consider a(5ν;x) with ν odd. The first few such ν for
which x2 + x+ 1 | a(5ν;x) are

ν = 1, 7, 9, 15, 17, 21, 31, 33, 55, 57, 63, 65, 71, 73, 107, 111, 113, . . .

We see that most come in pairs (ν, ν + 2), while a few are “isolated”, such as 21
and 107 (leaving aside ν = 1). The first 64 of the pairs are listed in Table 2, and
the first 40 isolated ν are in Table 3.

The following result, along with its corollaries, will explain all entries in Table 2
and many entries in Table 3. It is an easy consequence of identities in Section 4.

Proposition 12. Suppose that µ ≥ 1 and j ≥ 1 are such that both a(5µ;x) and
a(5j;x) are divisible by x2+x+1. If k is such that j ≤ b2k/5c, then a(5(µ·2k±j);x)
is divisible by x2 + x+ 1.

Proof. We use (25) with m = 5µ and j replaced by 5j. Then

a(5(µ · 2k − j);x)− a(2k − 5j;x)a(5µ2k;x) = x2
k−5ja(5j;x)a((5µ− 1)2k;x). (29)

The right-hand side is divisible by x2 + x+ 1, by hypothesis. Similarly, the second
term on the left is also divisible by x2 + x + 1 since a(5µ2k;x) = a(5µ;x2

k

) is,
where we have used (13). This proves the “−” part of the statement.

For the “+” part we use (21) with m and j as above. Noting that the right-
hand side is always divisible by x2 + x + 1, we see that a(5 · 2k + j;x) is divisible
by this trinomial if and only if a(5 · 2k − j;x) is. Finally, using the fact that (21)
and (25) hold for all j ≤ 2k, we see that the statement of the proposition holds for
j ≤ b2k/5c. �

If we set µ = 1 in Proposition 12, we immediately get the following consequence.

Corollary 4. Let k ≥ 3 be an integer. If x2 + x + 1 divides a(5j;x) for some
1 ≤ j ≤ b2k/5c, then x2 + x + 1 also divides a(5(2k ± j);x). In particular, for all
k ≥ 3, x2 + x+ 1 divides a(5(2k ± 1);x).

Although this result holds for all j in the given range, we will be mainly inter-
ested in odd values of j. An even j will lead to even parameters 5(2k ± j), which
gives us nothing new; see the remark at the beginning of this section.

Corollary 4 explains a large number of entries in Table 2. For instance, the
entries 55, 57 and 71, 73 result from k = 6 and j = 7, 9. Each new entry, in
turn, leads to an infinite class of further integers j for which a(5j;x) is divisible by
x2 + x+ 1.
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ν j ν j ν j ν j
7, 9 1 263, 265 33 583, 585 73 1039, 1041 130

15, 17 2 271, 273 34 671, 673 84 1055, 1057 132
31, 33 4 287, 289 36 855, 857 107 1079, 1081 135
55, 57 7 335, 337 42 879, 881 110 1087, 1089 136
63, 65 8 439, 441 55 887, 889 111 1095, 1097 137
71, 73 9 447, 449 56 895, 897 112 1135, 1137 142

111, 113 14 455, 457 57 903, 905 113 1143, 1145 143
119, 121 15 479, 481 60 911, 913 114 1151, 1153 144
127, 129 16 495, 497 62 951, 953 119 1159, 1161 145
135, 137 17 503, 505 63 959, 961 120 1167, 1169 146
143, 145 18 511, 513 64 967, 969 121 1191, 1193 149
167, 169 21 519, 521 65 991, 993 124 1335, 1337 167
223, 225 28 527, 529 66 1007, 1009 126 1343, 1345 168
239, 241 30 543, 545 68 1015, 1017 127 1351, 1353 169
247, 249 31 567, 569 71 1023, 1025 128 1511, 1513 189
255, 257 32 575, 577 72 1031, 1033 129 1711, 1713 214

Table 2: Odd ν for which x2 + x+ 1 | a(5ν;x), and j such that ν = 8j ± 1.

The first paired entries in Table 2 not generated in this way are 167, 169, and
then 335, 337; 439, 441; 455, 457; and a total of 16 other pairs in this table. Before
explaining these entries, we list in Table 3 the first 40 “isolated” integers ν for
which a(5ν;x) is divisible by x2 + x+ 1.

A hint towards explaining the remaining pairs of entries in Table 2 is given in
the “j” columns: The values of j associated with the four pairs of entries mentioned
in the previous paragraph are j = 21, 42, 55 and 57, respectively. We note that 21 is
the smallest entry in Table 3, and 42 is twice that number, while 55 and 57 are the
smallest entries in Table 2 that are not of the form 2k ± 1. This is easily explained
by the following consequence of Proposition 12 which is obtained by taking j = 1
and k = 3.

Corollary 5. Suppose that the integer µ ≥ 1 is such that a(5µ;x) is divisible by
x2 + x+ 1. Then a(5(8µ± 1);x) is also divisible by x2 + x+ 1.

We note in passing that the case where µ differs by 1 from a power of 2 is
already covered by Corollary 4. Also, in contrast to Corollary 4, where we could
restrict ourselves to odd values of j, in Corollary 5 we must consider all allowable
integer parameters µ, even or odd.

For example, starting with the smallest entry in Table 3, the values µ =
21, 42, 84, and 168 each lead to a pair of entries in Table 2. In general, for each
k ≥ 0, the value µ = 21 · 2k gives a new pair of Stern polynomials divisible by
x2 + x+ 1. In fact, every entry in Tables 2 and 3 leads to an infinite class of such
Stern polynomials.

We now turn to a partial explanation of the entries in Table 3. All the entries
for which the second columns are not left blank are immediately explained by
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ν ν = ν ν = ν ν = ν ν =
21 373 1173 210 + 149 1899 211 − 149

107 27 − 21 491 29 − 21 1213 210 + 189 1941 211 − 107
149 27 + 21 533 29 + 21 1675 211 − 373 2027 211 − 21
189 693 1699 211 − 349 2069 211 + 21
235 28 − 21 835 210 − 189 1707 211 − 341 2155 211 + 107
277 28 + 21 875 210 − 149 1723 211 − 325 2197 211 + 149
315 917 210 − 107 1733 211 − 315 2237 211 + 189
325 1003 210 − 21 1771 211 − 277 2283 211 + 235
341 1045 210 + 21 1813 211 − 235 2325 211 + 277
349 1131 210 + 107 1859 211 − 189 2363 211 + 315

Table 3: Isolated odd ν for which x2 + x+ 1 | a(5ν;x).

Corollary 4. For other cases we need Proposition 12 in its greater generality. For
instance, the smallest “isolated” cases not already covered by Corollary 4 occur
when µ = j = 21 and k = 7. This shows that a(5 · 2667;x) and a(5 · 2709;x) are
both divisible by x2 + x+ 1.

Remark 1. We note that in contrast to the “paired” cases (Table 2), where ν ≡ ±1
(mod 8), all “isolated” cases (Table 3) appear to satisfy ν ≡ ±3 (mod 8).

Remark 2. Numerous “isolated” cases remain unexplained, beginning with ν = 21
and seven more cases indicated in Table 3 with blank entries, then followed by
ν = 2749, 2941, 3005, 3029, 3037, 3053, 3133, 3213. The next block of unexplained
cases begins with ν = 4947.

5.2 Divisibility by x2 − x + 1

As in the previous subsection we observe that x2 − x + 1 divides a(n;x) only
when n is divisible by 5. We therefore consider again a(5ν;x). In spite of many
similarities to divisibility properties by x2 + x + 1, there are some substantial
differences. In particular, while we have the factorization (13), namely x4+x2+1 =
(x2 + x+ 1)(x2 − x+ 1), the analogous polynomial x4 − x2 + 1 is irreducible. This
means that x2 − x+ 1 | a(n;x) does not imply x2 − x+ 1 | a(2n;x). Therefore, if
we want to consider divisibility by x2 − x + 1, as opposed to just reducibility, we
have to consider a(5ν;x) also for even ν. In this connection we have the following
consequence of the factorization (13) quoted above.

Corollary 6. If x2 + x+ 1 divides a(5ν;x), then x2 − x+ 1 divides a(5 · 2kν;x) for
all k ≥ 1.

We may now restrict our attention to odd ν, and observe that the first few such
ν for which x2 − x+ 1 | a(5ν;x) are

ν = 5, 27, 37, 59, 69, 79, 81, 85, 93, 123, 133, 173, 219, 229, 251, 261, 283, 293.

We see that most of these come in pairs (ν, ν + 10), while others are once again
“isolated”, such as ν = 5, 85, 93, and others again come in pairs (ν, ν + 2), such as
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(79, 81). Tables 4, 5 and 6 show the first instances of each of these cases. Much of
this is explained by the following result which is analogous to Proposition 12 and
also follows immediately from (29).

Proposition 13. Suppose that µ ≥ 1 and j ≥ 1 are such that x2 + x+ 1 | a(5µ;x)
and x2 − x + 1 | a(5j;x). If k is such that j ≤ b2k/5c, then a(5(µ · 2k ± j);x) is
divisible by x2 − x+ 1.

We begin with the case illustrated by the entries in Table 4. We’ll show that
this case is directly related to divisibility of a(5ν;x) by x2 + x + 1. Indeed, by
taking j = 5 in Proposition 13 and recalling from Table 1 that x2−x+ 1 | a(25;x),
we get the following result.

Corollary 7. If µ ≥ 1 is such that x2 + x + 1 | a(5µ;x), then x2 − x + 1 divides
a(5(32µ± 5);x).

ν j ν j ν j ν j
27, 37 1 571, 581 18 1755, 1765 55 2267, 2277 71
59, 69 2 667, 677 21 1787, 1797 56 2299, 2309 72

123, 133 4 891, 901 28 1819, 1829 57 2331, 2341 73
219, 229 7 955, 965 30 1915, 1925 60 2683, 2693 84
251, 261 8 987, 997 31 1979, 1989 62 3419, 3429 107
283, 293 9 1019, 1029 32 2011, 2021 63 3515, 3525 110
443, 453 14 1051, 1061 33 2043, 2053 64 3547, 3557 111
475, 485 15 1083, 1093 34 2075, 2085 65 3579, 3589 112
507, 517 16 1147, 1157 36 2107, 2117 66 3611, 3621 113
539, 549 17 1339, 1349 42 2171, 2181 68 3643, 3653 114

Table 4: Odd ν for which x2 − x+ 1 | a(5ν;x), and j such that ν = 32j ± 5.

ν ν = ν ν = ν ν = ν ν =
5 931 210 − 93 1313 1875 211 − 173

85 939 210 − 85 1365 1955 211 − 93
93 1109 210 + 85 1373 1963 211 − 85

173 1117 210 + 93 1397 2133 211 + 85
419 29 − 93 1197 210 + 173 1449 2141 211 + 93
427 29 − 85 1247 1469 2221 211 + 173
597 29 + 85 1259 1493 2515
605 29 + 93 1271 1501 2605
757 1289 1517 2733
851 210 − 173 1301 1565 2773

Table 5: Isolated odd ν for which x2 − x+ 1 | a(5ν;x).
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The “isolated” cases, the first 40 of which are shown in Table 5, are partly
explained by Proposition 13. For instance, the entries in the columns (ν =) corre-
spond to µ = 1. The next smallest class of examples occurs when µ = 7 and k = 9,
in which case x2 − x+ 1 | a(5ν;x) for ν = 3491, 3499, 3669, 3677.

We now turn to the third case, which corresponds to x2 − x + 1 | a(5ν;x) for
pairs (ν, ν + 2); see Table 6. This case is fully explained by the following result.

Proposition 14. If j ≥ 1 is an odd integer such that x2 − x + 1 | a(5j;x), then
x2 − x+ 1 divides a(5(16j ± 1);x).

Proof. We subtract (26) from (21) and set j = 5, k = 4, and replace m by 5j,
which gives

x5a(5(16j − 1);x)−
(
a(5;x) + 2x5a(11;x)

)
a(80j;x)

= −x5a(11;x)a(80j;x)− a(5;x)a(80j + 16;x) . (30)

We are going to use the fact that

a(5;x) + 2x5a(11;x)

= (x2 − x+ 1)(2x8 + 4x7 + 4x6 − 2x4 + 2x2 + 2x+ 1) , (31)

which is easy to verify by direct computation. Multiplying the left-hand side of
(31) by a(80j + 16;x) and adding the product to both sides of (30), we get

x5a(5(16j − 1);x) +
(
a(5;x) + 2x5a(11;x)

)
(a(80j + 16;x)− a(80j;x))

= x5a(11;x) (2a(80j + 16;x)− a(80j;x)) . (32)

Using (27) with k = 4 and m = 5j, we get

2a(80j + 16;x)− a(80j;x) = a(5j;−x16) . (33)

Now, if x2 − x + 1 | a(5j;x), then x32 + x16 + 1 | a(5j;−x16), and by iterating
the factorization (13) we see that x2 − x+ 1 | x32 + x16 + 1. Hence, with (33) we
see that x2 − x+ 1 divides the right-hand side of (32), and (31) shows that it also
divides the second term on the left-hand side of (32). This proves the “−” part of
the proposition.

To prove the “+” part, we use (21) with j, k and m as above, obtaining

a(5(16j + 1);x) + x5a(5(16j − 1);x) =
(
a(5;x) + 2x5a(11;x)

)
a(80j;x) .

By (31) the right-hand side of this last identity is divisible by x2−x+ 1, and since
the second term on the left is also divisible by x2 − x+ 1, then so is the first term.
This completes the proof. �



Reducibility and irreducibility of Stern (0, 1)-polynomials 91

ν j ν j ν j ν j
79, 81 5 1103, 1105 69 1487, 1489 93 3503, 3505 219

431, 433 27 1263, 1265 79 1967, 1969 123 3663, 3665 229
591, 593 37 1295, 1297 81 2127, 2129 133 4015, 4017 251
943, 945 59 1359, 1361 85 2767, 2769 173 4175, 4177 261

Table 6: Odd ν for which x2 − x+ 1 | a(5ν;x), and j such that ν = 16j ± 1.

6 Divisibility by certain cyclotomic polynomials
Computations show that numerous Stern polynomials a(n;x) are divisible by x4 +
x3 + x2 + x + 1 or by x4 − x3 + x2 − x + 1, and it appears that this occurs only
when n = 17ν for a positive integer ν. We could prove results very similar to those
in Section 5; however, both these cases and divisibility properties by x2±x+ 1 are
in fact special cases of a much more general result, as we shall see in this section.

Returning to Proposition 8, we note that for an odd prime p we have

Φp(x) = 1 + x+ x2 + · · ·+ xp−1,

the p-th cyclotomic polynomial. Furthermore, for ease of notation we set

mp := 2p−1 + 1.

We can then reformulate Proposition 8 as follows: Let p be an odd prime; then

Φp(x) | a(mp;x) if 2 is a primitive root of p. (34)

The first twenty such primes p are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101,
107, 131, 139, 149, 163, 173, 179; see also [15, A001122]. By a conjecture of Artin
we would expect the existence of infinitely many such primes. We will also need
the identity

Φp(x
2) = Φp(x)Φp(−x), (35)

valid for all odd primes; note that Φp(−x) = Φ2p(x) is also a cyclotomic polynomial.
The identity (35) is a generalization of (13), which is the case p = 3.

6.1 Divisibility by Φp(x)

We are now ready to state and prove the first main result of this section; it is a
direct generalization of Proposition 12.

Proposition 15. Let p be an odd prime which has 2 as a primitive root, and suppose
that µ ≥ 1 and j ≥ 1 are such that both a(mpµ;x) and a(mpj;x) are divisible by
Φp(x). If k is such that j ≤ b2k/mpc, then a(mp(µ ·2k±j);x) is divisible by Φp(x).

Proof. Following the proof of Proposition 12, we use (25) with m = mpµ and
replace j with mpj. Then

a
(
mp(µ · 2k − j);x

)
− a(2k −mpj;x)a(mpµ2k;x)

= x2
k−mpja(mpj;x)a

(
(mpµ− 1)2k;x

)
. (36)
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The right-hand side is divisible by Φp(x), by hypothesis. Also by hypothesis we
have

Φp(x
2k) | a(mpµ;x2

k

) = a(mpµ2k;x) , (37)

where we have once again used (2). By iterating (35) we then see that the terms
in (37) are divisible by Φp(x). Altogether, this shows that the first term in (36) is
divisible by Φp(x), which proves the “−” part of the statement of the proposition.

For the “+” part we use the identity (21) with m and j as above. It suffices to
show that the right-hand side of that identity is divisible by Φp(x). But since the
final term in (21) is the same as the right-hand side in (37), this is the case, as we
have seen above. The proof is now complete. �

As in the special case p = 3 in Section 5, we get the following immediate
consequences.

Corollary 8. Let p be an odd prime which has 2 as a primitive root. If Φp(x)
divides a(mpj;x) for some 1 ≤ j ≤ b2k/mpc, then also Φp(x) | a(mp(2

k± j);x). In
particular, if k ≥ p, then Φp(x) | a(mp(2

k ± 1);x).

The first statement of this result follows from Proposition 15 with µ = 1, where
we have used (34). The second statement follows from the first by setting j = 1
and using (34) again. Also note that the condition 2k ≥ mp holds whenever k ≥ p.

The next consequence is an extension of Corollary 5 and is simply the case j = 1
and k = p in Proposition 15.

Corollary 9. Let p be an odd prime which has 2 as a primitive root. Suppose that
µ ≥ 1 is such that a(mpµ;x) is divisible by Φp(x). Then a(mp(2

pµ± 1);x) is also
divisible by Φp(x).

6.2 Divisibility by Φp(−x)

We continue with extending the results in Section 5; we first state an easy conse-
quence of (35) and (2).

Corollary 10. Let p be an odd prime which has 2 as a primitive root. If Φp(x)
divides a(mpν;x), then Φp(−x) divides a(mp2

kν;x) for all k ≥ 1.

Next we state the relevant generalization of Proposition 13.

Proposition 16. Let p be an odd prime which has 2 as a primitive root and suppose
that µ ≥ 1 and j ≥ 1 are such that Φp(x) | a(mpµ;x) and Φp(−x) | a(mpj;x). If
k is such that j ≤ b2k/mpc, then a(mp(µ2k ± j);x) is divisible by Φp(−x).

The “−” part of this statement follows immediately from (36), using Corol-
lary 10. The “+” part follows once again from (21) and the “−” part, with m
and j as before.

Recall that Corollary 7 follows directly from Proposition 13 due to the fact
that x2 − x + 1 divides a(25;x), that is, Φp(−x) | a(m2

p;x) for p = 3. In order to
generalize Corollary 7, we need this fact to be true more generally, which is indeed
the case.
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Proposition 17. If p is an odd prime which has 2 as a primitive root, then Φp(−x)
divides a(m2

p;x).

Proof. Using the definition of mp, we note that

(2p−2 + 1)2p = 22(p−1) + 2 · 2p−1 = m2
p − 1 .

We now apply the identity (26) with m = 2p−2 + 1, k = p and j = 1, to obtain

a(m2
p;x) = a((2p−3 + 1)2p+1;x) + x · a(2p − 1;x)a((2p−2 + 1)2p;x) . (38)

We claim that we have the following congruences modulo the polynomial Φp(−x),
valid for all primes p ≥ 3 which have 2 as a primitive root:

a((2p−3 + 1)2p+1;x) ≡ −x2 + x (mod Φp(−x)) , (39)

a(2p − 1;x) ≡ xp−2 − xp−3 + · · · − x2 + x (mod Φp(−x)) , (40)

a((2p−2 + 1)2p;x) ≡ x (mod Φp(−x)) . (41)

Substituting these congruences into the right-hand side of (38), we immediately
get

a(m2
p;x) ≡ xp − xp−1 + · · ·+ x3 − x2 + x (mod Φp(−x)) ,

and the right-hand side is obviously divisible by Φp(−x). This proves the result,
provided we can prove the congruences (39)–(41).

The proofs of these congruences are based on the following two fundamental
facts. First, if p has 2 as a primitive root, then 20, 21, 22, . . . , 2p−2 is a reordering,
modulo p, of 1, 2, 3, . . . , p− 1. Second, we have

xp ≡ −1 (mod Φp(−x)) (42)

since Φp(−x) = (xp + 1)/(x+ 1).
To prove (39), we first note that by Fermat’s little theorem we have 2p+1 =

4 · 2p−1 ≡ 4 (mod p). This, together with 2p+1 ≡ 0 (mod 2) gives 2p+1 ≡ 4
(mod 2p) by the Chinese Remainder Theorem, and thus

x2
p+1

≡ x4 (mod Φp(−x)) . (43)

Now, iterating the identity (2) and using (16), we get

a((2p−3 + 1)2p+1;x) = a(2p−3 + 1;x2
p+1

) = 1 +

p−4∑
j=0

(
x2

p+1
)2j

(44)

≡ 1 +

p−4∑
j=0

(
x4
)2j

= 1 +

p−4∑
j=0

(
x2
)2j+1

≡ 1 + (x2)2 + (x2)3 + · · ·+ (x2)p−1 − (x2)2
p−2

(mod Φp(−x)) ,

where we have taken into account the fact that 2j+1, j = 0, 1, . . . , p − 3, is a re-
ordering of 2, 3, . . . , p − 1 (mod p), and that the upper limit of summation in the
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second line of (44) is only p− 4. Next we note that by Fermat’s little theorem we
have 2p−2 ≡ p+1

2 (mod p), so that

(x2)2
p−2

≡ xp+1 (mod Φp(−x)) . (45)

Using this congruence and (42), we get with (44) that

a((2p−3+1)2p+1;x) ≡ 1+x4+x6+· · ·+xp−1−x3−x5−· · ·−xp−2 (mod Φp(−x)) .

Finally, subtracting Φp(−x) = 1− x+ x2 − · · ·+ xp−1 from the right-hand side of
this last congruence, we get (39).

To prove (40), we use (15) and (42) to obtain

a(2p − 1;x) = 1 +
1

x

p−2∑
j=0

(
x2
)2j

≡ 1 +
1

x

(
x2 + (x2)2 + (x2)3 + · · ·+ (x2)p−1

)
= 1 + x+ x3 + · · ·+ xp−2 + xp + xp+2 + · · ·+ xp+p−3

≡ 1 + x+ x3 + · · ·+ xp−2 − 1− x2 − · · · − xp−3 (mod Φp(−x)) ,

but this is just the right-hand side of (40)
Finally, to prove (41), we proceed exactly as in the proof of (39). Again (42)

and a version of (43) are used; we leave the details to the reader. This completes
the proof of Proposition 17. �

Using this result, we immediately obtain the following consequence of Proposi-
tion 16.

Corollary 11. Let p be an odd prime which has 2 as a primitive root. If µ ≥ 1
is such that Φp(x) | a(mpµ;x) then Φp(−x) divides a(mp(µ2k ±mp);x) whenever
k ≥ 2p− 1.

This corollary follows from Proposition 16 by setting j = mp; it is then easy
to see with the definition of mp that the condition j ≤ b2k/mpc holds whenever
k ≥ 2p− 1.

Finally, as far as a generalization of Proposition 14 is concerned, we note that
the proof of that result depended in an essential way on the fact that the left-hand
side of (31) is divisible by x2− x+ 1. For this proof to work in general, we require
the following extension of (31).

Lemma 3. If p is an odd prime which has 2 as a primitive root, then

Φp(−x) | a(mp;x) + 2xmpa(22p−2 −mp;x) . (46)

Proof. We begin by showing that

a(mp;x) = a(2p−1 + 1;x) ≡ 2x (mod Φp(−x)) . (47)
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Indeed, using (16) and the remarks in the proof of Proposition 17, including (45),
we find that

a(mp;x) = 1 + x+

p−3∑
j=0

(
x2
)2j

≡ 1 + x+ x2 + (x2)2 + (x2)3 + · · ·+ (x2)p−1 − (x2)2
p−2

≡ 1 + x+ x2 + x4 + x6 + · · ·+ xp−1 + xp+1 + xp+3 + · · ·+ xp+p−2 − xp+1

≡ 1 + x+ x2 + x4 + x6 + · · ·+ xp−1 − x3 − x5 − · · · − xp−2

≡ 2x (mod Φp(−x)) .

This proves (47). Next we use (25) with k = p, j = mp, m = 2p−2, and note that
2p −mp = 2p−1 − 1. This gives

a(22p−2 −mp;x) = a(2p−1 − 1;x) + x2
p−1−1a(mp;x)a(22p−2 − 2p;x) . (48)

We now evaluate, modulo Φp(−x), the various terms in (46) and (48). First, by
Fermat’s little theorem we have 2p−1 + 1 ≡ 2 (mod p) and also 2p−1 + 1 ≡ 1
(mod 2), which combines to give mp = 2p−1 + 1 ≡ p+ 2 (mod 2p) by the Chinese
Remainder Theorem. Consequently, we get 2p−1 − 1 ≡ p (mod 2p). Thus, by (42)
we have

xmp ≡ −x2 (mod Φp(−x)), x2
p−1−1 ≡ −1 (mod Φp(−x)) . (49)

Next, using (19) with k = p− 1 and j = 1, we get

x · a(2p−1 − 1;x) = a(2p−1 + 1;x)− 1 ≡ 2x− 1 (mod Φp(−x)) , (50)

where we have used (47). Similarly, using (19) with k = 2p− 2 and j = 2p, we get
with (5) that

x2
p

a(22p−2 − 2p;x) = a(22p−2 + 2p;x)− 1 . (51)

Since 2p ≡ 2 (mod p) and 2p ≡ 2 (mod 2), the Chinese Remainder Theorem gives
2p ≡ 2 (mod 2p), and by (42) we have

x2
p

≡ x2 (mod Φp(−x)) .

This congruence and (41), together with (51), shows that

x2a(22p−2 − 2p;x) ≡ x− 1 (mod Φp(−x)) . (52)

Finally, combining (47) and (48) with (49), (50) and (52), the right-hand side of
(46), taken modulo Φp(−x), becomes

2x− 2[x(2x− 1)− 2x(x− 1)] = 0 ,

which completes the proof of (46). �

We are now ready to state the desired generalization of Proposition 14.
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Proposition 18. Let p be an odd prime which has 2 as a primitive root. If j ≥ 1
is an odd integer such that Φp(−x) divides a(mpj;x), then Φp(−x) also divides
a(mp(2

2p−2j ± 1);x).

The proof of this result is completely analogous to that of Proposition 14, with
m3 = 5 replaced by mp and k = 4 replaced by k = 2p− 2. The divisibility relation
(46) plays the role of the identity (31). We leave all further details to the reader.
As an illustration we explicitly state the case p = 5.

Corollary 12. If j ≥ 1 is an odd integer such that x4 − x3 + x2 − x + 1 divides
a(17j;x), then x4 − x3 + x2 − x+ 1 divides a(17(256j ± 1);x).

7 Discriminants and zeros
7.1 The discriminant of a(n;x)

The various results on cyclotomic factors in this paper give rise to the natural
question as to whether a square or a higher power of a cyclotomic polynomial can
divide a Stern polynomial. In this subsection we will show that this cannot happen.

Proposition 19. A Stern polynomial a(n;x) cannot be divisible by the square of a
nonconstant polynomial.

By (2) and (4) it suffices to consider odd indices n since a square factor of
a(2n;x) would also be one of a(n;x2), which in turn means that a(n;x) would have
a square factor. Proposition 19 is now an immediate consequence of the following
result since the discriminant of a polynomial vanishes if and only if the polynomial
has a multiple zero. This is clear from the definition of the discriminant: Suppose
we are given a polynomial

f(x) = anx
n + · · ·+ a1x+ a0 = an(x− r1) . . . (x− rn) (53)

with nonzero leading coefficient an and not necessarily distinct zeros r1, . . . , rn.
Then the discriminant of f(x) can be defined as

Dx(f(x)) := a2n−2n

∏
i<j

(ri − rj)2 ; (54)

see, e.g., [16, p. 217]. We are now ready to state and prove a result which immedi-
ately implies Proposition 19.

Proposition 20. The discriminant Dx(a(2n + 1;x)) is always an odd integer, and
is therefore nonzero.

For the proof of this we require a general fact about the discriminant of a
polynomial, which we were unable to find in the literature.

Lemma 4. Let f(x) be a polynomial of degree n ≥ 1 with f(0) 6= 0. Then

Dx(f(x)) = Dx

(
xnf( 1

x )
)
. (55)

In other words, the discriminants of a polynomial and of its reciprocal are identical.
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Proof. The polynomial xnf(1/x) can be obtained from f(x) by reversing the order
of the coefficients. Also, if f(x) is given as in (53), then the zeros of xnf(1/x) are
obviously 1/r1, . . . , 1/rn. Hence, with (54) we have

Dx

(
xnf( 1

x )
)

= a2n−20

∏
i<j

(
1

ri
− 1

rj

)2

= a2n−20

∏
i<j

(
rj − ri
rirj

)2

. (56)

By counting the number of times each rj occurs in the first product below, we get

∏
i<j

1

rirj
=

 n∏
j=1

1

rj

n−1

=

(
(−1)nan

a0

)n−1
,

where the second equality follows from (53). Rewriting this, and squaring, we get

a2n−20

∏
i<j

1

(rirj)2
= a2n−2n .

Finally, this last identity, together with (56) and (54), gives the desired identity
(55). �

Proof of Proposition 20. The discriminant of a polynomial f of degree n and lead-
ing coefficient an satisfies Dx(f) = (−1)n(n−1)/2a−1n R(f, f ′), where R(f1, f2) is the
resultant of the polynomials f1 and f2, which can be written as a determinant (the
determinant of the Sylvester matrix) that involves sums of products of the coeffi-
cients of f1 and f2. Therefore, if f is a monic polynomial with integer coefficients,
we have the relation

Dx(f(x)) ≡ Dx(g(x)) (mod n) if f(x) ≡ g(x) (mod n)

for any integer n > 1. Now, in [3, (6.2)] it was shown that

a(2n+ 1;x) ≡ xnU2n

(
1

2
√
x

)
(mod 2) ,

where Un(x) is the nth Chebyshev polynomial of the second kind. This congru-
ence, combined with identity (55), means that we are done if we can show that
Dx(U2n(

√
x/2)) is an odd integer. We are going to show more, namely

Dx

(
U2n

(√x
2

))
= (2n+ 1)n−1. (57)

To do so, we first note that U2n(x) = 22nx2n − · · · + (−1)n has only even powers
of x and coefficients with alternating signs (see, e.g., [16]), and as a consequence
we have U2n(

√
x/2) = xn − · · · + (−1)n. This is a monic polynomial, again with

alternating coefficients which are integers, a fact that follows easily from standard
properties of the Un(x). We also know that U2n(x) has 2n distinct real zeros,
say ±ρj , j = 1, . . . , n; the polynomial U2n(

√
x/2) then has the n positive real

zeros 4ρ2i . Now by (54) we have

Dx (U2n(x)) =
(
22n
)4n−2∏

i<j

(ρi − ρj)2(ρi + ρj)
2(−ρi − ρj)2(−ρi + ρj)

2
n∏
j=1

(2ρj)
4,
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which can be seen by ordering the zeros of U2n(x) as r1 = −ρ1, r2 = ρ1, . . . ,
r2n−1 = −ρn, r2n = ρn. Rearranging the factors, we get

Dx (U2n(x)) = 22n(4n−2)
∏
i<j

(ρ2i − ρ2j )4
n∏
j=1

(2ρj)
4. (58)

Now the product
∏
ρ2j is the product of all zeros of U2n(x), times (−1)n; but the

product of all the zeros is a0/a2n = (−1)n2−2n, by (53). Hence, the powers of 2
will cancel in the second product on the right of (58), and this product will simply
be 1. On the other hand, it is known that

Dx (U2n(x)) = 24n
2

(2n+ 1)2n−2;

see [16, p. 219]. By combining this with (58) and taking square roots, we obtain∏
i<j

(ρ2i − ρ2j )2 = 22n−2n
2

(2n+ 1)n−1. (59)

From the definition (54) and our above observation concerning U2n(
√
x/2), we get

Dx

(
U2n(

√
x
2 )
)

=
∏
i<j

(4ρ2i − 4ρ2j )
2 = 16n(n−1)/2

∏
i<j

(ρ2i − ρ2j )2.

This identity, combined with (59), finally gives (57), and the proof is complete. �

In the special case of the polynomials a(2n − 1;x), the result of Proposition 19
was obtained in [1] in two different ways, distinct from the approach given above.

7.2 Zeros of the Stern polynomials

Proposition 19 can also be seen as a result on the zeros of Stern polynomials
in that it shows that there can only be simple zeros. Also, since the zeros of
cyclotomic polynomials all lie on the unit circle and (at least in the case of Φp(±x))
have an almost uniform angular distribution, it may be of interest to consider the
distribution of all zeros of the Stern polynomials a(n;x). This was in fact done in a
recent paper of A. R. Vargas [21]. Among other results, Vargas showed that, given
a real number ρ satisfying 0 < ρ < 1, the proportion of zeros of a(n; z) that lie on
the annulus 1− ρ ≤ |z| ≤ 1/(1− ρ) approaches 1 as n→∞, and that the zeros are
uniformly distributed in a certain sense. For details, see [21, Prop. 2.1]. On the
other hand, it was shown in [11] and [1] that we must expect infinite subsequences
of Stern polynomials which have zeros bounded away from the unit circle. In
particular, this is the case for the sequence of polynomials in (17).

8 Conjectures and further remarks
We conclude this paper with a few open problems and conjectures, as well as some
related results and remarks.
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8.1 Stern polynomials with prime index
We begin by considering the question of irreducibility of Stern polynomials with
prime index. On the one hand we have Proposition 1 which shows that we do
have irreducibility for a certain important class of prime indices, but on the other
hand there is the obvious counterexample a(17;x); see Table 1. We have not found
any other reducible Stern polynomial with prime index; therefore we propose the
following conjecture.

Conjecture 1. Let q ≥ 3 be a prime, q 6= 17. Then a(q;x) is irreducible.

We verified Conjecture 1 by computation for all primes up to 16 000. This
conjecture is also supported by the fact that all Stern polynomials which we found
and proved to be reducible have indices that are of the form 2t(p)pm − 1 (and
thus are composite) as in Proposition 6, or have indices which are multiples of
mp = 2p−1 + 1, as in Section 6. This last case includes the possibility of mp itself
being the index, as in Proposition 8. For this reason the following easy result is
relevant.

Lemma 5. The integer mp = 2p−1 + 1 is prime for p = 3 and p = 5, and is
composite for all other primes p which have 2 as a primitive root.

This means that m3 = 5 and m5 = 17 are the only prime indices which occur in
Proposition 8, or in any other divisibility result. While we have x2+x+1 = a(5;x),
the next case, namely x4 + x3 + x2 + x+ 1, is in fact a proper divisor of a(17;x).
This explains the exceptionality of q = m5 = 17, and the likelihood of this being
the only exception. Note that p = 3, 5 and q = 5, 17 are among the first three
Fermat primes, a fact that plays a role in the following proof.

Proof of Lemma 5. A necessary condition for 2p−1 + 1 being prime (and thus a
Fermat prime) is that p − 1 = 2k for some k ≥ 1; i.e., p itself has to be a Fermat
prime. However, the multiplicative order of 2 modulo a Fermat prime Fk = 22

k

+ 1

is 2k+1 since 22
k ≡ −1 (mod Fk). But Fk − 1 = 22

k

> 2k + 1 for k ≥ 2, so no
Fermat prime Fk, k ≥ 2, can have 2 as a primitive root. This leaves p = F0 = 3
and p = F1 = 5 as the only possibilities, and the proof is complete. �

8.2 Cyclotomic factors
Our second conjecture is related to the remarks following Conjecture 1.

Conjecture 2. Let p ≥ 3 be a prime which has 2 as a primitive root. If Φp(x) or
Φp(−x) divides a(n;x), then mp divides n.

Cyclotomic polynomials seem to be even more prevalent than this conjecture
may indicate. Indeed, we propose the following.

Conjecture 3. If a Stern polynomial is reducible, then it is divisible by a cyclotomic
polynomial Φk(x) for some k ≥ 3.
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8.3 Non-reciprocal parts
Much of the work in this paper has been devoted to exposing small factors of Stern
polynomials. These factors all turned out to be cyclotomic (see also Conjecture 3),
while the non-cyclotomic cofactors seem to be irreducible.

This observation is related to the following concepts and results. The non-
reciprocal part of a polynomial f(x) with integer coefficients is essentially f(x) with
its irreducible reciprocal factors removed, where a reciprocal polynomial g(x) satis-
fies g(x) = ±xdeg gg(1/x). In Table 1, for instance, the first factors of a(17;x) and
a(25;x) are reciprocal polynomials, while the second factors are the non-reciprocal
parts. Also, the polynomials a(n;x) for n = 3, 5, 6, 10, 12, 20 and 24 are them-
selves reciprocal, and their non-reciprocal parts are therefore identically 1. We
recall that cyclotomic polynomials are reciprocal as well. For further remarks on
these concepts see, e.g., the introduction of [6].

Based on earlier work of Schinzel, a criterion for a polynomial of the form
f(x)xn + g(x), with f(x), g(x) ∈ Z[x], to have an irreducible non-reciprocal part
was established by Filaseta, Ford and Konyagin [5]. This result was considerably
strengthened by Filaseta and Matthews [6] in the special case of (0, 1)-polynomials.
Although this last result fails to be applicable to the Stern polynomials, our obser-
vations suggest that the conclusion still holds:

Conjecture 4. All Stern polynomials have a non-reciprocal part that is either ir-
reducible or is identically 1.

As pointed out in [6], if it is known that a polynomial f(x) has an irreducible
non-reciprocal part, then f(x) is itself irreducible if it has no factor in common
with its reciprocal xdeg ff(1/x). Thus, assuming Conjecture 4, we were able to
verify Conjecture 1 by computation for all q ≤ 100 000.

8.4 Relations with (−1, 0, 1) polynomials
Related to the above discussion, we observed that in two special cases the non-
reciprocal factors seem to have a very specific form in that they have coefficients
−1, 0, 1. These cases are

(1) a(2t(p)pm − 1;x) for m ≥ 1 and primes p ≥ 3; see Proposition 6;

(2) a(2p−1 + 1;x) for a prime p ≥ 3 which has 2 as a primitive root; see Propo-
sition 8.

In the second case we observed, in addition, that the nonzero coefficients are alter-
nating between ±1. As this lies outside the scope of the present paper, we did not
pursue this further.

8.5 Another irreducibility criterion
We conclude this section by mentioning an irreducibility criterion of a different
nature from those discussed earlier. Building on an interesting irreducibility result
of A. Cohn, which had earlier been extended by Brillhart, Filaseta and Odlyzko
(1981) and by Filaseta (1988), M. R. Murty [14] proved the following result.
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Proposition 21 (Murty). Let b ≥ 2 and let p be a prime with b-adic expansion
p = anb

n + an−1b
n−1 + · · · + a1b + a0. Then the polynomial f(x) = anx

n +
an−1x

n−1 + · · ·+ a1x+ a0 is irreducible.

Since Stern polynomials are (0, 1)-polynomials, we immediately get the follow-
ing consequence.

Corollary 13. If a(n; b) is prime for some integer b ≥ 2, then a(n;x) is irreducible.

By (7) we know that in most cases the degree of a(n;x) is (n − 1)/2, or close
to it. Thus, even for b = 2 the integers a(n; b) will soon get very large as n grows.
Therefore in most cases primality testing will not be competitive in comparison
with irreducibility testing algorithms as implemented in computer algebra systems
such as Maple or Mathematica.
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