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Abstract

We prove that a certain identity introduced by R. Halaš for classifying
basic algebras can be used for characterizing orthomodular lattices in the
class of ortholattices with antitone involutions on every principal filter.
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In order to characterize certain basic algebras which are not horizontal sums
of chains (see e.g. [3]), R. Halaš considered the identity

(x⊕ x)⊕ y = x⊕ (x⊕ y) (I1)

which is satisfied e.g. in every MV-algebra or in every commutative basic algebra
which is a chain with respect to the induced order. Since every orthomodular
lattice can be organized into a basic algebra (see [2], [5]), we can ask if this
identity holds true also for orthomodular lattices and, moreover, if it can char-
acterize orthomodular lattices among ortholattices with antitone involutions on
principal filters, see [2], [4], [5] and [6].
At first, we recall the mentioned concepts.
By a basic algebra (see [2], [4], [6]) is meant an algebra A = (A;⊕,¬, 0) of

type (2, 1, 0) satisfying the following axioms:
(B1) x⊕ 0 = x,
(B2) ¬¬x = x,
(B3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
(B4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1, where 1 = ¬0.
*Supported by the project Algebraic Methods in Quantum Logic, CZ.1.07/2.3.00/20.0051.
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It is elementary to prove that every basic algebra satisfies also 0 ⊕ x = x and
x ⊕ ¬x = 1 = ¬x ⊕ x, see e.g. [6]. Let us mention that a basic algebra is
an MV-algebra if and only if ⊕ is associative, i.e. if it satisfies the identity
x⊕ (y ⊕ z) = (x⊕ y)⊕ z.
As shown in [4], [5], [6], every basic algebra A = (A;⊕,¬, 0) can be converted

into a bounded lattice L(A) = (A;∨,∧, 0, 1) where

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y)

whose induced order ≤ is given by

x ≤ y if and only if ¬x⊕ y = 1

and such that every principal filter [p, 1] is equipped with an antitone involution
a �→ ap, i.e. for any a, b ∈ [p, 1] we have

app = a and a ≤ b ⇒ bp ≤ ap,

where ap = ¬a⊕ p (expressed in the operations of A).
Also conversely, every bounded lattice L = (L;∨,∧, 0, 1) in which every

principal filter [p, 1] is equipped with an antitone involution a �→ ap for a ∈ [p, 1],
can be organized into a basic algebra A(L) = (L;⊕,¬, 0) as follows:

¬x = x0 and x⊕ y = (x0 ∨ y)y.

Since x0 ∨ y ∈ [y, 1] for any x, y ∈ L, the operation ⊕ is correctly defined on L.
By an ortholattice (see e.g. [1]) is meant a bounded lattice L = (L;∨,∧,′ , 0, 1)

with a unary operation x �→ x′ which is an orthocomplementation, i.e.

x ∨ x′ = 1 and x ∧ x′ = 0,

x′′ = x and x ≤ y ⇒ y′ ≤ x′.

Hence, orthocomplementation is an antitone involution on the whole L. An
ortholattice L is called orthomodular (see [1], [7]) if it satisfies the orthomodular
law

x ≤ y =⇒ x ∨ (x′ ∧ y) = y (OML)

which is equivalent to the identity

x ∨ (x′ ∧ (x ∨ y)) = x ∨ y

or to the dual of (OML)

x ≤ y =⇒ y ∧ (y′ ∨ x) = x.

Observation 1 Let L = (L;∨,∧,′ , 0, 1) be an orthomodular lattice and p ∈ L.
Then the mapping a �→ ap = a′ ∨ p is an antitone involution (which is in fact
an orthocomplementation) on the principal filter [p, 1].
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Of course, the mapping a �→ ap = a′ ∨ p is antitone because the orthocom-
plementation ′ has this property and it maps [p, 1] into itself. Due to (OML)
and DeMorgan laws we have

app = (a′ ∨ p)′ ∨ p = (a ∧ p′) ∨ p = a

since a ∈ [p, 1], i.e. p ≤ a. Thus it is an involution on [p, 1]. Evidently, a∨ ap =
a ∨ a′ ∨ p = 1 and a ∧ ap = a ∧ (a′ ∨ p) = p due to the dual of (OML).
Hence, every orthomodular lattice L can be organized into a basic algebra

A(L) = (L;⊕,¬, 0) where ¬x = x′ and

x⊕ y = (x′ ∨ y)′ ∨ y = (x ∧ y′) ∨ y. (1)

It was shown in [2], [4] that a basic algebra is represented as an orthomodular
lattice if and only if it satisfies the identity

y ⊕ (x ∧ y) = y.

In what follows, we are going to study ortholattices having antitone involu-
tions in every its principal filter. Such a lattice need not be orthomodular, see
the following example.

Example 1 Consider the lattice visualized in Fig. 1.

1

0

a b c d e

e′ d′ c′ b′ a′

Fig. 1

This is evidently an ortholattice. However, it is not orthomodular because
e.g. a ≤ e′ but a ∨ (a′ ∧ e′) = a ∨ 0 = a 
= e′.

On the other hand, every its principal filter can be equipped with an antitone
involution, e.g. for a ∈ L we can take aa = 1, 1a = a, (e′)a = d′ and (d′)a = e′.
Alternatively, we can take aa = 1, 1a = a, (e′)a = e′ and (d′)a = d′. Similarly
it can be done for the remaining four-element principal filters and uniquely for
principal filters with at most two elements.
For an ortholattice L = (L;∨,∧,′ , 0, 1), by a subalgebra of L we mean a

sublattice of L containing 0 and 1 and being closed with respect to orthocom-
plementation.
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Now, let L = (L;∨,∧,′ , 0, 1) be an ortholattice every principal filter [p, 1] of
which is equipped with an antitone involution a �→ ap (for a ∈ [p, 1]). Then L
can be organized into a basic algebra A(L) = (L;⊕,¬, 0), where

¬x = x′ and x⊕ y = (x′ ∨ y)y. (2)

Observation 2 If L = (L;∨,∧,′ , 0, 1) is an ortholattice which is not ortho-
modular, then the mapping x �→ x′ ∨ p need not be an antitone involution on
the principal filter [p, 1].

For example, in the lattice from Example 1 for a ∈ L and e′ ∈ [a, 1] we have

(e′′ ∨ a)′ ∨ a = (e ∨ a)′ ∨ a = 0 ∨ a = a 
= e′

thus x �→ x′ ∨ a is not an involution on [a, 1]. Hence, for the construction of
binary operation ⊕ we cannot use formula (1), but we have to apply (2).

Lemma 1 Let L = (L;∨,∧,′ , 0, 1) be an ortholattice whose every principal
filter is equipped with an antitone involution. Define ⊕ by (2). Then A(L) =
(L;⊕,¬, 0) satisfies the identity x⊕ x = x.

Proof It is elementary to see that for every x ∈ L we compute x ⊕ x =
(x′ ∨ x)x = 1x = x (without regard what involution a �→ ax is choosen in the
principal filter [x, 1]). �

Using Lemma 1 for orthomodular lattices, our identity (I1) can be reduced
in the equivalent form

x⊕ y = x⊕ (x⊕ y). (I2)

Theorem 1 Let L = (L;∨,∧,′ , 0, 1) be an orthomodular lattice and let A(L) =
(L;⊕,¬, 0) be the corresponding basic algebra whose operations are defined by
(1). Then A(L) satisfies the identity (I2).

Proof Using (1), we compute x⊕ y = (x′ ∨ y)′ ∨ y = (x ∧ y′) ∨ y. Hence

x⊕ (x⊕ y) = (x′ ∨ ((x ∧ y′) ∨ y))′ ∨ ((x ∧ y′) ∨ y)

= (x ∧ ((x′ ∨ y) ∧ y′)) ∨ ((x ∧ y′) ∨ y)

= ((x ∧ y′) ∧ (x′ ∨ y)) ∨ ((x ∧ y′) ∨ y).

However,
(x ∧ y′) ∧ (x′ ∨ y) ≤ x ∧ y′ ≤ (x ∧ y′) ∨ y

thus x⊕ (x⊕ y) = (x ∧ y′) ∨ y = x⊕ y. �

Remark 1 The assertion of Theorem 1 need not be true if another involution
than xp = x′ ∨ p is considered in the principal filter [p, 1] of an orthomodular
lattice, see e.g. the following example.
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Example 2 Consider an orthomodular lattice L = OM2×2 visualized in Fig. 2.

p′

0

a b c d

1

p

d′ c′ b′ a′

Fig. 2

Let us consider the following antitone involution on the principal filter [b, 1]:
(p′)b = p′, (c′)b = c′, bb = 1, 1b = b. Then we compute

c⊕ b = (c′ ∨ b)b = (c′)b = c′

but c⊕ (c⊕ b) = c⊕ c′ = 1 
= c′, thus (I2) is not satisfied despite the fact that
the lattice L is orthomodular.

On the other hand, we can prove the following.

Theorem 2 Let L = (L;∨,∧,′ , 0, 1) be an ortholattice whose every principal
filter can be equipped with an antitone involution. If L is not orthomodular,
then there exists a subalgebra S of L whose every principal filter is equipped
with an antitone involution such that the identity (I2) with ⊕ being defined by
(2) does not hold in S for any possible choice of these involutions.

Proof Let L be an ortholattice from the assumption. Since L is not ortho-
modular then, by [1] or [7], it contains a subalgebra S depicted in Fig. 3.

1

0

x

y′

y

x′

Fig. 3

One can note immediately that there is just one possible antitone involution in
the principal filter [y, 1], namely yy = 1, (x′)y = x′ and 1y = y. However, by
(2) we get x⊕ y = (x′ ∨ y)y = (x′)y = x′, but x⊕ (x⊕ y) = x⊕ x′ = 1 
= x′. �
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Since every subalgebra of an orthomodular lattice is again an orthomodu-
lar lattice, and hence it can be endowed by antitone involutions on every its
principal filter as given by Obsevation 1, we can conclude:

Corollary 1 Let L = (L;∨,∧,′ , 0, 1) be an ortholattice whose every principal
filter can be equipped with an antitone involution. Then L is orthomodular if
and only if every its subalgebra can be organized into a basic algebra satisfying
the identity

x⊕ (x⊕ y) = x⊕ y,

with ⊕ being defined by (2).

Remark 2 In the ortholattice L of Example 1 (see Fig. 1), such a subalgebra
in which fails (I2) for any possible antitone involution on principal filters is e.g.
{0, a, a′, e, e′, 1}.
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