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A HYBRID MEAN VALUE INVOLVING TWO-TERM

EXPONENTIAL SUMS AND POLYNOMIAL CHARACTER SUMS

Han Di, Xi’an

(Received September 13, 2012)

Abstract. Let q > 3 be a positive integer. For any integers m and n, the two-term

exponential sum C(m,n, k; q) is defined by C(m,n, k; q) =
q∑

a=1
e((mak + na)/q), where

e(y) = e2πiy. In this paper, we use the properties of Gauss sums and the estimate for
Dirichlet character of polynomials to study the mean value problem involving two-term
exponential sums and Dirichlet character of polynomials, and give an interesting asymptotic
formula for it.

Keywords: Dirichlet character of polynomials; two-term exponential sums; hybrid mean
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1. Introduction

Let q > 3 be a positive integer. For any integersm and n, the two-term exponential

sum C(m,n, k; q) is defined by

C(m,n, k; q) =

q
∑

a=1

e
(mak + na

q

)

,

where e(y) = e2πiy.

Various properties of C(m,n, k; q) were investigated by many authors (see [1], [3],
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[4], [5], [6], [7]). For example ‘Gauss’s classical work’ (referred in [1]) proved the

remarkable formula

C(1, 0, 2; q) =
1

2

√
q(1 + i)(1 + e(−q/4)) =























√
q, if q ≡ 1 mod 4,

0, if q ≡ 2 mod 4,

i
√
q, if q ≡ 3 mod 4,

(1 + i)
√
q, if q ≡ 0 mod 4,

where i2 = −1.

In fact the exact value of |C(m,n, 2; q)| is √q, if (2m, q) = 1 (see e.g. Apostol’s

related work [1]). Cochrane and Zheng [5] show for the general sum that

|C(m,n, k; q)| 6 kω(q)q1/2,

where ω(q) denotes the number of distinct prime divisors of q.

The main purpose of this paper is to study the asymptotic properties of the hybrid

mean value

(1)

p−1
∑

n=1

|C(m,n, k; p)|2 ·
∣

∣

∣

∣

p−1
∑

a=1

χ(ma+ ā)

∣

∣

∣

∣

2

,

where χ is any non-principal even character mod p, and a · ā ≡ 1 mod p.

In fact, if χ is an odd character mod p, then we have the identity

p−1
∑

a=1

χ(ma+ ā) =

p−1
∑

a=1

χ(−ma+−a) = −
p−1
∑

a=1

χ(ma+ ā) or

p−1
∑

a=1

χ(ma+ ā) = 0.

So we only consider the case that χ is an even character mod p in (1).

For any integer a with (a, p) = 1 we know from Euler’s theorem that ap−2 ≡
ā mod p. So the sum

p−1
∑

a=1

χ(ma+ ā)

is a special case of a general polynomial character sums

(2)

N+M
∑

a=N+1

χ(f(a)),

where M and N are any positive integers, and f(x) is a polynomial.

It is a very important and difficult problem in analytic number theory to give

a sharper upper bound estimate for (2). But for some special cases, such as f(x) = x,
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Pólya and Vinogradov’s classical work (see Theorem 8.21 of [1]) proved that for any

non-principal character χ mod q, we have

N+M
∑

a=N+1

χ(a) ≪ q1/2 ln q.

If q = p is an odd prime, then Weil (see [10]) obtained the following result:

Let χ be a qth-order character mod p. If f(x) is not a perfect qth power mod p,

then we have the estimate

(3)

p
∑

x=1

χ(f(x)) 6 kp1/2,

N+M
∑

x=N+1

χ(f(x)) 6 kp1/2 ln p,

where k denotes the degree of the polynomial f(x). Some related results can also be

found in [2], [8], [11] and [12].

But for a hybrid mean value such as (1), it seems that no one has yet studied the

asymptotic properties of the hybrid mean value, at least we have not seen any related

result. This problem is significant, it can reflect the close relations between the two

sums. Although each of the two-term exponential sums and polynomial character

sums has no precise estimates, their mean value is well behaved. The main purpose

of this paper is to show this point. That is, we shall prove the following:

Theorem. Let p be an odd prime, k be any integer with k 6= 0, 1. Then for any

non-principal even character χ mod p and any integer n with (n, p) = 1, we have the

asymptotic formula

p−1
∑

m=1

∣

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)

∣

∣

∣

∣

2

·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb+ b̄)

∣

∣

∣

∣

2

=

{

2p3 +O(|k|p2), if k is an even number,

2p3 +O(|k|p 5

2 ), if k is an odd number.

Taking k = −1 in our theorem we may immediately deduce the following:

Corollary. Let p > 3 be a prime. Then for any non-principal even character

χ mod p, we have the asymptotic formula

p−1
∑

m=1

∣

∣

∣

∣

p−1
∑

a=1

e
(ma+ ā

p

)

∣

∣

∣

∣

2

·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb+ b̄)

∣

∣

∣

∣

2

= 2p3 +O(p2).
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For a general integer q > 3, whether there exists an asymptotic formula for

q
∑

m=1

|C(m,n, k; q)|2 ·
∣

∣

∣

∣

∣

q
∑

b=1
(b,q)=1

χ(mb+ b̄)

∣

∣

∣

∣

∣

2

and
p−1
∑

m=1

|C(m,n, k; p)|2r ·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb + b̄)

∣

∣

∣

∣

2

,

where k, r > 3 are integers and (n, q) = (p, n) = 1, are two open problems.

2. Several lemmas

In this section, we shall give several lemmas, which are necessary in the proof of

our theorem.

Lemma 1. Let p be an odd prime, χ be any non-principal even character mod p.

Then for any integer m with (m, p) = 1, we have the identity

p−1
∑

a=1

χ(ma+ ā) =
χ1(m)τ2(χ̄1)

τ(χ̄)

(

1 +
(m

p

)(τ(χ̄1χ2)

τ(χ̄1)

)2)

,

where τ(χ) =
p−1
∑

a=1
χ(a)e(ap ) denotes the classical Gauss sums, χ = χ2

1, (
∗
p ) = χ2

denotes the Legendre symbol.

P r o o f. Since χ is a non-principal even character mod p, we know that

χ(−1) = 1. Therefore, there exists one and only one primitive character χ1 mod p

such that χ = χ2
1. Then from the properties of Gauss sums we have

p−1
∑

a=1

χ(ma+ ā) =
1

τ(χ̄)

p−1
∑

a=1

p−1
∑

b=1

χ̄(b)e
(b(ma+ ā)

p

)

=
1

τ(χ̄)

p−1
∑

a=1

χ̄(a)

p−1
∑

b=1

χ̄(b)e
(b(ma2 + 1)

p

)

=
1

τ(χ̄)

p−1
∑

b=1

χ̄(b)e
( b

p

)

p−1
∑

a=1

χ̄(a)e
(bma2

p

)

=
1

τ(χ̄)

p−1
∑

b=1

χ̄(b)e
( b

p

)

p−1
∑

a=1

χ̄1(a
2)e

(bma2

p

)
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=
1

τ(χ̄)

p−1
∑

b=1

χ̄(b)e
( b

p

)

p−1
∑

a=1

(1 + χ2(a))χ̄1(a)e
(bma

p

)

=
1

τ(χ̄)

p−1
∑

b=1

χ̄(b)e
( b

p

)

( p−1
∑

a=1

χ̄1(a)e
(bma

p

)

+

p−1
∑

a=1

χ2(a)χ̄1(a)e
(bma

p

)

)

=
1

τ(χ̄)

p−1
∑

b=1

χ̄(b)e
( b

p

)

(χ1(bm)τ(χ̄1) + χ1(bm)χ2(bm)τ(χ̄1χ2))

=
χ1(m)τ(χ̄1)

τ(χ̄)

( p−1
∑

b=1

χ̄1(b)e
( b

p

)

+ χ2(m)
τ(χ̄1χ2)

τ(χ̄1)

p−1
∑

b=1

χ̄1(b)χ2(b)e
( b

p

)

)

=
χ1(m)τ2(χ̄1)

τ(χ̄)

(

1 +
(m

p

)(τ(χ̄1χ2)

τ(χ̄1)

)2)

,

where we have used the identities χ = χ2
1 and

p−1
∑

a=1
χ̄1(a)e(ma/p) = χ1(m)τ(χ̄1).

This proves Lemma 1. �

Note. It is clear that for any non-principal even character χ mod p, we have

|τ(χ)| = √
p. So from Lemma 1 we can deduce the upper bound

(4)

∣

∣

∣

∣

p−1
∑

a=1

χ(ma+ ā)

∣

∣

∣

∣

6 2
√
p.

This estimate is interesting, because it immediately recovers the Weil bound.

Lemma 2. Let p be an odd prime, χ be any non-principal even character mod p.

Then for any integer m with (m, p) = 1, we have the identity

∣

∣

∣

∣

p−1
∑

a=1

χ(ma+ ā)

∣

∣

∣

∣

2

= 2p+
(m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(b− 1)(a2b− 1)

p

)

,

where (∗p ) denotes the Legendre symbol.

P r o o f. Let am+ ā = u. Then for any (m, p) = 1, we have

(5)

p−1
∑

a=1

χ(ma+ ā) =

p−1
∑

u=1

χ(u)

p−1
∑

a=1
am+ā≡u mod p

1 =

p−1
∑

u=1

χ(u)

p−1
∑

a=1
a2m2−amu+m≡0 mod p

1

=

p−1
∑

u=1

χ(u)

p−1
∑

a=0
(2am−u)2≡u2−4m mod p

1 =

p−1
∑

u=1

χ(u)

p−1
∑

a=0
a2≡u2−4m mod p

1.
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Note that for any fixed integer u2 − 4m, the number of solutions of the congruent

equation x2 ≡ u2 − 4m mod p is 1 + ((u2 − 4m)/p), so from (5) we have

(6)

p−1
∑

a=1

χ(ma+ ā) =

p−1
∑

u=1

χ(u)
(

1 +
(u2 − 4m

p

))

=

p−1
∑

u=1

χ(u)
(u2 − 4m

p

)

= χ(2)

p−1
∑

u=1

χ(u)
(u2 −m

p

)

.

Now from (6) and the properties of reduced residue systems mod p we have

(7)

∣

∣

∣

∣

p−1
∑

a=1

χ(ma+ ā)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

p−1
∑

u=1

χ(u)
(u2 −m

p

)

∣

∣

∣

∣

2

=

p−1
∑

a=1

p−1
∑

b=1

χ(ab̄)
(a2 −m

p

)(b2 −m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(a2b2 −m

p

)(b2 −m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(

1 +
( b

p

))(a2b−m

p

)(b−m

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=1

((a2b− 1)(b− 1)

p

)

+
(m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

( (a2b− 1)b(b− 1)

p

)

.

Knowing that χ(−1) = 1, from the properties of the complete residue system mod p

we also have

(8)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

( (a2b− 1)(b − 1)

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=0

( (2a2b− a2 − 1)2 − (a2 − 1)2

p

)

=

p−1
∑

a=1

χ(a)

p−1
∑

b=0

(b2 − (a2 − 1)2

p

)

and

(9)

p
∑

a=1

(a2 + n

p

)

=

{

−1, if (n, p) = 1;

p− 1, if (n, p) = p.

(This formula can be found in Hua’s book [9], §7.8, Theorem 8.2).
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Combining (8) and (9) we can deduce the identity

(10)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

((a2b− 1)(b− 1)

p

)

= 2(p− 1)−
p−2
∑

a=2

χ(a) = 2p.

Now Lemma 2 follows from (7) and (10). �

Lemma 3. Let p be an odd prime. Then for any non-principal even character

χ mod p, we have the estimate

∣

∣

∣

∣

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(a2b− 1)(b− 1)

p

)

∣

∣

∣

∣

6 2p.

P r o o f. For any character χ mod p, from the properties of the Gauss sums

τ(χ) we know that |τ(χ)| 6 √
p. Then from (4) and Lemma 2 we may immediately

obtaine the estimate

∣

∣

∣

∣

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(a2b− 1)(b− 1)

p

)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

p−1
∑

a=1

χ(ma+ ā)

∣

∣

∣

∣

2

− 2p

∣

∣

∣

∣

6 2p.

This proves Lemma 3. �

3. Proof of the theorem

In this section, we shall use the lemmas from Section 2 to complete the proof of

our theorem. For any non-principal character χ mod p and any integer (n, p) = 1,

note that

(11) |C(m,n, k; p)|2 =

p−1
∑

a=1

p−1
∑

b=1

e
(m(ak − bk) + n(a− b)

p

)

= p− 1 +

p−1
∑

a=2

p−1
∑

b=1

e
(mbk(ak − 1) + nb(a− 1)

p

)

.
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Let χ2 = (∗p ) denote the Legendre symbol. If k 6= 0 is an even number, then from

(11), (3), Lemma 2, Lemma 3 and the properties of Gauss sums we have

(12)

p−1
∑

m=1

∣

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)

∣

∣

∣

∣

2

·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb + b̄)

∣

∣

∣

∣

2

= 2p(p− 1)2 + 2p

p−1
∑

m=1

p−1
∑

a=2

p−1
∑

b=1

e
(mbk(ak − 1) + nb(a− 1)

p

)

+ (p− 1)

p−1
∑

m=1

(m

p

)

p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(b− 1)(a2b− 1)

p

)

+

( p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(b− 1)(a2b− 1)

p

)

)

×
( p−1
∑

c=2

p−1
∑

d=1

p−1
∑

m=1

(m

p

)

e
(mdk(ck − 1) + nd(c− 1)

p

)

)

= 2p(p− 1)2 + 2p(p− 2)− 2p2
p−1
∑

a=2
ak≡1 mod p

1

+

( p−1
∑

a=1

χ(a)

p−1
∑

b=1

(b(b− 1)(a2b− 1)

p

)

)

× τ(χ2)

( p−1
∑

c=1

p−1
∑

d=1

(dk(ck − 1)

p

)

e
(nd(c− 1)

p

)

)

= 2p3 +O(|k|p2) +O

(

p · √p

∣

∣

∣

∣

p−1
∑

c=1

(c|k| − 1

p

)

p−1
∑

d=1

e
(nd(c− 1)

p

)

∣

∣

∣

∣

)

= 2p3 +O(|k|p2).

If k is an odd number and k 6= 1, since

p−1
∑

c=1

(ck − 1

p

)(c− 1

p

)

=

p−1
∑

c=1

((ck − 1)(c− 1)

p

)

≪ k
√
p, if k > 1,

and

p−1
∑

c=1

(ck − 1

p

)(c− 1

p

)

=

p−1
∑

c=1

(c(c|k| − 1)(c− 1)

p

)

≪ |k|√p, if k < 0,
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from the process of proving (12) we have

(13)

p−1
∑

m=1

∣

∣

∣

∣

p−1
∑

a=1

e
(mak + na

p

)

∣

∣

∣

∣

2

·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb+ b̄)

∣

∣

∣

∣

2

= 2p3 +O(|k|p2) +O

(

p · √p

∣

∣

∣

∣

p−1
∑

c=2

(ck − 1

p

)

p−1
∑

d=1

(d

p

)

e
(nd(c− 1)

p

)

∣

∣

∣

∣

)

= 2p3 +O(|k|p2) +O

(

p2 ·
∣

∣

∣

∣

p−1
∑

c=1

(ck − 1

p

)(c− 1

p

)

∣

∣

∣

∣

)

= 2p3 +O
(

|k|p5/2
)

.

Now our theorem follows from (12) and (13).

Note that if we take k = −1 in (13), then

∣

∣

∣

∣

p−1
∑

c=1

( c̄− 1

p

)(c− 1

p

)

∣

∣

∣

∣

=

∣

∣

∣

∣

p−1
∑

c=1

( c̄

p

)(1− c

p

)(c− 1

p

)

∣

∣

∣

∣

= 1,

from (13) we can also deduce the asymptotic formula

p−1
∑

m=1

∣

∣

∣

∣

p−1
∑

a=1

e
(mā+ a

p

)

∣

∣

∣

∣

2

·
∣

∣

∣

∣

p−1
∑

b=1

χ(mb+ b̄)

∣

∣

∣

∣

2

= 2p3 +O(p2) +O

(

p2 ·
∣

∣

∣

∣

p−1
∑

c=1

( c̄− 1

p

)(c− 1

p

)

∣

∣

∣

∣

)

= 2p3 +O(p2).

This completes the proof of our corollary. �
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