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Säıd ABBAS1, Mouffak BENCHOHRA2, Juan J. NIETO3

1a 2320, Rue de Salaberry, apt 10
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Abstract

In this paper we investigate the existence of solutions for the initial
value problems (IVP for short), for a class of implicit impulsive hyperbolic
differential equations by using the lower and upper solutions method com-
bined with Schauder’s fixed point theorem.
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1 Introduction

The fractional calculus deals with extensions of derivatives and integrals to non-
integer orders. It represents a powerful tool in applied mathematics to study a
myriad of problems from different fields of science and engineering, with many
break-through results found in mathematical physics, finance, hydrology, bio-
physics, thermodynamics, control theory, statistical mechanics, astrophysics,
cosmology and bioengineering ([12, 18, 25, 28, 33]). There has been a significant
development in ordinary and partial fractional differential equations in recent
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years; see the monographs of Abbas et al. [8], Baleanu et al. [12], Kilbas et al.
[24], Lakshmikantham et al., the papers of Abbas et al. [1, 2, 3, 4, 5, 6, 7, 9, 10],
Ahmad and Nieto [11], Benchohra et al. [13], Cabada and Stanek [15], Kilbas
and Marzan [23], Stanek [32], Vityuk and Golushkov [35], Wang et al. [37] and
the references therein.
There has been a significant development in impulse theory in recent years,

especially in the area of impulsive differential equations with fixed moments.
Recently some results on the Darboux problem for fractional order impulsive
hyperbolic differential equations and inclusions have been obtained by Abbas
et al. [4, 6, 8]. In [6], Abbas et al. studied the existence and the uniqueness
of solutions of the following Darboux problem of partial impulsive differential
equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cDr
θk
u(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); if y ∈ [0, b], k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

(1)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, a, b > 0,
θk = (xk, 0); k = 0, . . . ,m, cDr

θk
is the fractional Caputo derivative of order

r = (r1, r2) ∈ (0, 1]× (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × R
n ×

R
n → R

n, J = [0, a] × [0, b], Ik : Rn → R
n; k = 1, . . . ,m are given continuous

functions, ϕ : [0, a] → R
n and ψ : [0, b] → R

n are given absolutely continuous
functions. Here u(x+k , y) and u(x

−
k , y) denote the right and left limits of u(x, y)

at x = xk, respectively.
The stability of functional equations was originally raised by Ulam in 1940

in a talk given at Wisconsin University. The problem posed by Ulam was the
following: Under what conditions does there exist an additive mapping near an
approximately additive mapping? (for more details see [34]). The first answer
to Ulam’s question was given by Hyers in 1941 in the case of Banach spaces
in [19]. Thereafter, this type of stability is called the Ulam–Hyers stability.
In 1978, Rassias [29] provided a remarkable generalization of the Ulam–Hyers
stability of mappings by considering variables. The concept of stability for
a functional equation arises when we replace the functional equation by an
inequality which acts as a perturbation of the equation. Thus, the stability
question of functional equations is how do the solutions of the inequality differ
from those of the given functional equation?, or equivalently for every solution
of the perturbed equation there exists a solution of the equation that is close
to it. Considerable attention has been given to the study of the Ulam–Hyers
and Ulam–Hyers–Rassias stability of all kinds of functional equations; one can
see the monographs of [20, 21]. Bota-Boriceanu and Petrusel [14], Petru et al.
[26, 27], and Rus [30, 31] discussed the Ulam–Hyers stability for operatorial
equations and inclusions. Castro and Ramos [16], and Jung [22] considered the
Hyers–Ulam–Rassias stability for a class of Volterra integral equations. Ulam
stability for fractional differential equations with Caputo derivative are proposed
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by Wang et al. [38, 39]. Some stability results for fractional integral equation
are obtained by Wei et al. [42]. In [36, 41], Wang et al. introduced some new
concepts about Ulam stability of impulsive differential equations with integer
and non integer order. Mittag–Leffler–Ulam stabilities of fractional evolution
equations have been considered by Wang and Zhou [40]. More details from
historical point of view, and recent developments of such stabilities are reported
in [21, 30, 42].
Motivated by the above papers, in this article, we discuss the Ulam stability

for impulsive fractional partial differential equations{
cDr

xk
u(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); if y ∈ [0, b], k = 1, . . . ,m,

(2)

where f : J × E → E and Ik : E → E; k = 1, . . . ,m are given continuous
functions. Our considerations are based upon the Banach contraction principle
and a fractional version of Gronwall’s inequality. This paper is organized as
follows. In Section 2, we collect some preliminary background needed in the
following section. Our main result will be presented in Section 3. An illustrative
example is presented in Section 4. This paper initiates the Ulam stability of the
Darboux problem for fractional differential equations.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Let E be a Banach space and let J := [0, a]×
[0, b]; a, b > 0. Denote L1(J) the space of Bochner-integrable functions u : J →
E with the norm

‖u‖L1 =

∫ a

0

∫ b

0

‖u(x, y)‖E dydx,

where ‖.‖E denotes a suitable complete norm on E.
As usual, by AC(J) we denote the space of absolutely continuous functions

from J into E, and C := C(J) is the Banach space of all continuous functions
from J into E with the norm ‖.‖∞ defined by

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖E.

In all what follows consider the Banach space

PC =
{
u : J → E : u ∈ C(Jk); k = 0, 1, . . . ,m, and there exist u(x−k , y)

and u(x+k , y); k = 1, . . . ,m, with u(x−k , y) = u(xk, y) for each y ∈ [0, b]
}
,

with the norm
‖u‖PC = sup

(x,y)∈J

‖u(x, y)‖E .
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Definition 2.1 [35] Let θ = (0, 0), r1, r2 ∈ (0,∞) and r = (r1, r2). For f ∈
L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t) dtds,

is called the left-sided mixed Riemann–Liouville integral of order r, where Γ(.)
is the (Euler’s) Gamma function defined by Γ(ξ) =

∫∞
0
tξ−1e−tdt; ξ > 0.

In particular,

(Iθθ f)(x, y) = f(x, y), (Iσθ f)(x, y) =

∫ x

0

∫ y

0

f(s, t) dtds; for almost all (x, y) ∈ J,

where σ = (1, 1). For instance, Irθf exists for all r1, r2 ∈ (0,∞), when f ∈ L1(J).
Note also that when f ∈ C, then (Irθf) ∈ C, moreover

(Irθf)(x, 0) = (Irθf)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.2 Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0,∞) × (0,∞),
then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 ; for almost all (x, y) ∈ J.

By 1 − r we mean (1− r1, 1 − r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y ,
the mixed second order partial derivative.

Definition 2.3 [35] Let r ∈ (0, 1]×(0, 1] and f ∈ L1(J). The Caputo fractional-
order derivative of order r of f is defined by the expression

cDr
θf(x, y) = (I1−r

θ D2
xyf)(x, y)

=
1

Γ(1− r1)Γ(1− r2)

∫ x

0

∫ y

0

D2
stf(s, t)

(x− s)r1(y − t)r2
dtds.

The case σ = (1, 1) is included and we have

(cDσ
θ f)(x, y) = (D2

xyf)(x, y); for almost all (x, y) ∈ J.

Example 2.4 Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

cDr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 ; for almost all (x, y) ∈ J.

Let a1 ∈ [0, a], z = (a1, 0), Jz = (a1, a] × [0, b], r1, r2 > 0 and r = (r1, r2).
For u ∈ L1(Jz), the expression

(Irzu)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+
1

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t) dtds,

is called the left-sided mixed Riemann–Liouville integral of order r of u.
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Definition 2.5 [35]. For u ∈ L1(Jz) where D2
xyu is Bochner integrable on

[xk, xk+1]× [0, b], k = 0, . . . ,m, the Caputo fractional order derivative of order
r of u is defined by the expression

(cDr
zf)(x, y) = (I1−r

z D2
xyf)(x, y).

Now, we consider the Ulam stability of impulsive fractional differential equa-
tions (2). Let ε be a positive real number and Φ: J → [0,∞) be a continuous
function. We consider the following inequalities{

‖cDr
xk
u(x, y)− f(x, y, u(x, y))‖E ≤ ε; if (x, y) ∈ Jk, k = 0, . . . ,m,

‖u(x+k , y)− u(x−k , y)− Ik(u(x
−
k , y))‖E ≤ ε; if y ∈ [0, b], k = 1, . . . ,m.

(3)

{
‖cDr

xk
u(x, y)− f(x, y, u(x, y))‖E ≤ Φ(x, y); if (x, y) ∈ Jk, k = 0, . . . ,m,

‖u(x+k , y)− u(x−k , y)− Ik(u(x
−
k , y))‖E ≤ Φ(x, y); if y ∈ [0, b], k = 1, . . . ,m.

(4){
‖cDr

xk
u(x, y)− f(x, y, u(x, y))‖E ≤ εΦ(x, y); if (x, y) ∈ Jk, k = 0, . . . ,m,

‖u(x+k , y)− u(x−k , y)− Ik(u(x
−
k , y))‖E ≤ εΦ(x, y); if y ∈ [0, b], k = 1, . . . ,m.

(5)
In the theory of functional differential equations, there are some special kind

of data dependence, (see [29, 30, 41]). Following these results in mind, we shall
present four types of Ulam stability for the problem (2).

Definition 2.6 Problem (2) is Ulam–Hyers stable if there exists a real number
cf,m > 0 such that for each ε > 0 and for each solution u ∈ PC of the inequality
(3 ), there exists a solution v ∈ PC Problem (2) with

‖u(x, y)− v(x, y)‖E ≤ εcf,m; (x, y) ∈ J.

Definition 2.7 Problem (2) is generalized Ulam–Hyers stable if there exists
Θf,m ∈ PC([0,∞), [0,∞)), Θf,m(0) = 0 such that for each ε > 0 and for each
solution u ∈ PC of the inequality (3) there exists a solution v ∈ PC Problem
(2) with

‖u(x, y)− v(x, y)‖E ≤ Θf,m(ε); (x, y) ∈ J.

Definition 2.8 Problem (2) is Ulam–Hyers–Rassias stable with respect to Φ
if there exists a real number cf,m,Φ > 0 such that for each ε > 0 and for each
solution u ∈ PC of the inequality (5) there exists a solution v ∈ PC Problem
(2) with

‖u(x, y)− v(x, y)‖E ≤ εcf,m,ΦΦ(x, y); (x, y) ∈ J.

Definition 2.9 Problem (2) is generalized Ulam–Hyers–Rassias stable with re-
spect to Φ if there exists a real number cf,m,Φ > 0 such that for each solution
u ∈ PC of the inequality (4 ) there exists a solution v ∈ PC Problem (2) with

‖u(x, y)− v(x, y)‖E ≤ cf,m,ΦΦ(x, y); (x, y) ∈ J.
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Remark 2.10 It is clear that

(i) Definition 2.6 ⇒ Definition 2.7,
(ii) Definition 2.8 ⇒ Definition 2.9,
(iii) Definition 2.8 for Φ(x, y) = 1 ⇒ Definition 2.6.
Remark 2.11 A function u ∈ PC is a solution of the inequality (3) if and only
if there exist a function g ∈ PC and a sequence gk; k = 1, . . . ,m (which depend
on u) such that

(i) ‖g(x, y)‖E ≤ ε and ‖gk‖∞ ≤ ε; k = 1, . . . ,m,

(ii) cDr
xk
u(x, y) = f(x, y, u(x, y)) + g(x, y); if (x, y) ∈ Jk, k = 0, . . . ,m,

(iii) u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)) + gk; if y ∈ [0, b], k = 1, . . . ,m.

One can have similar remarks for the inequalities (4) and (5). So, the Ulam
stabilities of the impulsive fractional differential equations are some special types
of data dependence of the solutions of impulsive fractional differential equations.
In the sequel we will make use of the following generalization of Gronwall’s

lemma for two independent variables and singular kernel.

Lemma 2.12 (Gronwall’s lemma) [17] Let υ : J → [0,∞) be a real function and
ω(., .) be a nonnegative, locally integrable function on J. If there are constants
c > 0 and 0 < r1, r2 < 1 such that

υ(x, y) ≤ ω(x, y) + c

∫ x

0

∫ y

0

υ(s, t)

(x− s)r1(y − t)r2
dtds,

then there exists a constant δ = δ(r1, r2) such that

υ(x, y) ≤ ω(x, y) + δc

∫ x

0

∫ y

0

ω(s, t)

(x− s)r1(y − t)r2
dtds,

for every (x, y) ∈ J .

3 Main results

In this section, we present conditions for the Ulam stability of problem (2).
We need the following auxiliary Lemma whose proof in when E is of a finite

dimension was given in [6].

Lemma 3.1 [6] Let μ(x, y) = ϕ(x) + ψ(y) − ϕ(0). A function u ∈ PC is a
solution of the fractional integral equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(x, y) = μ(x, y) +
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t)) dtds; (x, y) ∈ J0,

u(x, y) = μ(x, y) +
∑k

i=1(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds

+
∫ x

xk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t)) dtds; (x, y) ∈ Jk, k = 1, . . . ,m,

(6)
if and only if u is a solution of the problem (1).
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Lemma 3.2 If u ∈ PC is a solution of the inequality (3) then u is a solution
of the following integral inequality⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖u(x, y)− μ(x, y)− 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds‖E

≤ εar1br2

Γ(1+r1)Γ(1+r2)
; if (x, y) ∈ [0, x1]× [0, b],

‖u(x, y)− μ(x, y)−
∑k

i=1(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

− 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds

− 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds‖E

≤ 2εar1br2

Γ(1+r1)Γ(1+r2)
; if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m.

(7)

Proof by Remark 2.11 we have that{
cDr

xk
u(x, y) = f(x, y, u(x, y)) + g(x, y); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)) + gk; if y ∈ [0, b], k = 1, . . . ,m.

Then

u(x, y) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(x, y) + 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1(g(s) + f(s, t, u(s, t))) dtds;

if (x, y) ∈ [0, x1]× [0, b],

μ(x, y) +
∑k

i=1(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1(g(s)+f(s, t, u(s, t))) dtds

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1(g(s) + f(s, t, u(s, t))) dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m.

Thus, it follows that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖u(x, y)− μ(x, y)− 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds‖E

= ‖ 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1g(s, t) dtds‖E;

if (x, y) ∈ [0, x1]× [0, b],

‖u(x, y)− μ(x, y)−
∑k

i=1(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds

− 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds‖E

= ‖ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1g(s, t) dtds

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1g(s, t) dtds‖E;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m.

Hence, we obtain (7). �
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Remark 3.3 We have similar results for the solutions of the inequalities (4)
and (5).

In the sequel, we need the following theorem.

Theorem 3.4 [6] Assume that the following hypotheses hold

(H1) There exists a constant lf > 0 such that

‖f(x, y, u)− f(x, y, u)‖E ≤ lf‖u− u‖E ,

for each (x, y) ∈ J , and each u, u ∈ E,

(H2) There exists a constant l∗ > 0 such that

‖Ik(u)− Ik(u)‖E ≤ l∗‖u− u‖E , for each u, u ∈ E, k = 1, . . . ,m.

If

2ml∗ +
2lfa

r1br2

Γ(1 + r1)Γ(1 + r2)
< 1, (8)

then (1) has a unique solution on J.

Theorem 3.5 Assume that assumptions (H1), (H2) and the following hypothe-
ses hold

(H3) Φ ∈ L1(J, [0,∞)) and there exists λΦ > 0 such that, for each (x, y) ∈ J
we have

(IrθΦ)(x, y) ≤ λΦΦ(x, y),

(H4) ‖Ik(u)‖E ≤ Φ(x, y); for each u ∈ E, k = 1, . . . ,m.

If the condition (8) is satisfied, then problem (2) is generalized Ulam-Hyers-
Rassias stable.

Proof Let u ∈ PC be a solution of the inequality (4). By Theorem 3.4 there
v is a unique solution of the problem (1). Then we have

v(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(x, y) + 1
Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, v(s, t))dtds;

if (x, y) ∈ [0, x1]× [0, b],

μ(x, y) +
∑k

i=1(Ii(v(x
−
i , y))− Ii(v(x

−
i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y

0
(xi − s)r1−1(y − t)r2−1f(s, t, v(s, t))dtds

+ 1
Γ(r1)Γ(r2)

∫ x

xk

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t, v(s, t))dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m.

By the differential inequality (4) and (H3), we obtain

‖u(x, y)− μ(x, y)−
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t))dtds‖E

≤ (IrθΦ)(x, y) ≤ λΦΦ(x, y); if (x, y) ∈ J0,
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and

‖u(x, y)− μ(x, y)−
k∑

i=1

(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

− 1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds

− 1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds‖E

≤ 1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1Φ(s, t)dtds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
Φ(s, t)dtds

≤ (1 + k)(IrθΦ)(x, y) ≤ (1 + k)λΦΦ(x, y); if (x, y) ∈ Jk; k = 1, . . . ,m.

Thus, for each (x, y) ∈ J0, we have

‖u(x, y)− v(x, y)‖E ≤

≤ ‖u(x, y)−μ(x, y)− 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y−t)r2−1f(s, t, u(s, t)) dtds‖E

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x−s)r1−1(y− t)r2−1‖f(s, t, u(s, t))−f(s, t, v(s, t))‖E dtds

≤ λΦΦ(x, y) +
lf

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y− t)r2−1‖u(s, t)− v(s, t)‖E dtds,

and for each (x, y) ∈ Jk; k = 1, . . . ,m, we have

‖u(x, y)− v(x, y)‖E ≤ ‖u(x, y)− μ(x, y)−
k∑

i=1

(Ii(u(x
−
i , y))− Ii(u(x

−
i , 0)))

− 1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds

− 1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t)) dtds‖E

+

k∑
i=1

‖Ii(u(x−i , y))− Ii(v(x
−
i , y))‖E +

k∑
i=1

‖Ii(u(x−i , 0))− Ii(v(x
−
i , 0))‖E

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi−s)r1−1(y−t)r2−1‖f(s, t, u(s, t))−f(s, t, v(s, t))‖E dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x−s)r1−1(y− t)r2−1‖f(s, t, u(s, t))−f(s, t, v(s, t))‖E dtds
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≤ (1 + k)λΦΦ(x, y) + 4kΦ(x, y)

+
lf (1 + k)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t)− v(s, t)‖E dtds.

Hence, for each (x, y) ∈ Jk; k = 0, . . . ,m, we get

‖u(x, y)− v(x, y)‖E ≤ (1 + k)λΦΦ(x, y) + 4kΦ(x, y)

+
lf (1 + k)

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t)− v(s, t)‖E dtds.

From Lemma 2.12, there exists a constant δ = δ(r1, r2) such that

‖u(x, y)− v(x, y)‖E ≤ [4k + (1 + k)λΦ]Φ(x, y)

+
δlf (1 + k)[4k + (1 + k)λΦ]

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1Φ(s, t) dtds

≤ [4m+ (1 +m)λΦ][1 + (1 +m)δlfλΦ]Φ(x, y) := cf,m,ΦΦ(x, y).

Finally, problem (2) is generalized Ulam–Hyers–Rassias stable.

4 An example

Let

E = l1 =

{
w = (w1, w2, . . . , wn, . . .) :

∞∑
n=1

|wn| <∞
}
,

be the Banach space with norm ‖w‖E =
∑∞

n=1 |wn|. Consider the following
infinite system of partial hyperbolic fractional impulsive differential equations
of the form{

cDr
xk
u(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+k , y) = u(x−k , y) + Ik(u(x
−
k , y)); if y ∈ [0, 1], k = 1, . . . ,m,

(9)

where J = [0, 1] × [0, 1], (r1, r2) ∈ (0, 1] × (0, 1], u = (u1, u2, . . . , un, . . .),
f = (f1, f2, . . . , fn, . . .),

cDr
xk
u = (cDr

xk
u1,

cDr
xk
u2, . . . ,

cDr
xk
un, . . .); k = 1, . . . ,m,

fn(x, y, u) =
1

(10ex+y+4)(1 + ‖un‖E)
; (x, y) ∈ [0, 1]× [0, 1], n ∈ N,

and

Ik(u(x
−
k , y)) =

xy2

(30ex+y+4)(1 + ‖u(x−k , y)‖E)
, y ∈ [0, 1], k = 1, . . . ,m.

Clearly, the function f is continuous. For each n ∈ N, u, u ∈ E and (x, y) ∈
[0, 1]× [0, 1], we have

‖f(x, y, u(x, y))− f(x, y, u(x, y))‖E ≤ 1

10e4
‖u− u‖E ,
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and

‖Ik(u)− Ik(u)‖E ≤ 1

30e4
‖u− u‖E .

Then, the hypotheses (H1) and (H2) are satisfied with

lf =
1

10e4
and l∗ =

1

30e4
.

We shall show that condition (8) holds with a = b = 1. Indeed, Γ(1 + ri) >
1
2 ;

i = 1, 2, and if we assume for instance that the number of impulses m = 3, then
we get

2ml∗ +
2lfa

r1br2

Γ(1 + r1)Γ(1 + r2)
=

1

e4
+

1

5e4Γ(1 + r1)Γ(1 + r2)
<

9

5e4
< 1.

The hypothesis (H3) is satisfied with Φ(x, y) = xy2 and λΦ = 8. Indeed,
a simple computation shows that

(IrθΦ)(x, y) =
Γ(2)Γ(3)

Γ(2 + r1)Γ(3 + r2)
x1+r1y2+r2 < 8xy2 = λΦΦ(x, y).

Finally, for each (x, y) ∈ [0, 1]× [0, 1] and u ∈ E, we have

‖Ik(u)‖E ≤ xy2 = Φ(x, y).

Hence, the hypothesis (H4) is satisfied. Consequently Theorem 3.5 implies that
the problem (9) is generalized Ulam–Hyers–Rassias stable.

References

[1] Abbas, S., Baleanu, D., Benchohra, M.: Global attractivity for fractional order delay
partial integro-differential equations. Adv. Difference Equ. 2012, 62 doi:10.1186/1687-
1847-2012-62 (2012), 1–10, online.

[2] Abbas, S., Benchohra, M.: Darboux problem for perturbed partial differential equations
of fractional order with finite delay. Nonlinear Anal. Hybrid Syst. 3 (2009), 597–604.

[3] Abbas, S., Benchohra, M.: Fractional order partial hyperbolic differential equations in-
volving Caputo’s derivative. Stud. Univ. Babeş-Bolyai Math. 57, 4 (2012), 469–479.
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