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PICONE’S IDENTITY FOR A FINSLER p-LAPLACIAN AND

COMPARISON OF NONLINEAR ELLIPTIC EQUATIONS

Jaroslav Jaroš, Bratislava

(Received March 1, 2013)

Abstract. In the paper we present an identity of the Picone type for a class of nonlinear
differential operators of the second order involving an arbitrary norm H in Rn which is con-
tinuously differentiable for x 6= 0 and such that Hp is strictly convex for some p > 1. Two
important special cases are the p-Laplacian and the so-called pseudo p-Laplacian. The iden-
tity is then used to establish a variety of comparison results concerning nonlinear degenerate
elliptic equations which involve such operators. We also get criteria for the nonexistence of
positive solutions in exterior domains for such equations by means of comparison with the
equation exhibiting a kind of “anisotropic radial symmetry”.
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1. Introduction

Let n > 2 and let Ω ⊂ Rn be a bounded domain with piecewise smooth boundary

∂Ω. Fix p ∈ (1,∞) and consider an operator of the form

(1.1) ∆H,pv := div(A(x)H(∇v)p−1∇ξH(∇v))

where A ∈ C1(Ω) with A(x) > 0 on Ω, H : Rn → [0,∞), n > 2, is a convex function

of the class C1(Rn \ {0}) which is positively homogeneous of degree 1, and ∇ and

∇ξ stand for the usual gradient operators with respect to the variables x and ξ,

respectively. We refer to the operator ∆H,p as the (weighted) Finsler p-Laplacian.

A typical example of H satisfying the above conditions is the lr-norm

(1.2) H(ξ) = ‖ξ‖r =

( n∑

i=1

|ξi|
r

)1/r
, r > 1,
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for which the operator defined by (1.1) has the form

∆r,pv := div(A(x)‖∇v‖p−r
r ∇rv)

where

(1.3) ∇rv :=
(∣∣∣

∂v

∂x1

∣∣∣
r−2 ∂v

∂x1
, . . . ,

∣∣∣
∂v

∂xn

∣∣∣
r−2 ∂v

∂xn

)
.

Note that ∆r,p is a nonlinear operator unless p = r = 2 when it reduces to the usual

weighted Laplacian div(A∇v). Two important special cases are r = 2 and general

p ∈ (1,∞) when ∆2,p coincides with the usual p-Laplace operator and the case r = p

when ∆p,p is the so-called pseudo p-Laplacian.

Various problems involving the general Finsler p-Laplacian ∆H,p with A ≡ 1 have

recently been studied by several authors including [2], [3], [4], [7], [8], [13] and [21],

[22], [23].

In the linear case p = 2 and H(ξ) = ‖ξ‖2, ξ ∈ Rn, the following simple formula is

well known (see [17]):

Lemma 1.1 (Picone’s identity). If u, v and A∇v are differentiable in a given

domain Ω ⊂ Rn and v(x) 6= 0 in Ω, then

(1.4) div
(u2

v
A(x)∇v

)
=

u2

v
div(A(x)∇v) +A(x)‖∇u‖22 −A(x)

∥∥∥∇u−
u

v
∇v

∥∥∥
2

2
.

The formula (1.4) is frequently used in the qualitative and comparison theory of

linear differential equations and there are many extensions of (1.4) to more general

linear elliptic operators (see for example [5], [19], [20] and [24]). A breakthrough in

the “linear period” of the history of Picone’s identity occured by the end of the 1990s,

when several authors including Dunninger [12], Allegretto and Huang [1], Došlý and

Mařík [10] and Kusano et al. [14] have independently extended (1.4) to the nonlinear

p-Laplace operator ∆pv := div(‖∇v‖p−2
2 ∇v). The generalized version of Lemma 1.1

reads as follows:

Lemma 1.2 (p-Laplace-Picone identity). If u, v and A‖∇v‖p−2
2 ∇v are differen-

tiable in a given domain Ω ⊂ Rn and v(x) 6= 0 in Ω, then

(1.5) div
( |u|p

|v|p−2v
A(x)‖∇v‖p−2

2 ∇v
)
=

|u|p

|v|p−2v
div(A(x)‖∇v‖p−2

2 ∇v) +A(x)‖∇u‖p2

−A(x)
{
‖∇u‖p2 + (p− 1)

|u|p

|v|p
‖∇v‖p2 − p

|u|p−2u

|v|p−2v
〈‖∇v‖p−2

2 ∇v,∇u〉
}
,
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where the bracketed expression, denoted by Φ(u, v), is a positive semidefinite form

and Φ(u, v) = 0 if and only if u and v are proportional in Ω.

A prototype of results that can easily be obtained from (1.5) by integrating (1.5)

over Ω and using the Gauss theorem asserts that the existence of a solution v of

div(A‖∇v‖p−2
2 ∇v) + C|v|p−2v = 0 where C ∈ C(Ω) which satisfies v(x) 6= 0 in Ω

necessarily implies that

(1.6) J [u; Ω] :=

∫

Ω

[A(x)‖∇u‖p2 − C(x)|u|p] dx > 0

for all u ∈ W 1,p
0 (Ω) \ {0}.

Another standard result based on (1.5), or, more precisely, on its extended version

div
(
ua(x)‖∇u‖p−2

2 ∇u−
|u|p

|v|p−2v
A(x)‖∇v‖p−2

2 ∇v
)
= u div(a(x)‖∇u‖p−2

2 ∇u)

(1.7) −
|u|p

|v|p−2v
div(A(x)‖∇v‖p−2

2 ∇v) + (a(x) −A(x))‖∇u‖p2 +A(x)Φ(u, v)

where a satisfies the same conditions as A, is the comparison theorem of the Leighton

type which says that if for some nontrivial solution of div(a‖∇u‖p−2
2 ∇u)+c|u|p−2u=0

which satisfies u = 0 on ∂Ω, the condition

(1.8) V [u; Ω] :=

∫

Ω

[(a(x)−A(x))‖∇u‖p2 + (C(x) − c(x))|u|p] dx > 0,

is fulfilled, then any solution v of the majorant equation div(A‖∇v‖p−2
2 ∇v) +

C|v|p−2v = 0 must have a zero in Ω unless v and u are linearly dependent (see [14]).

The classical Sturm-Picone comparison theorem which assumes the validity of the

pointwise inequalities a(x) > A(x) and C(x) > c(x) in Ω is clearly covered by the

above result.

In [6] and [9], the classical Picone’s identity (1.4) has been generalized to another

nonlinear differential operator, namely, to the so called pseudo p-Laplacian defined by

∆̃pv := div(∇pv) where ∇pv is given by (1.3). The pseudo p-Laplace generalization

of (1.4) reads as follows.
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Lemma 1.3. If u, v and A∇pv are differentiable in a given domain Ω ⊂ Rn and

v(x) 6= 0 in Ω, then

(1.9) div
( |u|p

|v|p−2v
A(x)∇pv

)
=

|u|p

|v|p−2v
div(A(x)∇pv) +A(x)‖∇u‖pp −A(x)Φ̃(u, v)

where

Φ̃(u, v) := ‖∇u‖pp + (p− 1)
|u|p

|v|p
‖∇pv‖qq − p

|u|p−2u

|v|p−2v
〈∇u,∇pv〉

and q = p/(p− 1) is the Hölder conjugate exponent of p. Moreover, the form Φ̃(u, v)

is positive semidefinite and the equality Φ̃(u, v) = 0 occurs if and only if u and v are

linearly dependent in Ω.

As before, integration of (1.9) over Ω and the use of the divergence theorem leads

to a variety of results concerning nonlinear equations involving pseudo p-Laplacian

analogous to the necessary condition for the existence of positive solutions (1.6) and

the integral comparison criterion (1.8).

The purpose of this paper is to generalize the identities (1.5) and (1.9) to the case

where the particular norms ‖·‖2 and ‖·‖p are replaced by an arbitrary norm H(·) in

R
n which is of class C1 for x 6= 0 and such that Hp is a strictly convex function,

and to obtain the Leighton-type comparison result concerning a pair of nonlinear

degenerate elliptic equations of the form

(1.10) div(a(x)H(∇u)p−1∇ξH(∇u)) + c(x)|u|p−2u = 0

and

(1.11) div(A(x)H(∇v)p−1∇ξH(∇v)) + C(x)|v|p−2v = 0

where a, c, A, C and H are as above.

The outline of the paper is the following. In Section 2 we recall some of the prop-

erties of general norms in Rn. Section 3 contains an extension of Picone’s identity

to the Finsler p-Laplace operator and illustrates its use in the comparison theory

of nonlinear elliptic equations involving such operators. In Section 4 we compare

the equation (1.11) with another equation of the same form exhibiting a kind of

“anisotropic radial symmetry” and get criteria for the nonexistence of positive solu-

tions in exterior domains.
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2. Preliminaries

In this section we survey some of the elementary properties of general norms in

Rn which will be needed in the sequel. For the proofs see for instance [3] or [7].

Let H be an arbitrary norm in Rn, i.e., a convex function H : Rn → [0,∞)

satisfying H(ξ) > 0 for all ξ 6= 0 which is positively homogeneous of degree 1, so that

(2.1) H(tξ) = |t|H(ξ) for all ξ ∈ R
n and t ∈ R.

Since all norms in Rn are equivalent, for H there exist positive constants α and β

such that

α‖ξ‖2 6 H(ξ) 6 β‖ξ‖2

for all ξ ∈ Rn. Let 〈,〉 denote the usual inner product in Rn and define the dual

norm H0 of H by

(2.2) H0(x) = sup
ξ 6=0

〈x, ξ〉

H(ξ)
for x ∈ R

n.

For example, if H is the lr-norm given by (1.2) and s > 1 is such that 1/r+1/s = 1,

then H0(x) = ‖x‖s. In particular, the Euclidean norm ‖·‖2 is self-dual.

The unit H0-ball, i.e., the set K = {x ∈ Rn : H0(x) 6 1} is sometimes called the

Wulff shape (or equilibrium crystal shape) of H .

If we assume that H ∈ C1(Rn \ {0}), then (2.1) yields that

(2.3) ∇ξH(tξ) = sgn t∇ξH(ξ) for all ξ 6= 0 and t 6= 0

and

(2.4) 〈ξ,∇ξH(ξ)〉 = H(ξ) for all ξ ∈ R
n

where the left-hand side is defined to be 0 if ξ = 0. Moreover,

(2.5) H0(∇ξH(ξ)) = 1 for all ξ ∈ R
n \ {0}.

Similarly, if H0 is continuously differentiable for x 6= 0, then

(2.6) H(∇H0(x)) = 1 for all x ∈ R
n \ {0}.

Also, the identities

(2.7) H [H0(x)∇H0(x)]∇ξH [H0(x)∇H0(x)] = x,
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and

(2.8) H0[H(ξ)∇ξH(ξ)]∇H0[H(ξ)∇ξH(ξ)] = ξ,

hold for all x, ξ ∈ Rn, where H(0)∇ξH(0) and H0(0)∇H0(0) are defined to be 0.

From (2.2) we easily obtain the Hölder-type inequality

(2.9) 〈x, ξ〉 6 H(ξ)H0(x) for all x, ξ ∈ R
n

with equality holding if and only if

(2.10) x = H(ξ)∇ξH(ξ) (or, equivalently, H0(x) = H(ξ)).

R em a r k 2.1. There is a close relationship between the dual H0 of an arbitrary

norm H and the so-called Fenchel transform (or conjugate) of H defined by

H∗(x) := sup
ξ∈Rn

{〈x, ξ〉 −H(ξ)}.

More precisely, if we define the indicator function of a nonempty set C ⊂ Rn by

IC(x) = 0 if x ∈ C and IC(x) = ∞ if x /∈ C, then H∗(x) = IK(x), i.e., the Fenchel

conjugate of H is nothing else than the indicator function of the Wulff ball K. For

more details see [18].

In the proof of our main result we will also need the following lemma which is

a consequence of the well-known result asserting that a continuously differentiable

function F defined in an open convex subset of Rn is strictly convex if and only if

(2.11) F (y)− F (x)− 〈∇F (x), y − x〉 > 0

for all x 6= y.

Lemma 2.1. Let H be a norm in Rn such that H ∈ C1(Rn \ {0}) and Hp,

1 < p < ∞, is strictly convex. If

(2.12) H(ξ)p + (p− 1)H(η)p − p〈ξ,H(η)p−1∇H(η)〉 = 0

for some ξ, η ∈ Rn, η 6= 0, and H(ξ) = H(η), then ξ = η.

P r o o f. Given any ξ, η ∈ Rn with η 6= 0 satisfying H(ξ) = H(η) and (2.12), we

obtain

(2.13) 0 = pH(η)p − p〈η,H(η)p−1∇H(η)〉 + p〈η − ξ,H(η)p−1∇H(η)〉

= p〈η − ξ,H(η)p−1∇H(η)〉.
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Notice that pH(η)p−1∇H(η) = ∇(H(η))p 6= 0. Indeed, if ∇(H(η))p were the zero

vector for some η ∈ R
n, i.e., the even strictly convex function H(η)p attained its

global minimum at η, then η would necessarily be equal to 0, a contradiction. There-

fore, by strict convexity of Hp, ξ = η, and the proof is complete. �

The next lemma contains another simple norm inequality which will be used in

establishing our results. It can easily be obtained from the multivariate mean value

theorem combined with the generalized Hölder inequality (2.9).

Lemma 2.2. If H is an arbitrary norm in Rn which is of class C1 for x 6= 0, then

(2.14) |H(η)p −H(ξ)p| 6 p[H(ξ) +H(η)]p−1H(η − ξ)

for any ξ, η ∈ Rn.

P r o o f. From the mean value theorem applied to the function Hp it follows that

for any ξ, η ∈ Rn there exists c ∈ (0, 1) such that

(2.15) H(η)p −H(ξ)p = p〈H((1− c)ξ + cη)p−1∇ξH((1− c)ξ + cη), η − ξ〉.

Using (2.9) and the properties of the norm H , we get

|H(η)p −H(ξ)p| 6 pH0[H((1− c)ξ + cη)p−1∇ξH((1 − c)ξ + cη)]H(η − ξ)

= pH((1− c)ξ + cη)p−1H(η − ξ)

6 p[H((1− c)ξ) +H(cη)]p−1H(η − ξ)

6 p[H(ξ) +H(η)]p−1H(η − ξ).

�

3. Finsler-Picone identity and comparison theorems

Let Ω ⊂ Rn be a bounded domain with a piecewise smooth boundary. The

following is an extension of Picone’s identity (1.4) to the Finsler p-Laplace operator

∆H,p given by (1.1).

Theorem 3.1. Let H be an arbitrary norm in Rn which is of class C1 for x 6= 0.

Assume that u, v and AH(∇v)p−1∇ξH(∇v) are differentiable in a given domain Ω

and v(x) 6= 0 in Ω. Denote

Φ(u, v) := H(∇u)p + (p− 1)
|u|p

|v|p
H(∇v)p − p

|u|p−2u

|v|p−2v
〈∇u,H(∇v)p−1∇ξH(∇v)〉.
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Then

(3.1) div
( |u|p

|v|p−2v
A(x)H(∇v)p−1∇ξH(∇v)

)

=
|u|p

|v|p−2v
div(A(x)H(∇v)p−1∇ξH(∇v)) +A(x)H(∇u)p −A(x)Φ(u, v).

Moreover, Φ(u, v) > 0 in Ω and if, in addition, H(ξ)p is strictly convex in Rn, then

Φ(u, v) = 0 in Ω if and only if u is a constant multiple of v in each component of Ω.

P r o o f. The relation (3.1) can be verified by a routine differentiation. To prove

the positive semidefiniteness of the form Φ(u, v) notice that it can be rewritten as

Φ(u, v) = Φ1(u, v) + Φ2(u, v), where

Φ1(u, v) := H(∇u)p − pH(∇u)H
(u
v
∇v

)p−1

+ (p− 1)H
(u
v
∇v

)p

and

Φ2(u, v) := p
[
H(∇u)H

(u
v
∇v

)p−1

−
〈
∇u,H

(u
v
∇v

)p−1

∇ξH
(u
v
∇v

)〉]
.

Now, the nonnegativity of Φ1(u, v) is an immediate consequence of Young’s inequality

in the form ap−pabp−1+(p− 1)bp > 0, a > 0, b > 0, while Φ2(u, v) > 0 follows from

the generalized Hölder inequality (2.9).

The equality case in Φ(u, v) > 0 means that both Φ1(u, v) = 0 and Φ2(u, v) = 0

in Ω. The first equality is attained if and only if

(3.2) H(∇u) = H
(u
v
∇v

)
in Ω.

Denote

S := {x ∈ Ω: Φ(u, v) = 0}.

If (u∇v/v)(x0) 6= 0 for some x0 ∈ S, then by Lemma 2.1 we have ∇u = u∇v/v at

x0, or, equivalently, ∇(u/v)(x0) = 0. On the other hand, if u∇v/v = 0 on some

subset S0 of S, then ∇u = 0 in S0, which implies ∇(u/v) = 0 in S0. Summarizing

the above facts we get ∇(u/v) = 0 in Ω which forces u/v to be constant in each

component of Ω. �

In the particular case when H(ξ) is an r-norm (1.2), the identity (3.1) specializes

as follows.
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Corollary 3.1. Assume that u, v and A(x)‖∇v‖p−r
r ∇rv are differentiable in

a given domain Ω and v(x) 6= 0 in Ω. Then

(3.3) div
( |u|p

|v|p−2v
A(x)‖∇v‖p−r

r ∇rv
)
=

|u|p

|v|p−2v
div(A(x)‖∇v‖p−r

r ∇rv)

+A(x)‖∇u‖pr −A(x)
{
‖∇u‖pr + (p− 1)

|u|p

|v|p
‖∇v‖pr

− p
|u|p−2u

|v|p−2v
〈∇u, ‖∇v‖p−r

r ∇rv〉
}
,

where the bracketed expression is a positive semidefinite form and equals zero if and

only if u and v are proportional in Ω.

As an immediate consequence of the Finsler-Picone identity (3.1) we obtain the

following necessary condition for the existence of positive (or negative) solutions in Ω

for the equation (1.11).

Theorem 3.2. If (1.11) possesses a solution v which satisfies v(x) 6= 0 in Ω, then

(3.4) JH [u; Ω] :=

∫

Ω

[A(x)H(∇u)p − C(x)|u|p] dx > 0

for all 0 6≡ u ∈ D(Ω) := {ϕ ∈ C1(Ω): ϕ = 0 on ∂Ω}.

P r o o f. For u ∈ D(Ω) which is not identically zero in Ω and any solution v

of (1.11) satisfying v(x) 6= 0 on Ω, it is a consequence of the identity (3.1) integrated

over Ω that

(3.5) JH [u; Ω] =

∫

Ω

A(x)Φ(u, v) dx > 0.

Since u = 0 on ∂Ω and v 6= 0 on ∂Ω, u cannot be a constant multiple of v, i.e.,

equality JH [u; Ω] = 0 cannot occur in (3.5) and the proof is complete. �

The above theorem can be reformulated as a criterion for the validity of a “weaker”

Sturmian conclusion concerning solutions of (1.11) in the sense that it establishes

the existence of a zero of the solution v in Ω ∪ ∂Ω rather than in Ω.

Corollary 3.2. If there exists a function u ∈ D(Ω) not identically zero such that

JH [u; Ω] 6 0,

then any solution v of (1.11) has a zero in Ω.
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If the function u appearing in Corollary 3.2 is a nontrivial solution of the differ-

ential equation (1.10) which satisfies u = 0 on ∂Ω, then multiplying (1.10) by u,

integrating by parts and making use of the divergence theorem, we obtain that

(3.6) FH [u; Ω] :=

∫

Ω

[a(x)H(∇u)p − c(x)|u|p] dx = 0.

Define

(3.7) VH [u; Ω] :=

∫

Ω

[(a(x) −A(x))H(∇u)p + (C(x) − c(x))|u|p] dx.

Then the validity of the condition JH [u; Ω] 6 0 in Corollary 3.2 is guaranteed by

(3.8) VH [u; Ω] = FH [u; Ω]− JH [u; Ω] > 0

and we have the following weaker version of the integral comparison theorem of the

Leighton type.

Corollary 3.3. Let (1.10) have a nontrivial solution u vanishing on ∂Ω and

satisfying (3.8). Then every solution v of (1.11) must have a zero in Ω.

Our next comparison result based on the Finsler-Picone identity (3.1) is the non-

linear analogue of Theorem 5.5 in [20].

Theorem 3.3. Suppose that (1.10) has a nontrivial solution u vanishing on ∂Ω

and satisfying

(3.9)

∫

Ω

[(
C(x)−

A(x)

a(x)
c(x)

)
|u|p+a(x)u

〈
H(∇u)p−1∇ξH(∇u),∇

(A(x)
a(x)

)〉]
dx > 0.

Then every solution of (1.11) must have a zero in Ω.

P r o o f. From (1.10) and (1.11) it follows that

LAu := div(A(x)H(∇u)p−1∇ξH(∇u)) + C(x)|u|p−2u

= div
(A(x)
a(x)

a(x)H(∇u)p−1∇ξH(∇u)
)
+ C(x)|u|p−2u

=
A(x)

a(x)
div(a(x)H(∇u)p−1∇ξH(∇u))

+ a(x)
〈
H(∇u)p−1∇ξH(∇u),∇

(A(x)
a(x)

)〉
+ C(x)|u|p−2u

=
[
C(x) −

A(x)

a(x)
c(x)

]
|u|p−2u+ a(x)

〈
H(∇u)p−1∇ξH(∇u),∇

(A(x)
a(x)

)〉
.
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Thus, the integral on the left-hand side of (3.9) is equal to

∫

Ω

uLAu dx = −JH [u; Ω],

which implies that JH [u; Ω] 6 0 and the assertion follows from Corollary 3.2. �

Assuming that the boundary of a domain Ω is smooth and introducing a suitable

Sobolev space, we can prove the following stronger analogues of the above results.

Theorem 3.4. Let ∂Ω ∈ C1. Assume that there exists a nontrivial function

u ∈ C1(Ω) vanishing on ∂Ω and satisfying

(3.10) JH [u; Ω] :=

∫

Ω

[A(x)H(∇u)p − C(x)|u|p] dx 6 0.

Then every solution v of (1.11) must have a zero in Ω unless v is a constant multiple

of u.

P r o o f. Suppose to the contrary that there exists a solution v of (1.11) such that

v(x) 6= 0 in Ω. Since ∂Ω ∈ C1 and u ∈ C1(Ω) with u = 0 on ∂Ω, there exists

a sequence {uk} of C
∞
0 (Ω) functions converging to u in the norm

‖w‖ :=

(∫

Ω

[H(∇w)p + |w|p] dx

)1/p
.

Since v does not vanish in Ω, we can use the identity (3.1) with u = uk and integrate

it over Ω to get

(3.11) JH [uk; Ω] =

∫

Ω

A(x)Φ(uk, v) dx > 0.

We will show that lim
k→∞

JH [uk; Ω] = JH [u; Ω] = 0. Indeed, since a, c, A and C are

uniformly bounded, there is a constant K1 > 0 such that

(3.12) |JH [uk; Ω]− JH [u; Ω]| 6 K1

∫

Ω

|H(∇uk)
p −H(∇u)p| dx

+K1

∫

Ω

∣∣|uk|
p − |u|p

∣∣dx.

Observing that

(3.13) |H(∇uk)
p −H(∇u)p| 6 p[H(∇uk) +H(∇u)]p−1H(∇(uk − u))
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by (2.14) and using the Hölder inequality, we get

(3.14)

∫

Ω

|H(∇uk)
p −H(∇u)p| dx

6 p

(∫

Ω

[H(∇uk) +H(∇u)]p dx

)(p−1)/p(∫

Ω

H(∇(uk − u))p dx

)1/p
.

Similarly,

(3.15)

∫

Ω

∣∣|uk|
p − |u|p

∣∣ dx 6 p

(∫

Ω

(|uk|+ |u|)p dx

)(p−1)/p(∫

Ω

|uk − u|p dx

)1/p
.

Collecting (3.12), (3.14) and (3.15), we have

|JH [uk; Ω]− JH [u; Ω]| 6 K2(‖uk‖+ ‖u‖)p−1‖uk − u‖

for some positive constant K2 which does not depend on k. It follows that

lim
k→∞

JH [uk; Ω] = JH [u; Ω]. From (3.6) we obtain JH [u; Ω] > 0, which contradicts

the hypothesis (3.10) unless JH [u; Ω] = 0.

Now, let JH [u; Ω] = 0 and let S be an arbitrary domain with S ⊂ Ω. Then for

sufficiently large k the support of uk contains S, so that

(3.16) 0 6

∫

S

A(x)Φ(uk, v) dx 6

∫

Ω

A(x)Φ(uk, v) dx = JH [uk; Ω]

for all such k. Using (3.13) and the Hölder inequality, we can show analogously to

the first part of the proof that

∫

S

A(x)Φ(uk, v) dx →

∫

S

A(x)Φ(u, v) dx as ‖uk − u‖ → 0.

Passing to the limit as k → ∞ in (3.16), we obtain that

∫

S

A(x)Φ(u, v) dx = 0.

Since A(x) > 0 in Ω, it follows that Φ(u, v) ≡ 0 identically in S. By Theorem 3.1,

v must be a constant multiple of u in S and thus in Ω. This completes the proof. �

Our next result is a “stronger” Leighton-type integral comparison theorem. The

proof is similar to that of Corollary 3.3 and we omit it.
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Theorem 3.5. Let ∂Ω ∈ C1. Assume that there exists a nontrivial solution u of

(1.10) vanishing on ∂Ω and satisfying

(3.17) VH [u; Ω] =

∫

Ω

[(a(x)−A(x))H(∇u)p + (C(x) − c(x))|u|p] dx > 0.

Then every solution v of (1.11) must have a zero in Ω unless v is a constant multiple

of u.

The pointwise comparison principle of the Sturm-Picone type for the pair of nonlin-

ear elliptic equations (1.10) and (1.11) is an immediate consequence of Theorem 3.5.

Corollary 3.4. Assume that a(x) > A(x) and C(x) > c(x) in Ω and (1.10) has

a nontrivial solution u such that u = 0 on ∂Ω. Then any solution v of (1.11) is either

zero at some point in Ω or else v = ku for some nonzero constant k.

4. Nonexistence of positive solutions in exterior domains

We apply comparison theorems from the preceding section to show that the equa-

tion

(4.1) div(A(x)H(∇v)p−1∇ξH(∇v)) + C(x)|v|p−2v = 0, x ∈ Ωr0 ,

may have no positive solutions in the exterior domain Ωr := {x ∈ Rn : H0(x) > r}

for any r > r0 > 0, where H0 is the dual norm of H . In particular, we compare (4.1)

with an equation which is H0-radially symmetric in the sense that its coefficients

depend only on H0, that is, it is of the form

(4.2) div(ã(H0(x))H(∇u)p−1∇ξH(∇u)) + c̃(H0(x))|u|
p−2u = 0, x ∈ Ωr0 .

Clearly, if u = y(H0) is an H0-radially symmetric solution of (4.2), then y(r) satisfies

the half-linear ordinary differential equation

(4.3) (rn−1ã(r)|y′|p−2y′)′ + rn−1c̃(r)|y|p−2y = 0, r > r0 > 0,

where “ ′ ” denotes the differentiation with respect to r.
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Theorem 4.1. Assume that there exist real-valued functions ã, c̃ ∈ C([r0,∞))

with ã(r) > 0 for r > r0 such that (4.3) is oscillatory in the sense that any of its

solutions has a sequence of zeros clustering at infinity. Let

(4.4) max
H0(x)=r

A(x) 6 ã(r) and min
H0(x)=r

C(x) > c̃(r), r > r0 > 0.

Then (4.1) cannot have solutions v such that v(x) 6= 0 in Ωr for any r > r0.

P r o o f. Let y(r) be an oscillatory solution of (4.3) on [r0,∞) and {ri} the se-

quence of its consecutive zeros satisfying r0 6 r1 < . . . < ri < . . . , lim
i→∞

ri = ∞.

Then the function u defined by u(x) := y(H0(x)) is an H0-radially symmetric solu-

tion of (4.2) in Ωr0 such that u(x) = 0 on Sri := {x ∈ Rn : H0(x) = ri}, i = 1, 2, . . .

Define

Ωri,ri+1
:= {x ∈ R

n : ri < H0(x) < ri+1}, i = 1, 2, . . .

Let v be a solution of (4.1) in Ωr for some r > r0. Then Ωri,ri+1
⊂ Ωr for sufficiently

large i and

(4.5) VH [u; Ωri,ri+1
] =

∫

Ωri,ri+1

[(ã(H0(x)) −A(x))H(∇u)p

+ (C(x) − c̃(H0(x)))|u|
p] dx > 0

because of (4.4). Corollary 3.3 now implies that v must have a zero in Ωri,ri+1
for

every i such that ri > r, and the proof is complete. �

An alternative way how to reduce the problem of the existence (nonexistence)

of positive solutions of the PDE (4.1) in exterior domains to the one-dimensional

oscillation problem is to replace ã(r) and c̃(r) in (4.3) by the spherical means a(r) and

c(r) of the coefficients A(x) and C(x) over the Wulff sphere {x ∈ Rn : H0(x) = r},

respectively, defined by

(4.6) ā(r) :=
1

αnrn−1

∫

H0(x)=r

A(x) dσ, c̄(r) :=
1

αnrn−1

∫

H0(x)=r

C(x) dσ,

where αn is the surface area of the unit H0-sphere. In the special case of the usual

p-Laplacian a similar averaging technique was used, for instance, in [10] and [14].
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Theorem 4.2. If the half-linear ODE

(4.7) (rn−1ā(r)|y′|p−2y′)′ + rn−1c̄(r)|y|p−2y = 0, r > r0 > 0,

with ā and c̄ given by (4.6) is oscillatory, then the equation (4.1) cannot have positive

(or negative) solutions in Ωr for any r > r0.

P r o o f. Let y(r) be an oscillatory solution of (4.7) and let (r0 6) r1 <

r2 < . . . ri < . . . be its consecutive zeros with ri → ∞ as t → ∞. Integrating

(4.7) from ri to ri+1 by parts, we have

∫ ri+1

ri

rn−1[ā(r)|y′(r)|p − c̄(r)|y|p] dr = 0, i = 1, 2, . . .

Define the function u by u(x) := y(H0(x)). Then

JH [u; Ωri,ri+1
] =

∫

Ωri,ri+1

[A(x)H(∇u)p − C(x)|u|p] dx

=

∫ ri+1

ri

[
|y′(r)|p

∫

H0(x)=r

A(x) dσr − |y(r)|p
∫

H0(x)=r

C(x) dσr

]
dr

= αn

∫ ri+1

ri

rn−1[ā(r)|y′(r)|p − c̄(r)|y(r)|p] dr = 0.

Thus, the conditions of Corollary 3.2 are satisfied in Ωri,ri+1
and, consequently, any

solution v of (4.1) must have a zero in Ωri,ri+1
which means that it cannot be positive

(or negative) in Ωr for any r > r0. This completes the proof. �

There exists a voluminous literature (see, for example, [11] and the references

therein) on oscillation of the one-dimensional half-linear differential equation

(4.8) (p(r)|y′|p−2y′)′ + q(r)|y|p−2y = 0

where p and q are continuous functions on [r0,∞) with p(r) > 0 for r > r0 > 0, and

any of the available oscillation criteria for (4.8), when applied to (4.3) or (4.7), yield

the corresponding nonexistence result for the partial differential equation (4.1). For

example, the application of criteria from [15] and [16] gives the following result.
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Corollary 4.1. Suppose that continuous functions ã(r) and c̃(r) defined on

[r0,∞) with ã(r) > 0 in [r0,∞) satisfy (4.4).

(i) Let

(4.9)

∫ ∞

r0

(rn−1ã(r))−1/(p−1) dr = ∞

and denote

(4.10) P̃ (r) :=

∫ r

r0

(sn−1ã(s))−1/(p−1) ds, r > r0 > 0.

If either

(4.11)

∫ ∞

r0

rn−1c̃(r) dr = ∞,

or

(4.12) lim inf
r→∞

(P̃ (r))p−1

∫ ∞

r

sn−1c̃(s) ds >
1

p− 1

(p− 1

p

)p

,

then (4.1) has no positive solutions in the exterior domain Ωr for any r > r0.

(ii) Let

(4.13)

∫ ∞

r0

(rn−1ã(r))−1/(p−1) dr < ∞

and denote

(4.14) π̃(r) :=

∫ ∞

r

(sn−1ã(s))−1/(p−1) ds, r > r0 > 0.

If either

(4.15)

∫ ∞

r0

(π̃(r))prn−1c̃(r) dr = ∞,

or

(4.16) lim inf
r→∞

1

π̃(r)

∫ ∞

r

(π̃(s))psn−1c̃(s) ds >
(p− 1

p

)p

,

then (4.1) has no positive solutions in the exterior domain Ωr for any r > r0.
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