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Abstract. Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood
maximal operator on grand Morrey spaces of variable exponents over non-doubling mea-
sure spaces. As an application of the boundedness of the maximal operator, we establish
Sobolev’s inequality for Riesz potentials of functions in grand Morrey spaces of variable
exponents over non-doubling measure spaces. We are also concerned with Trudinger’s in-
equality and the continuity for Riesz potentials.
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1. Introduction

The space introduced by Morrey [37] in 1938 has become a useful tool in the

study of the existence and regularity of partial differential equations (see also [39]).

The maximal operator is a classical tool in harmonic analysis and studying Sobolev

functions and partial differential equations and plays a central role in the study of

differentiation, singular integrals, smoothness of functions and so on (see [4], [29],

[44], etc.). Boundedness properties of the maximal operator and Riesz potentials of

functions in Morrey spaces were investigated in [1], [5] and [38]. The same problem

for the maximal operator and Riesz potentials of functions in Morrey spaces with

non-doubling measure was studied in [41] (see also [23] and [40], etc.).

In the meantime, variable exponent Lebesgue spaces and Sobolev spaces were in-

troduced to discuss nonlinear partial differential equations with non-standard growth

condition. For a survey, see [9]. The boundedness of the maximal operator on vari-
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able exponent Lebesgue spaces Lp(·) was studied in [6], [7] and [25]. In [8], Sobolev’s

inequality for variable exponent Lebesgue spaces Lp(·) was studied. Then such prop-

erties were investigated on variable exponent Morrey spaces in [3], [22], [19], [21] and

[36], and on variable exponent Morrey spaces with non-doubling measure in [30].

Grand Lebesgue spaces were introduced in [27] for the sake of studying the Jaco-

bian. The grand Lebesgue spaces play an important role also in the theory of partial

differential equations (see [16], [28] and [42], etc.). The generalized grand Lebesgue

spaces appeared in [20], where the existence and uniqueness of the non-homogeneous

N -harmonic equations div (|∇u|N−2∇u) = µ were studied. The boundedness of the

maximal operator on the grand Lebesgue spaces was studied in [14]. The bounded-

ness of the maximal operator and Sobolev’s inequality for grand Morrey spaces with

doubling measure were also studied in [32]. See also [15] and [31], etc.

Our first aim in this paper is to establish the boundedness of the maximal operator

on grand Morrey spaces of variable exponents over non-doubling measure spaces. As

an application of the boundedness of the maximal operator, making use of Hedberg’s

trick [26], we shall give Sobolev type inequalities for Riesz potentials of functions in

these spaces.

The famous Trudinger inequality ([45]) insists that Sobolev functions in W 1,N(G)

satisfy finite exponential integrability, where G is an open bounded set in R
N (see

also [2] and [46]). Great progress on Trudinger type inequalities has been made for

Riesz potentials of order α(0 < α < N) in the limiting case αp = N (see e.g. [10], [11],

[12], [13], [43]). Trudinger type exponential integrability was investigated on variable

exponent Lebesgue spaces Lp(·) in [17], [19] and [18] and on variable exponent Morrey

spaces in [36]. For related results, see e.g. [33], [34] and [35].

Our second aim in this paper is to establish Trudinger’s type exponential integra-

bility for Riesz potentials of functions in grand Morrey spaces of variable exponents

over non-doubling measure spaces. Further, in the final section, we are concerned

with the continuity for Riesz potentials in our setting.

2. Preliminaries

By a quasi-metric measure space, we mean a triple (X, ̺, µ), where X is a set, ̺

is a quasi-metric on X and µ is a complete measure on X . Here, we say that ̺ is

a quasi-metric on X if ̺ satisfies the following conditions:

(̺1) ̺(x, y) > 0 and ̺(x, y) = 0 if and only if x = y;

(̺2) there exists a constant a0 > 1 such that ̺(x, y) 6 a0̺(y, x) for all x, y ∈ X ;

(̺3) there exists a constant a1 > 0 such that ̺(x, y) 6 a1(̺(x, z) + ̺(z, y)) for all

x, y, z ∈ X .
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We denote B(x, r) = {y ∈ X : ̺(x, y) < r} and dX = sup{̺(x, y) : x, y ∈ X}. In

this paper, we assume that 0 < dX < ∞ and 0 < µ(B(x, r)) < ∞ for all x ∈ X and

r > 0. This implies µ(X) < ∞.

We say that a measure µ is lower Ahlfors q-regular if there exists a constant c0 > 0

such that

(2.1) µ(B(x, r)) > c0r
q

for all x ∈ X and 0 < r < dX . Further, µ is said to be a doubling measure if there

exists a constant c1 > 0 such that µ(B(x, 2r)) 6 c1µ(B(x, r)) for every x ∈ X and

0 < r < dX . By the doubling property, if 0 < r 6 R < dX , then there exist constants

CQ > 0 and Q > 0 such that

(2.2)
µ(B(x, r))

µ(B(x,R))
> CQ

( r

R

)Q

for all x ∈ X (see e.g. [24]).

For α > 0, k > 1 and a locally integrable function f on X , we define the Riesz

potential Uα,kf of order α by

Uα,kf(x) =

∫

X

̺(x, y)α

µ(B(x, k̺(x, y)))
f(y) dµ(y).

Let p(·) be a measurable function on X such that

(P1) 1 < p− := inf
x∈X

p(x) 6 sup
x∈X

p(x) =: p+ < ∞

and

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| 6
cp

log(e + 1/̺(x, y))
for x, y ∈ X

with a constant cp > 0. Here note from (̺2) that

(P2′)

|p(x) − p(y)| 6
c′p

log(e + 1/̺(y, x))
for x, y ∈ X

with a constant c′p > 0.

For a locally integrable function f on X , set

‖f‖Lp(·)(X) = inf

{

λ > 0:

∫

X

( |f(y)|

λ

)p(y)

dµ(y) 6 1

}

.

For 0 < ε < p− − 1, set

pε(x) = p(x)− ε.
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For ν > 0, θ > 0 and k > 1, we denote by Lp(·)−0,ν,θ;k(X) the class of locally

integrable functions f on X satisfying

‖f‖Lp(·)−0,ν,θ;k(X) = sup
x∈X, 0<r<dX

0<ε<p−−1

εθ
( rν

µ(B(x, kr))

)1/pε(x)

‖f‖Lpε(·)(B(x,r)) < ∞.

Throughout this paper, let C denote various constants independent of the variables

in question. The proportion g ∼ h means that C−1h 6 g 6 Ch for some constant

C > 0.

Lemma 2.1. Let k > 1. If µ is lower Ahlfors q-reqular, then

µ(B(x, kr))pε(y) ∼ µ(B(x, kr))pε(x)

whenever y ∈ B(x, r).

P r o o f. Since pε(·) satisfies the condition (P2), we see from (2.1) that

(µ(B(x, kr))

µ(X)

)−|pε(x)−pε(y)|

6 exp
( cp
log(e + 1/̺(x, y))

log
µ(X)

µ(B(x, kr))

)

6 exp
( cp
log(e + 1/r)

log
µ(X)

c0(kr)q

)

6 C

whenever y ∈ B(x, r). Hence, we obtain the required result. �

Lemma 2.2. Let k > 1. If µ is lower Ahlfors q-regular and 0 < ε0 < p−− 1, then

sup
x∈X, 0<r<dX, 0<ε<ε0

εθ
( rν

µ(B(x, kr))

)1/pε(x)

‖f‖Lpε(·)(B(x,r)) ∼ ‖f‖Lp(·)−0,ν,θ;k(X)

for all f ∈ L1
loc(X).

P r o o f. We may assume that

sup
x∈X, 0<r<dX , 0<ε<ε0

εθ
( rν

µ(B(x, kr))

)1/pε(x)

‖f‖Lpε(·)(B(x,r)) 6 1.

Then it follows from Lemma 2.1 that

1

µ(B(x, kr))

∫

B(x,r)

f(y)pε0/2(y) dµ(y) 6 Cr−ν
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for all x ∈ X and 0 < r < dX . To complete the proof, it is sufficient to show that

there exists a constant C > 0 such that

1

µ(B(x, kr))

∫

B(x,r)

f(y)pε1(y) dµ(y) 6 Cr−ν

for all ε0 6 ε1 < p− − 1. For this, see that

1

µ(B(x, kr))

∫

B(x,r)

f(y)pε1 (y) dµ(y)

6 1 +
1

µ(B(x, kr))

∫

B(x,r)

f(y)pε0/2(y) dµ(y) 6 Cr−ν .

Thus the required result is proved. �

Lemma 2.3. If µ is lower Ahlfors q-regular, then

‖1‖Lpε(·)(B(x,r)) ∼ µ(B(x, r))1/pε(x)

for all x ∈ X , 0 < r < dX and 0 < ε < p− − 1.

P r o o f. By Lemma 2.1 we have

∫

B(x,r)

( 1

µ(B(x, r))1/pε(x)

)pε(y)

dµ(y) ∼ 1

for all x ∈ X , 0 < r < dX and 0 < ε < p− − 1, as required. �

3. Boundedness of the maximal operator

From now on, we assume that µ is lower Ahlfors q-regular. For a locally integrable

function f on X , we consider the maximal function M2f defined by

M2f(x) = sup
r>0

1

µ(B(x, 2r))

∫

B(x,r)

|f(y)| dµ(y).

We first show the boundedness of the maximal operator on grand Morrey spaces

of variable exponents over non-doubling measure spaces, as an extension of Meskhi

[32, Theorem 3.1].

Let j0 be the smallest integer satisfying 2
j0 > a1.
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Theorem 3.1. The maximal operator: f → M2f is bounded from Lp(·)−0,ν,θ;2(X)

to Lp(·)−0,ν,θ;2j0+1

(X), that is,

‖M2f‖Lp(·)−0,ν,θ;2j0+1
(X)

6 C‖f‖Lp(·)−0,ν,θ;2(X) for all f ∈ Lp(·)−0,ν,θ;2(X).

To show Theorem 3.1, we need the following results.

Lemma 3.2. Let k > 1. Let f be a nonnegative function on X such that

‖f‖Lp(·)−0,ν,θ;k(X) 6 1. Then there exists a constant C > 0 such that

1

µ(B(x, kr))

∫

B(x,r)

g(y) dµ(y) 6 Cr−ν/pε(x)

for all x ∈ X , 0 < r < dX and 0 < ε < p− − 1, where g(y) = εθf(y).

P r o o f. Let f be a nonnegative function on X such that ‖f‖Lp(·)−0,ν,θ;k(X) 6 1.

Then note that
1

µ(B(x, kr))

∫

B(x,r)

g(y)pε(y) dµ(y) 6 Cr−ν

for all x ∈ X , 0 < r < dX and 0 < ε < p− − 1. Hence, we find

1

µ(B(x, kr))

∫

B(x,r)

g(y) dµ(y)

6 r−ν/pε(x) +
1

µ(B(x, kr))

∫

B(x,r)

g(y)
( g(y)

r−ν/pε(x)

)pε(y)−1

dµ(y)

6 r−ν/pε(x) + Crν(pε(x)−1)/pε(x)
1

µ(B(x, kr))

∫

B(x,r)

g(y)pε(y) dµ(y)

6 Cr−ν/pε(x),

as required. �

We denote by χE the characteristic function of E.

Lemma 3.3. Let j > j0. Let f be a nonnegative function on X such that

‖f‖Lp(·)−0,ν,θ;2(X) 6 1. Set gj(y) = εθf(y)χB(x,2j+1r)\B(x,2jr)(y) for 0 < ε < p− − 1.

Then there exists a constant C > 0 such that

M2gj(z) 6 C2−νj/p+

r−ν/pε(x)

for all z ∈ B(x, r) and 0 < ε < p− − 1.
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P r o o f. Let z ∈ B(x, r). Noting that gj(y) = 0 for y ∈ B(z, (2j/a1 − 1)r), we

have by Lemma 3.2 and (P2)

M2gj(z) = sup
t>(2j/a1−1)r

1

µ(B(z, 2t))

∫

B(z,t)

gj(y) dµ(y)

6 C sup
t>(2j/a1−1)r

t−ν/pε(z)

6 C2−νj/p+

r−ν/pε(x),

as required. �

Lemma 3.4 (cf. [30, Theorem 3.1]). Suppose that p0(·) is a function on X such

that

1 < p−0 := inf
x∈X

p0(x) 6 sup
x∈X

p0(x) =: p+0 < ∞

and

|p0(x)− p0(y)| 6
cp0

log(e + 1/̺(x, y))

for all x, y ∈ X and some constant cp0 > 0. Then there exists a constant c0 > 0

depending only on p−0 , p
+
0 , cp0 and µ(X) such that

‖M2f‖Lp0(·)(X) 6 c0‖f‖Lp0(·)(X)

for all f ∈ Lp0(·)(X).

P r o o f of Theorem 3.1. Let f be a nonnegative function on X such that

‖f‖Lp(·)−0,ν,θ;2(X) 6 1. Let x ∈ X , 0 < r < dX and 0 < ε < (p− − 1)/2 be

fixed. Set g(y) = εθf(y).

For positive integers j > j0, set

gj = gχB(x,2j+1r)\B(x,2jr)(y)

and g0 = gχB(x,2j0r)(y).

Here we find by Lemmas 3.3 and 2.3 that

‖M2gj‖Lpε(·)(B(x,r)) 6 C2−νj/p+

r−ν/pε(x)‖1‖Lpε(·)(B(x,r))

6 C2−νj/p+

r−ν/pε(x)µ(B(x, r))1/pε(x)
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for j > j0. Since p
−
ε > (p− + 1)/2 > 1, we see from Lemma 3.4 that

‖M2g‖Lpε(·)(B(x,r))

6 ‖M2g0‖Lpε(·)(B(x,r)) +

∞
∑

j=j0

‖M2gj‖Lpε(·)(B(x,r))

6 C

{

‖g0‖Lpε(·)(B(x,2j0r)) + µ(B(x, r))1/pε(x)r−ν/pε(x)
∞
∑

j=j0

2−νj/p+

}

6 C{µ(B(x, 2j0+1r))1/pε(x)(2j0r)−ν/pε(x) + µ(B(x, r))1/pε(x)r−ν/pε(x)}

6 Cµ(B(x, 2j0+1r))1/pε(x)r−ν/pε(x),

so that

sup
x∈X, 0<r<dX , 0<ε<(p−−1)/2

εθ
( rν

µ(B(x, 2j0+1r))

)1/pε(x)

‖M2f‖Lpε(·)(B(x,r)) 6 C.

Hence, we obtain the required result by Lemma 2.2. �

4. Sobolev’s inequality

Now we show the Sobolev type inequality for Riesz potentials in grand Morrey

spaces of variable exponents over non-doubling measure spaces, as an extension of

Meskhi [32, Theorems 5.3 and 5.4].

Theorem 4.1. Suppose

1

p∗(x)
=

1

p(x)
−

α

ν
>

1

p+
−

α

ν
> 0.

Then there exists a constant C > 0 such that

‖Uα,4f‖Lp∗(·)−0,ν,θ;2j0+1
(X)

6 C‖f‖Lp(·)−0,ν,θ;2(X).

P r o o f. Let f be a nonnegative function on X such that ‖f‖Lp(·)−0,ν,θ;2(X) 6 1.

Let x ∈ X, 0 < r < dX and 0 < ε < min{p− − 1, ((p∗)− − 1)/γ} be fixed, where

γ = sup
z∈X,0<ε<p−−1

(pε)
∗(z)p∗(z)

pε(z)p(z)
.
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For z ∈ B(x, r) and δ > 0, we write

Uα,4f(z) =

∫

B(z,δ)

̺(z, y)α

µ(B(z, 4̺(z, y)))
f(y) dµ(y)

+

∫

X\B(z,δ)

̺(z, y)α

µ(B(z, 4̺(z, y)))
f(y) dµ(y)

= U1(z) + U2(z).

First we have

U1(z) =

∞
∑

j=1

∫

B(z,2−j+1δ)\B(z,2−jδ)

̺(z, y)α

µ(B(z, 4̺(z, y)))
f(y) dµ(y)

6

∞
∑

j=1

∫

B(z,2−j+1δ)

(2−j+1δ)α

µ(B(z, 2−j+2δ))
f(y) dµ(y)

6

∞
∑

j=1

(2−j+1δ)αM2f(z)

6 CδαM2f(z).

To estimate U2, set g(y) = εθf(y). Then we have by Lemma 3.2

εθU2(z) =

∞
∑

j=1

∫

X∩(B(z,2jδ)\B(z,2j−1δ))

̺(z, y)α

µ(B(z, 4̺(z, y)))
g(y) dµ(y)

6 C
∞
∑

j=1

(2jδ)α
1

µ(B(z, 2j+1δ))

∫

B(z,2jδ)

g(y) dµ(y)

6 C

∞
∑

j=1

(2jδ)α−ν/pε(z)

6 Cδα−ν/pε(z).

Hence

Uα,4g(z) 6 C{δαM2g(z) + δα−ν/pε(z)}.

Letting δ = M2g(z)
−pε(z)/ν , we establish

Uα,4g(z) 6 CM2g(z)
1−αpε(z)/ν .

Now Theorem 3.1 gives

1

µ(B(x, 2j0+1r))

∫

B(x,r)

{εθUα,4f(z)}
(pε)

∗(z) dµ(z)

6
C

µ(B(x, 2j0+1r))

∫

B(x,r)

{M2g(z)}
pε(z) dµ(z) 6 Cr−ν .
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Here one sees that

(pε)
∗(z) = p∗(z)−

(pε)
∗(z)p∗(z)

pε(z)p(z)
ε.

Setting ε̃ = γε, we have

1

µ(B(x, 2j0+1r))

∫

B(x,r)

{ε̃θUα,4f(z)}
(p∗)ε̃(z) dµ(z)

6 C

[

1

µ(B(x, 2j0+1r))

∫

B(x,r)

{εθUα,4f(z)}
(pε)

∗(z) dµ(z) + 1

]

6 Cr−ν

for all x ∈ X , 0 < r < dX and 0 < ε < min{p−−1, ((p∗)−−1)/γ}, so that we obtain

the required result by Lemma 2.2. �

5. Exponential integrability

In this section, we assume that

(5.1) ess sup
x∈X

(1/p(x)− α/ν) 6 0.

Our aim in this section is to give an exponential integrability of Trudinger type.

Recall that j0 is the smallest integer satisfying 2
j0 > a1, where a1 > 0 is the constant

in (̺3). Set

k0 = max{2a0a1(a0 + 1), a21(a0 + 2j0+1)/(2j0 − a1), 2},

where a0 > 1 is the constant in (̺2).

Theorem 5.1. Let 0 < η < α. Suppose that (5.1) holds. Then there exist

constants c1, c2 > 0 such that

1

µ(B(z, 2j0r))

∫

B(z,r)

exp(c1Uα,k0f(x)
1/(θ+1)) dµ(x) 6 c2r

η−α

for all z ∈ X and 0 < r < dX , whenever f is a nonnegative measurable function on

X satisfying ‖f‖Lp(·)−0,ν,θ;1(X) 6 1.

To prove the theorem, we prepare some lemmas.
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Lemma 5.2. Let k > 2, θ > 0 and 0 < η < α. Let f be a nonnegative function

on X such that there exists a constant C > 0 such that

(5.2)
1

µ(B(x, r))

∫

B(x,r)

f(y) dµ(y) 6 Cr−α(log(e + 1/r))θ.

Then there exists a constant C > 0 such that

∫

X\B(x,δ)

̺(x, y)η

µ(B(x, k̺(x, y)))
f(y) dµ(y) 6 Cδη−α(log(e + 1/δ))θ

for x ∈ X and δ > 0.

P r o o f. Let f be a nonnegative function on X satisfying (5.2). We choose the

smallest integer j1 such that 2
j1δ > dX . We have by (5.2)

∫

X\B(x,δ)

̺(x, y)η

µ(B(x, k̺(x, y)))
f(y) dµ(y)(5.3)

=

j1
∑

j=1

∫

B(x,2jδ)\B(x,2j−1δ)

̺(x, y)η

µ(B(x, k̺(x, y)))
f(y) dµ(y)

6

j1
∑

j=1

(2jδ)η
1

µ(B(x, 2j−1kδ))

∫

B(x,2jδ)

f(y) dµ(y)

6 C

j1
∑

j=1

(2jδ)η−α(log(e + 1/(2jδ)))θ

6 C

j1
∑

j=1

∫ 2jδ

2j−1δ

tη−α(log(e + 1/t))θ
dt

t

6 C

∫ 2dX

δ

tη−α(log(e + 1/t))θ
dt

t
.

Hence we find for η < α

∫

X\B(x,δ)

̺(x, y)η

µ(B(x, k̺(x, y)))
f(y) dµ(y) 6 Cδη−α(log(e + 1/δ))θ,

as required. �
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Lemma 5.3. Let 0 < η < α. Let f be a nonnegative function on X satisfy-

ing (5.2). Define

Iηf(x) =

∫

X

̺(x, y)η

µ(B(x, k0̺(x, y)))
f(y) dµ(y).

Then there exists a constant C > 0 such that

1

µ(B(z, 2j0r))

∫

B(z,r)

Iηf(x) dµ(x) 6 Crη−α(log(e + 1/r))θ

for all z ∈ X and 0 < r < dX .

P r o o f. Write

Iηf(x) =

∫

B(z,2j0r)

̺(x, y)η

µ(B(x, k0̺(x, y)))
f(y) dµ(y)

+

∫

X\B(z,2j0r)

̺(x, y)η

µ(B(x, k0̺(x, y)))
f(y) dµ(y)

= I1(x) + I2(x).

Let a = a1(2
j0a0 + 1). By Fubini’s theorem, we have

∫

B(z,r)

I1(x) dµ(x) =

∫

B(z,2j0r)

(
∫

B(z,r)

̺(x, y)η

µ(B(x, k0̺(x, y)))
dµ(x)

)

f(y) dµ(y)

6

∫

B(z,2j0r)

(
∫

B(y,ar)

̺(x, y)η

µ(B(x, k0̺(x, y)))
dµ(x)

)

f(y) dµ(y)

=

∫

B(z,2j0r)

( ∞
∑

j=0

∫

B(y,2−jar)\B(y,2−j−1ar)

̺(x, y)η

µ(B(x, k0̺(x, y)))
dµ(x)

)

f(y) dµ(y)

6

∫

B(z,2j0r)

( ∞
∑

j=0

∫

B(y,2−jar)\B(y,2−j−1ar)

(2−ja0ar)
η

µ(B(x, 2−j−1a−1
0 k0ar))

dµ(x)

)

f(y) dµ(y)

6

∫

B(z,2j0r)

( ∞
∑

j=0

∫

B(y,2−jar)\B(y,2−j−1ar)

(2−ja0ar)
η

µ(B(y, 2−jar))
dµ(x)

)

f(y) dµ(y)

6

∫

B(z,2j0r)

( ∞
∑

j=0

(2−ja0ar)
η

)

f(y) dµ(y),
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since B(y, 2−jar) ⊂ B(x, 2−j−1a−1
0 k0ar) due to the fact that k0 > 2a0a1(a0 + 1).

Using η > 0 and (5.2), we have

∫

B(z,r)

I1(x) dµ(x) 6 C

∫

B(z,2j0r)

( ∞
∑

j=1

(2−jr)η
)

f(y) dµ(y)

6 Crη
∫

B(z,2j0r)

f(y) dµ(y)

6 Crηµ(B(z, 2j0r))(2j0r)−α(log(e + 1/(2j0r)))θ

6 Crη−α(log(e + 1/r))θµ(B(z, 2j0r)).

For x ∈ B(z, r) and y ∈ X \B(z, 2j0r), we obtain

(5.4) ̺(z, y) 6
a12

j0

2j0 − a1
̺(x, y)

and

(5.5) ̺(x, z) 6
a0a1

2j0 − a1
̺(x, y)

Indeed, we have

̺(z, y) 6 a1(̺(z, x) + ̺(x, y)) 6 a1(r + ̺(x, y)) 6 a1(2
−j0̺(z, y) + ̺(x, y)),

which yields (5.4). Also we have

̺(x, z) 6 a0̺(z, x) 6 a0r 6 a02
−j0̺(z, y),

which implies (5.5) by (5.4). In view of (5.4), (5.5) and the fact that k0 > a21
(a0 + 2j0+1)/(2j0 − a1), we have B(z, 2̺(z, y)) ⊂ B(x, k0̺(x, y)). Further, we note

that

̺(x, y) 6 a1(a02
−j0 + 1)̺(z, y)

for x ∈ B(z, r) and y ∈ X \B(z, 2j0r). Therefore, we obtain

I2(x) 6 C

∫

X\B(z,2j0r)

̺(z, y)η

µ(B(x, k0̺(x, y)))
f(y) dµ(y)

6 C

∫

X\B(z,2j0r)

̺(z, y)η

µ(B(z, 2̺(z, y)))
f(y) dµ(y)

for x ∈ B(z, r). Hence we have by Lemma 5.2

I2(x) 6 Crη−α(log(e + 1/r))θ.

Thus this lemma is proved. �

221



P r o o f of Theorem 5.1. Let f be a nonnegative measurable function on X

satisfying ‖f‖Lp(·)−0,ν,θ;1(X) 6 1. Set g(y) = εθf(y). Then we have by Lemma 3.2

and (5.1)

1

µ(B(x, r))

∫

B(x,r)

g(y) dµ(y) 6 Cr−ν/pε(x) 6 Cr−αp(x)/pε(x).

Here we take ε = (p− − 1)(log(e + 1/r))−1 and obtain

(5.6)
1

µ(B(x, r))

∫

B(x,r)

f(y) dµ(y) 6 Cr−α(log(e + 1/r))θ

for all x ∈ X and 0 < r < dX , which is nothing but (5.2). For x ∈ B(z, r), δ > 0

and 0 < η < α, we find

Uα,k0f(x) =

∫

B(x,δ)

̺(x, y)α

µ(B(x, k0̺(x, y)))
f(y) dµ(y)

+

∫

X\B(x,δ)

̺(x, y)α

µ(B(x, k0̺(x, y)))
f(y) dµ(y)

6 δα−ηIηf(x) + U2(x).

As in the proof of (5.3), it follows that

U2(x) 6 C

∫ 2dX

δ

(log(e + 1/t))θ
dt

t
6 C(log(e + 1/δ))θ+1,

which gives

Uα,k0f(x) 6 C{δα−ηIηf(x) + (log(e + 1/δ))θ+1}.

Here, letting,

δ = {Iηf(x)}
−1/(α−η)(log(e + Iηf(x)))

(θ+1)/(α−η),

we have the inequality

Uα,k0f(x) 6 C(log(e + Iηf(x)))
θ+1.

Then, in view of Lemma 5.3, there exist constants c1, c3 > 0 such that

1

µ(B(z, 2j0r))

∫

B(z,r)

exp(c1Uα,k0f(x)
1/(θ+1)) dµ(x)

6 C

{

1

µ(B(z, 2j0r))

∫

B(z,r)

Iηf(x) dµ(x) + 1

}

6 c3r
η−α(log(e + 1/r))θ

for all z ∈ X and 0 < r < dX . Since c3r
η−α(log(e + 1/r))θ 6 c2r

η′−α for all

0 < r < dX and some constant c2 > 0 when 0 < η′ < η, the proof of the present

theorem is completed. �
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6. Continuity

In this section, we assume that there exist constants C1 > 0 and 0 < σ 6 1 such

that

(6.1)
∣

∣

∣

̺(x, y)α

µ(B(x, 2̺(x, y)))
−

̺(z, y)α

µ(B(z, 2̺(z, y)))

∣

∣

∣
6 C1

(̺(x, z)

̺(x, y)

)σ ̺(x, y)α

µ(B(x, 2̺(x, y)))

whenever ̺(x, z) 6 ̺(x, y)/2.

Let ω(·) be a positive function on (0,∞) satisfying the doubling condition

ω(2r) 6 C2ω(r) for all r > 0

and

ω(s) 6 C3ω(t) whenever 0 < s 6 t,

where C2 and C3 are positive constants. Then, in view of (2.2), one can find constants

Q > 0 and CQ > 0 such that

(6.2) ω(r) > CQr
Q

for all 0 < r < dX .

In this section, for θ > 0 we consider the space Lp(·)−0,ω,θ(X) of locally integrable

functions f on X satisfying

‖f‖Lp(·)−0,ω,θ(X) = sup
x∈X,0<r<dX

0<ε<p−−1

εθ
( ω(r)

µ(B(x, r))

)1/pε(x)

‖f‖Lpε(·)(B(x,r)) < ∞.

Set

Ω∗(x, r) =

∫ r

0

tαω(t)−1/p(x)(log(e + 1/t))θ
dt

t

and

Ω∗(x, r) =

∫ 2dX

r

tα−σω(t)−1/p(x)(log(e + 1/t))θ
dt

t

for x ∈ X and 0 < r < dX .

Example 6.1. Let ω(r) = rν(log(e+1/r))β . If p− > ν/α and ess sup
x∈X

(−β/p(x)+

θ + 1) < 0, then

Ω∗(x, r) + rσΩ∗(x, r) 6 C(log(e + 1/r))−β/p(x)+θ+1

for x ∈ X and 0 < r < dX .

Our final goal is to establish the following result, which deals with the continuity

for Riesz potentials of functions in grand Morrey spaces of variable exponents over

non-doubling measure spaces.
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Theorem 6.2. Suppose that (6.1) holds. Then there exists a constant C > 0

such that

|Uα,2f(x) − Uα,2f(z)|

6 C{Ω∗(x, ̺(x, z)) + Ω∗(z, ̺(x, z)) + ̺(x, z)σΩ∗(x, ̺(x, z))}

for all x, z ∈ X , whenever f is a nonnegative measurable function on X satisfying

‖f‖Lp(·)−0,ω,θ(X) 6 1.

Before the proof of Theorem 6.2, we prepare some lemmas.

Since

ω(r)−|p(x)−p(y)| 6 Cr−Q|p(x)−p(y)| 6 C

for all y ∈ B(x, r) by (6.2) and (P2), we can show the following result in the same

manner as Lemma 3.2 and (5.6).

Lemma 6.3. Let f be a nonnegative function onX such that ‖f‖Lp(·)−0,ω,θ(X) 6 1.

Then there exists a constant C > 0 such that

1

µ(B(x, r))

∫

B(x,r)

f(y) dµ(y) 6 Cω(r)−1/p(x)(log(e + 1/r))θ

for all x ∈ X and 0 < r < dX .

Lemma 6.4. Let f be a nonnegative function onX such that ‖f‖Lp(·)−0,ω,θ(X) 6 1.

Then there exists a constant C > 0 such that
∫

B(x,δ)

̺(x, y)α

µ(B(x, 2̺(x, y)))
f(y) dµ(y) 6 CΩ∗(x, δ)

and
∫

G\B(x,δ)

̺(x, y)α−σ

µ(B(x, 2̺(x, y)))
f(y) dµ(y) 6 CΩ∗(x, δ)

for all x ∈ X and 0 < δ < dX .

P r o o f. Let f be a nonnegative function on X such that ‖f‖Lp(·)−0,ω,θ(X) 6 1.

We show only the first case. As in the proof of (5.3), we have by Lemma 6.3

∫

B(x,δ)

̺(x, y)α

µ(B(x, 2̺(x, y)))
f(y) dµ(y)

=

∞
∑

j=1

∫

B(x,2−j+1δ)\B(x,2−jδ)

̺(x, y)α

µ(B(x, 2̺(x, y)))
f(y) dµ(y)

6

∞
∑

j=1

(2−j+1δ)α
1

µ(B(x, 2−j+1δ))

∫

B(x,2−j+1δ)

f(y) dµ(y)
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6 C

∞
∑

j=1

(2−j+1δ)αω(2−j+1δ)−1/p(x)(log(e + 1/(2−j+1δ)))θ

6 C

∫ δ

0

tαω(t)−1/p(x)(log(e + 1/t))θ
dt

t
= CΩ∗(x, δ),

as required. �

P r o o f of Theorem 6.2. Let f be a nonnegative measurable function on X

satisfying ‖f‖Lp(·)−0,ω,θ(X) 6 1. Write

Uα,2f(x)− Uα,2f(z) =

∫

B(x,2̺(x,z))

̺(x, y)α

µ(B(x, 2̺(x, y)))
f(y) dµ(y)

−

∫

B(x,2̺(x,z))

̺(z, y)α

µ(B(z, 2̺(z, y)))
f(y) dµ(y)

+

∫

X\B(x,2̺(x,z))

( ̺(x, y)α

µ(B(x, 2̺(x, y)))
−

̺(z, y)α

µ(B(z, 2̺(z, y)))

)

f(y) dµ(y)

for x, z ∈ X . Using Lemma 6.4, we have

∫

B(x,2̺(x,z))

̺(x, y)α

µ(B(x, 2̺(x, y)))
f(y) dµ(y) 6 CΩ∗(x, 2̺(x, z)) 6 CΩ∗(x, ̺(x, z))

and

∫

B(x,2̺(x,z))

̺(z, y)α

µ(B(z, 2̺(z, y)))
f(y) dµ(y)

6

∫

B(z,a1(a0+2)̺(x,z))

̺(z, y)α

µ(B(z, 2̺(z, y)))
f(y) dµ(y)

6 CΩ∗(z, a1(a0 + 2)̺(x, z)) 6 CΩ∗(z, ̺(x, z)).

On the other hand, by (6.1) and Lemma 6.4, we have

∫

X\B(x,2̺(x,z))

∣

∣

∣

̺(x, y)α

µ(B(x, 2̺(x, y)))
−

̺(z, y)α

µ(B(z, 2̺(z, y)))

∣

∣

∣
f(y) dµ(y)

6 C1̺(x, z)
σ

∫

X\B(x,2̺(x,z))

̺(x, y)α−σ

µ(B(x, 2̺(x, y)))
f(y) dµ(y)

6 C̺(x, z)σΩ∗(x, 2̺(x, z)) 6 C̺(x, z)σΩ∗(x, ̺(x, z)).

Thus we have the conclusion. �
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