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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 4 , PAGES 4 7 3 – 4 9 0

STATE ELIMINATION FOR NONLINEAR
NEUTRAL STATE-SPACE SYSTEMS

Miroslav Halás and Pavol Bisták

The problem of finding an input-output representation of a nonlinear state space system,
usually referred to as the state elimination, plays an important role in certain control problems.
Though, it has been shown that such a representation, at least locally, always exists for both the
systems with and without delays, it might be a neutral input-output differential equation in the
former case, even when one starts with a retarded system. In this paper the state elimination
is therefore extended further to nonlinear neutral state-space systems, and it is shown that
also in such a case an input-output representation, at least locally, always exists. In general,
it represents a neutral system again. Computational aspects related to the state elimination
problem are discussed as well.

Keywords: nonlinear time-delay systems, neutral systems, input-output representation,
linear algebraic methods, Gröbner bases

Classification: 93C10, 34K40, 93B25

1. INTRODUCTION

The majority of techniques and methods for the analysis and synthesis of nonlinear con-
trol systems, taking into account the systems with delays as well, consider as a starting
point a state-space representation. However, knowing an input-output representation is
sometimes essential for finding a solution to a specific control problem. Typical represen-
tatives are various system equivalence and controllability problems [18, 19, 22, 26, 30],
model matching problems [8, 15, 16], observer design [9, 14, 21], observability and iden-
tifiability of parameters [1, 29], and others. Eventually, any transfer function approach
to a control problem deals, in general, with input-output properties of a system. See for
instance [17, 25] for the applications to the systems with delays, and for instance [10, 11]
for the extension of the transfer function formalism to the nonlinear case.

In the linear case any system described by state equations can equivalently be de-
scribed by an input-output differential equation. From that point of view Laplace trans-
forms play a key role. In the nonlinear case the situation is more complicated, and several
techniques have been developed to find the corresponding input-output equations, see
for instance [7] or [5]. The latter shows that for a given state-space representation a cor-
responding set of input-output equations can be, at least locally, always constructed by
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applying a suitable change of coordinates. The problem is usually referred to as the state
elimination. The idea of the state elimination has recently been carried over by [1] to
nonlinear systems with delays, and it has been shown that even for a state-space system
with delays there always exists, at least locally, a set of input-output differential-delay
equations. However, such a state elimination might result in a set of input-output equa-
tions representing a system of neutral type, even when one starts with the state-space
equations being of retarded type. Note that by retarded one means a classical (non-
neutral) system and by neutral a system having delays in the highest derivative. As an
example, one can consider a first order system plus dead time which when combined
with an (ideal) PID controller generate a closed loop system being of neutral type.

That the nonlinear time-delay systems can have an input-output representations of
a neutral type was discovered in [16] and then, in details, studied in [13]. Though, this
can also be suspected from the inversion algorithm of [20]. It represents a strictly non-
linear phenomenon, for this cannot happen in the linear time-delay case where retarded
systems always admit an input-output representation of retarded type. Since the state
elimination can for a nonlinear retarded state-space system yield a neutral input-output
equation, the natural question can be asked whether it is possible to extend the ideas of
[1, 13] further to neutral state-space systems, and, if so, what type of an input-output
representation one gets. The aim of this work is to give an answer to that question and
to show that even for a nonlinear neutral state-space system there always exists, at least
locally, an input-output differential-delay representation which is, in general, of neutral
type again.

The preliminary discussion on this topic has been given in the conference paper [12],
and there are contact points to the results of [13] as well. With respect to these works,
in this paper the results are extended, in general, to multi-input multi-output nonlinear
neutral systems, while in both [12] and [13] the attention was restricted to the single-
output case only (the latter discussing retarded state-space systems only). Additionally,
the problem solution is reformulated here such that it does not rely on applying the
Poincaré lemma. Therefore, one does not need to inspect the integrability of the re-
spective differential one-forms, as the Frobenius theorem is not available for infinite
dimensional systems. Finally, the computational aspects of the problem of finding an
input-output representation for a nonlinear neutral system are discussed as well. In
that respect the use of Gröbner bases technique plays a key role for the polynomial and
rational systems.

2. PRELIMINARIES

In this paper we use the mathematical setting of [1, 13, 21, 28] extended hereinafter to
the nonlinear neutral state-space systems.

The nonlinear neutral state-space systems considered in this paper are objects of the
form

ẋ(t) = f ({ẋ(t− i), x(t− j), u(t− k); i > 0; j, k ≥ 0})
y(t) = h ({x(t− i); i ≥ 0})

where the entries of f and h are real meromorphic functions, and x(t) ∈ Rn, u(t) ∈ Rm,
and y(t) ∈ Rp denote state, input, and output to the system respectively.
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Remark 2.1. We assume the system has commensurable delays. Hence, it is not re-
strictive to consider i, j, k ∈ Z+, for all commensurable delays can be interpreted as
multiples of some elementary delay τ .

Let us denote by K the field of real meromorphic functions of real variables {ẋ(t −
i), x(t− j), u(l)(t− k); i > 0; j, k, l ≥ 0} and by

E = spanK{dξ(t); ξ(t) ∈ K}

the formal vector space of differential one-forms. That is, the standard differentials of
the functions in K are elements of E .

Let σ denote now the delay operator defined as

σ(ξ(t)) = ξ(t− 1)

for any ξ(t) ∈ K. The operator σ induces the delay operator, which is by abuse of nota-
tion denoted by the same symbol σ, that acts on E as follows. Let v(t) =

∑
i αi(t)dξi(t)

be in E , then
σ(v(t)) =

∑
i

αi(t− 1)dξi(t− 1).

The delay operator σ also induces the (non-commutative) skew polynomial ring1 K(δ]
with the usual addition and the non-commutative multiplication given by the commu-
tation rule

δ ξ(t) = ξ(t− 1)δ

for any ξ(t) ∈ K. Hence, the elements of K(δ] represent the linear ordinary time-delay
operators that act on any v(t) ∈ E as follows. Let p(δ] =

∑k
i=0 ai(t)δi ∈ K(δ], then

p(δ]v =

(
k∑

i=0

ai(t)δi

)
v(t) =

k∑
i=0

ai(t)σi(v(t)) =
k∑

i=0

ai(t)v(t− i).

In plain words, δ is interpreted as a time-delay operator σ and we thus have δ ξ(t) =
ξ(t− 1)δ for any ξ(t) ∈ K, but δ v(t) = v(t− 1) for any v ∈ E .

Example 2.2. To any function in K, and therefore also to any one-form in E , one can
now associate polynomials from the ring K(δ]. For example, let ϕ(t) = x(t−1)+x(t−2)2.
Then

dϕ(t) = dx(t− 1) + 2x(t− 2)dx(t− 2)
dϕ(t) = δ dx(t) + 2x(t− 2)δ2 dx(t)
dϕ(t) = (δ + 2x(t− 2)δ2) dx(t).

The ring K(δ] is Noetherian and a left Ore domain.

Lemma 2.3. (Ore condition) For all non-zero a(δ], b(δ] ∈ K(δ] there exist non-zero
a1(δ], b1(δ] ∈ K(δ] such that a1(δ]b(δ] = b1(δ]a(δ].

1The notation “ ( ]“ is used only to highlight the non-commutativity of a ring or a polynomial. It is
used here in order to be consistent with the notation introduced in the earlier works from this area.
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See [23, 24], and for instance [28] for the case of nonlinear systems with delays.
The properties of the nonlinear neutral state-space systems can now be analyzed by

introducing the formal module

M = spanK(δ]{dξ(t); ξ(t) ∈ K}.

The rank of a module over the left Ore domain K(δ] is well-defined [4].

Remark 2.4. In plain words, one can now work with polynomials from the non-commu-
tative polynomial ring K(δ] rather than with the delays of the respective variables, see
Example 2.2.

To simplify the notation we often denote ξ(t) ∈ K by ξ only and a meromorphic
function ϕ(ξ1(t), . . . , ξ1(t−i1), . . . , ξk(t), . . . , ξk(t−ik)), where i1, . . . , ik are nonnegative,
by ϕ(δ, ξ1, . . . , ξk) only. Using this notation, the nonlinear neutral state-space systems
studied in this paper are objects of the form

ẋ = f(δ, ẋ, x, u)
y = h(δ, x). (1)

For the sake of simplicity, we also introduce the following notation. Let ϕ be an
r-dimensional vector with entries ϕj(δ, ξ1, . . . , ξk). Then, let ∂ϕ/∂ξ denote the r × k
matrix with entries (

∂ϕ

∂ξ

)
j,i

=
∑
`≥0

∂ϕj

∂ξi(t− `)
δ` ∈ K(δ]

for i = 1, . . . , k and j = 1, . . . , r.

Remark 2.5. Note that this notation allows us to simply write for instance dϕ =
∂ϕ/∂xdx in Example 2.2, with ∂ϕ/∂x = δ + 2x(t− 2)δ2.

Finally, for the system (1) we assume that

rankK(δ]
∂(ẋ− f(·))

∂ẋ
= n. (2)

Remark 2.6. The above assumption is not restrictive as it only means we, indeed, have
a dynamical system here. In the linear counterpart it means that the system is of the
form E[δ]ẋ = A[δ]x + B[δ]u with E[δ] full rank, where A[δ], B[δ], and E[δ] are matrices
with entries in the (commutative) polynomial ring R[δ].

Remark 2.7. Strictly speaking, the term ẋ − f(·) in (2) is zero by (1). However, for
checking the rank condition we understand it formally as a nonzero function.

2.1. Notation and symbols

To help the reader get through the paper we summarize the notation and symbols used
in the paper.
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x or x(t) state of the system
u or u(t) input of the system
y or y(t) output of the system
Z+ set of nonnegative integers
R field of real numbers
K field of real meromorphic functions (of real variables)
E formal vector space of differential one-forms
ξ̇ derivative of ξ with respect to t
σ delay operator that takes t to t− 1
δ indeterminate of a polynomial ring representing the action

of the operator σ
R[δ] commutative ring of polynomials in δ over R
K(δ] non-commutative ring of polynomials in δ over K
M formal module of differential one-forms
ϕ(δ, ξ1, . . . , ξk) stands for ϕ(ξ1(t), . . . , ξ1(t− i1), . . . , ξk(t), . . . , ξk(t− ik))
spanK{ν1, . . . , νn} set of all linear combinations of ν1, . . . , νn over a field K
rankK(δ]M rank of a matrix M over the non-commutative ring K(δ]
deg p degree of a polynomial p
k[z1, . . . , zn] commutative ring of polynomials in z1, . . . , zn over a field k
〈f1, . . . , fm〉 ideal generated by polynomials f1, . . . , fm ∈ k[z1, . . . , zn]
>lex lexicographical ordering of monomials

3. STATE ELIMINATION

In this section we extend the state elimination of [1, 5, 13] further to the nonlinear
neutral systems.

First, we explain intuitively certain aspects of the problem by the following introduc-
tory example.

Example 3.1. The following system was considered in [13]

ẋ = u

y = x2 + x(t− 1).

Following the ideas of the state elimination for the systems without delays [5] one can
compute

y = x2 + x(t− 1) (3)
ẏ = 2xu + u(t− 1). (4)

However, one cannot go any further, since from (3) one cannot express x and substitute
to (4). In other words, the equations (3) and (4) are independent over K. However, they
are dependent over K(δ], for ∂y/∂x = δ + 2x, ∂ẏ/∂x = 2u, and thus rankK(δ][∂y/∂x] =
rankK(δ][∂(y, ẏ)/∂x] = 1.
The latter implies that one can consider the equations (3) and (4), and a sufficient
number of their time delays to get a set of dependent equations over K. In concrete
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terms
y = x2 + x(t− 1)
ẏ = 2xu + u(t− 1)

ẏ(t− 1) = 2x(t− 1)u(t− 1) + u(t− 2).

One can, therefore, eliminate x(t − 1) from the last equation which yields the input-
output equation

4u2u(t− 1)y − u(t− 1)(ẏ − u(t− 1))2 − 2u2(ẏ(t− 1)− u(t− 2)) = 0. (5)

However, (5) represents a neutral system. Note that the delay is present in the highest
derivative of the system output.

Remark 3.2. The algebraic methods are very useful mainly for characterizing system
structural properties. Hence, the neutrality of equation (5) needs to be understood
from such a point of view (i. e. the equation is neutral in the sense that the delay is
present in the highest derivative of y, and there is no other first-order input-output
differential equation for the system not being neutral in this sense). However, this
does not guarantee the system exhibits behaviour we expect of neutral systems (as for
instance infinitely many oscillating frequencies). Such aspects can possibly be verified
using rather analytical than algebraic tools.

Example 3.3. Naturally, one can expect similar problems (as in Example 3.1) appear
when working with the neutral state-space systems. Consider, for instance, the system

ẋ = ẋ(t− 1) (6)
y = x2. (7)

Then
ẏ = 2xẋ (8)

and we observe that we need to eliminate ẋ first. Unfortunately, ẋ cannot be expressed
from (6) directly, as the system is neutral. Technically speaking, the equations (6)
and (8) are independent over K. However, they are dependent over K(δ], for ∂(ẋ− ẋ(t−
1))/∂ẋ = 1 − δ, ∂ẏ/∂ẋ = 2x, and thus rankK(δ][∂(ẋ − ẋ(t − 1))/∂ẋ] = rankK(δ][∂(ẋ −
ẋ(t− 1), ẏ)/∂ẋ] = 1. This suggests us to apply a similar idea as in Example 3.1. Here,
one can take the equations (6) and (8), and a sufficient number of their time delays,
namely

ẋ = ẋ(t− 1)
ẏ = 2xẋ

ẏ(t− 1) = 2x(t− 1)ẋ(t− 1)

which constitute now a set of dependent equations over K. Therefore, ẋ(t − 1) can be
eliminated from the last equation

ẏx(t− 1)− xẏ(t− 1) = 0. (9)
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Finally, we can continue with the elimination of x. This time, the equations (7) and (9)
are considered. Again, the equations are independent over K but dependent over K(δ].
By considering a sufficient number of their time delays, in this case

y = x2

y(t− 1) = x2(t− 1)
xẏ(t− 1)− ẏx(t− 1) = 0

we can eliminate x and x(t− 1) from the last equation which gives us the input-output
representation

ẏ2(t− 1)y − ẏ2y(t− 1) = 0

for the system.

The ideas presented in the example can technically be generalized as follows.

3.1. State elimination for neutral systems

It will be shown now that for the system (1) there always exists, at least locally, a set
of input-output differential-delay equations of the form

Fi(δ, y, ẏ, . . . , y(k), u, u̇, . . . , u(l)) = 0 (10)

with i = 1, . . . , p, k, l ≥ 0, and Fi being meromorphic, such that any pair (y, u) that
solves the system (1) also satisfies (10).

Remark 3.4. The notion “locally” refers, in general, to the local nature of a problem
one studies. That is, the solution found is valid in the neighborhood of any point from
some suitable set, while there might not exist a global solution valid for all the points
from such a set at the same time.

Theorem 3.5. Given a system of the form (1), there exist an integer l and an open and
dense subset V of Rn+ml such that in the neighborhood of any point of V there exists
an input-output representation of the system of the form (10).

P r o o f . The proof is constructive and is presented as an algorithm.

Step 0
For the system (1) set si := 0 and hsi

i := yi − hi(δ, x) for all i = 1, . . . , p.
Remark that si in hsi

i is understood only as a superscript.

Set i := 1.

Step 1
If i > p go to End.
If ∂hsi

i /∂x = 0 then i := i + 1, and go to Step 1.
Compute ḣsi

i . Under the assumption (2), one has

rankK(δ]
∂(ẋ− f(·))

∂ẋ
= rankK(δ]

∂(ẋ− f(·), ḣsi
i )

∂ẋ
.
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Thus, there exists a nonzero polynomial p(δ] ∈ K(δ] such that

p(δ]
∂ḣsi

i

∂ẋ
∈ spanK(δ]

{
∂(ẋ− f(·))

∂ẋ

}
.

That is

p(δ]
∂ḣsi

i

∂ẋ
=

n∑
j=1

pj(δ]
∂(ẋj − fj(·))

∂ẋ
(11)

for some pj(δ] ∈ K(δ], j = 1, . . . , n. The polynomials p(δ] and pj(δ], j = 1, . . . , n,
can be found by Ore condition, and one can, without loss of generality, assume
that they have no common (left) factors other than 1.
Therefore, there exists a finite set of equations

ẋ1 − f1 = 0
...

ẋn − fn = 0
ḣsi

i = 0

· · ·

ẋ1(t− τ1)− f1(t− τ1) = 0
...

ẋn(t− τn)− fn(t− τn) = 0
ḣsi

i (t− τ) = 0

(12)

where the highest delay considered for the respective equation is given by the degree
of the respective polynomial in (11). That is, τj = deg pj(δ], and τ = deg p(δ].
Since (11) holds, the set of equations is (algebraically) dependent, and the variables
ẋj , . . . , ẋj(t−τj), j = 1, . . . , n, can be eliminated from the equation ḣsi

i (t−τ) = 0.
Proceed with the elimination, set si := si +1, and denote by hsi

i the left hand side
of the equation ḣsi−1

i (t− τ) = 0 where ẋj , . . . , ẋj(t− τj), j = 1, . . . , n, have been
eliminated. (Note that since si has been incremented the eqaution ḣsi−1

i (t−τ) = 0
is now identical with the last equation in (12)).

Step 2
If

rankK(δ]
∂(h0

1, . . . , h
s1−1
1 , . . . , h0

i , . . . , h
si−1
i )

∂x

< rankK(δ]
∂(h0

1, . . . , h
s1−1
1 , . . . , h0

i , . . . , h
si
i )

∂x

go to Step 1.

If

rankK(δ]
∂(h0

1, . . . , h
s1−1
1 , . . . , h0

i , . . . , h
si−1
i )

∂x

= rankK(δ]
∂(h0

1, . . . , h
s1−1
1 , . . . , h0

i , . . . , h
si
i )

∂x
(13)

and i = p, then go to End. Otherwise, i := i + 1, and go to Step 1.
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End
The definition of si (13) implies2 that for each i = 1, . . . , p there exists a nonzero
polynomial bi(δ] ∈ K(δ] such that

bi(δ]
∂hsi

i

∂x
∈ spanK(δ]

{
∂(h0

1, . . . , h
s1−1
1 , . . . , h0

i , . . . , h
si−1
i )

∂x

}
.

That is

bi(δ]
∂hsi

i

∂x
=

i∑
r=1

sr∑
j=1

br,j(δ]
∂hj−1

r

∂x
(14)

for some br,j(δ] ∈ K(δ]. Therefore, there exists a finite set of equations

h0
1 = 0

...
hs1−1

1 = 0
...

h0
i = 0

...
hsi−1

i = 0

hsi
i = 0

· · ·

h0
1(t− τ1,1) = 0

...
hs1−1

1 (t− τ1,s1) = 0
...

h0
i (t− τi,1) = 0

...
hsi−1

i (t− τi,si) = 0

hsi
i (t− τi) = 0

(15)

where the highest delay considered for the respective equation is given by the degree
of the respective polynomial in (14). That is, τr,j = deg br,j(δ], and τi = deg bi(δ].
Since (14) holds, the set of equations is (algebraically) dependent, and the variables
xj , . . . , xj(t−τr,j), for j = 1, . . . , n, and all τr,j , can be eliminated from the equation
hsi

i (t− τi) = 0.
Finally, proceed with the elimination to get

Fi(δ, y1, . . . , y
(s1−1)
1 , . . . , yi, . . . , y

(si−1)
i , y

(si)
i , u, u̇, . . . , u(l)) = 0

with Fi ∈ K and l ≥ 0.

As a result, we have obtained an input-output representation for the system (1)

Fi(δ, y, ẏ, . . . , y(k), u, u̇, . . . , u(l)) = 0

for some k, l ≥ 0, and i = 1, . . . , p. �

Example 3.6. Consider the system

ẋ1 = −ẋ1(t− 1) + x2

ẋ2 = ẋ2(t− 1)u
y = x1 − x1(t− 1).

2Note that it also implies the integer s = s1 + · · · + sp can be called an observability index.
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Assumption (2) is satisfied

rankK(δ]
∂(ẋ− f(·))

∂ẋ
= rankK(δ]

(
δ + 1 0

0 −uδ + 1

)
= 2.

Step 0 First, we set s1 := 0,
h0

1 := y − x1 + x1(t− 1) ,

and i := 1.

Step 1 We have ∂h0
1/∂x = (δ − 1 0) 6= 0.

Therefore, compute
ḣ0

1 := ẏ − ẋ1 + ẋ1(t− 1).

Note that ∂ḣ0
1/∂ẋ = (δ − 1 0), and we have

p(δ]
∂ḣ0

1

∂ẋ
= p1(δ]

∂(ẋ1 − f1(·))
∂ẋ

+ p2(δ]
∂(ẋ2 − f2(·))

∂ẋ

where p(δ] = δ + 1, p1(δ] = δ − 1, and p2(δ] = 0 can be found by Ore condition.
Hence, we consider

ẋ1 + ẋ1(t− 1)− x2 = 0
ẋ1(t− 1) + ẋ1(t− 2)− x2(t− 1) = 0

ẏ − ẋ1 + ẋ1(t− 1) = 0
ẏ(t− 1)− ẋ1(t− 1) + ẋ1(t− 2) = 0

which constitutes a set of (algebraically) dependent equations. The first three
equations are used to eliminate ẋ1(t − 1) and ẋ1(t − 2) from the last equation,
which yields

ẏ(t− 1) + ẏ + x2(t− 1)− x2 = 0.

Therefore s1 := 1, and denote

h1
1 := ẏ(t− 1) + ẏ + x2(t− 1)− x2.

Step 2 Since ∂h1
1/∂x = (0 δ − 1), we have

rankK(δ]
∂h0

1

∂x
= 1 < rankK(δ]

∂(h0
1, h

1
1)

∂x
= 2

Therefore go to Step 1, the condition (13) is not yet satisfied.

Step 1 Compute
ḣ1

1 := ÿ(t− 1) + ÿ + ẋ2(t− 1)− ẋ2.

Now, ∂ḣ1
1/∂ẋ = (0 δ − 1), and we have

p(δ]
∂ḣ1

1

∂ẋ
= p1(δ]

∂(ẋ1 − f1(·))
∂ẋ

+ p2(δ]
∂(ẋ2 − f2(·))

∂ẋ
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where the polynomials p(δ] = −u(t − 1)δ + 1−u(t−1)
1−u , p1(δ] = 0, and p2(δ] =

δ + u(t−1)−1
u−1 have been found by Ore condition.

Hence, we consider

ẋ2 − ẋ2(t− 1)u = 0
ẋ2(t− 1)− ẋ2(t− 2)u(t− 1) = 0
ÿ(t− 1) + ÿ + ẋ2(t− 1)− ẋ2 = 0

ÿ(t− 2) + ÿ(t− 1) + ẋ2(t− 2)− ẋ2(t− 1) = 0

which constitutes a set of (algebraically) dependent equations. The first three
equations are used to eliminate ẋ2(t − 1) and ẋ2(t − 2) from the last equation,
which yields

(ÿ(t− 1) + ÿ(t− 2))u(t− 1)(u− 1)− (u(t− 1)− 1)(ÿ + ÿ(t− 1)) = 0.

Therefore s1 := 2, and denote

h2
1 := (ÿ(t− 1) + ÿ(t− 2))u(t− 1)(u− 1)− (u(t− 1)− 1)(ÿ + ÿ(t− 1)).

Step 2 Now, the condition (13) is satisfied

rankK(δ]
∂(h0

1, h
1
1)

∂x
= rankK(δ]

∂(h0
1, h

1
1, h

2
1)

∂x
= 2

and since i = p, go to End.

End Note that ∂h2
1/∂x = (0 0), and thus (14) holds for any nonzero polynomial

b1(δ] ∈ K(δ] (of degree 0), and b1,1(δ] = b1,2(δ] = 0. Therefore, we have found the
input-output representation for the system

(ÿ(t− 1) + ÿ(t− 2))u(t− 1)(u− 1)− (u(t− 1)− 1)(ÿ + ÿ(t− 1)) = 0

without necessity to proceed further with the elimination of states.

4. COMPUTATIONAL ASPECTS

As one can notice the problem of finding an input-output representation for the system
of the form (1) consists of solving a set of equations of the form

gi(δ, x, ẋ, y, ẏ, . . . , y(k), u, u̇, . . . , u(l)) = 0 (16)

for some gi ∈ K, and i, k, l > 0, where it is necessary to eliminate states, their deriva-
tives and time delays. Depending on the type of the given system this process has to
be repeated several times according to the number of steps in the algorithm introduced
above. However, in order to find the input-output representation (10) it is not necessary
to express the exact solution of each individual variable included in the set of equa-
tions (12) and, respectively, (15). In general, it suffices only to eliminate the respective
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variables from these sets of equations. In case the functions f and h in (1) are polyno-
mial (or rational3), such a process of the elimination can be carried out by the Gröbner
bases technique. Using this technique it is possible to transform one set of polynomial
equations

g1(z1, . . . , zn) = 0
...

gm(z1, . . . , zn) = 0

to another set
q1(z1, z2, . . . , zn) = 0

q2(z2, . . . , zn) = 0
...

qk(zn) = 0

for some m,n, k > 0, and gi, qi being polynomial for all i, where the new set can be
solved more easily. This technique has many applications in control theory (see e. g.
[27]), and can be applied here to the elimination process of the system of polynomial
equations (12) and (15) in order to get the input-output representation (10). That is, to
find a representation with the variables corresponding only to the inputs, outputs, their
derivatives, and time delays.

Remark 4.1. Note that Gröbner bases, due to the fact the transformed set of equations
has an upper triangular form, generalize the usual Gauss reduction from linear algebra,
the Euclidean algorithm for computation of univariate greatest common divisors and
the simplex algorithm from linear programming [2, 6]. For instance, in the latter one
aims to minimize a function of the form c · x, subject to the condition Ax = b, where
A, b, c are matrices with entries in R of appropriate dimensions. To do so, one needs to
bring the following matrix (

1 −cT 0
0 A b

)
in to an upper triangular form.

B. Buchberger was the one who defined Gröbner bases and developed an algorithm
for computing them, see e. g. [3]. The algorithm is a finite algorithm that takes in a
finite set of generators for the ideal I in k[z1, . . . , zn] and returns a Gröbner basis [27].
It is a division type algorithm characterized by the aim to cancel leading terms of the
respective polynomials and replace them with smaller ones. First, it is necessary to
specify a total ordering of monomials in the polynomial ring k[z1, . . . , zn], where k is a
field. For instance, the ordering defined by the ordinary lexicographical order >lex, that
is

z1 > . . . > zn (17)

can be used.
Gröbner bases can then be defined introducing the notion of a leading term. To

simplify the notation we define zα := zα1
1 zα2

2 . . . zαn
n , where α = (α1, . . . , αn) is in Zn

+.

3Note that any rational equation of the form (16) can easily be replaced by a polynomial one if we
multiply it by the least common multiple of all the denominators.
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Using this notation we can write a polynomial f in k[z1, . . . , zn] as f =
∑

α aαzα. Then
the multidegree of f is defined as follows

multideg(f) = max{α ∈ Zn
+; aα 6= 0}.

Note that according to the lexicographical ordering (17) one has α >lex β, where α =
(α1, . . . , αn) and β = (β1, . . . , βn) are in Zn

+, if in the vector α− β the leftmost nonzero
element is possitive.

Let us denote the leading term of f by LT (f). Then we have

LT (f) = amultideg(f)z
multideg(f).

Now a Gröbner basis can be defined as a finite subset G = {g1, . . . , gk} of polynomials
from an ideal I ⊂ k[z1, . . . , zn] if the ideal generated by LT (gi), for i = 1, . . . , k, equals
the ideal generated by the leading terms of all the elements of I

〈LT (g1), . . . , LT (gk)〉 = 〈LT (I)〉.

It is important to emphasize that every nontrivial ideal I has a Gröbner basis G and
any Gröbner basis G of I is a generating set of I.

In our case, the set of generators will be given by the left-hand side of equations (12)
and (15), respectively.

A nice property of the Buchberger’s algorithm is that it assures the variables are
consequently eliminated, and the resulted Gröbner basis will include just one univariate
polynomial. This follows from the elimination theory of Gröbner bases.

Let us define the jth elimination ideal of I as

Ij = I ∩ k[zj+1, . . . , zn]

where j = 0, . . . , n− 1, and we set I0 = I. If G is a Gröbner basis of I then

Gj = G ∩ k[zj+1, . . . , zn]

is a Gröbner basis of Ij , j = 0, . . . , n − 1. That is, Gj is given by the elements of
G not involving z1, . . . , zj . Hence, Gn−1 will depend only on zn and, therefore, will
finally determine the univariate polynomial that can be identified with the input-output
representation (10).

Note that zn, as the variable with the lowest order according to (17), is the only one
included in the resulting univariate polynomial. Therefore, zn has to be identified with
a system variable that we want to appear in the polynomial. For that reason, we choose
the ordering

ẋj(t) > . . . > ẋj(t− τj) > . . . > ẋk(t) > . . . > ẋk(t− τk) > y
(si+1)
i (t− τ) (18)

where j, k = 1, . . . , n, for the elimination process of the set of equations (12).
And similarly, we choose the ordering

xj(t) > . . . > xj(t− τr,j) > . . . > xk(t) > . . . > xk(t− τr,k) > y
(si)
i (t− τi) (19)
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where j, k = 1, . . . , n, and r = 1, . . . , i, to carry out the elimination process for the set
of equations (15). Then the resulting univariate polynomial represents the input-output
representation (10) we looked for.

For additional technicalities about Gröbner bases the reader is referred for instance
to [2, 3, 6] .

Example 4.2. Consider the system

ẋ1 = ẋ1(t− 1)x2

ẋ2 = ẋ2(t− 1)u1

ẋ3 = ẋ1(t− 1) + u2

y1 = x1

y2 = x3

Step 0 First, we set
h0

1 := y1 − x1 ,

Step 1 Its time derivative is
ḣ0

1 := ẏ1 − ẋ1.

According to (11) we constitute the following set of equations of the form (12)

ẋ1 − ẋ1(t− 1)x2 = 0
ẏ1 − ẋ1 = 0

ẏ1(t− 1)− ẋ1(t− 1) = 0.

To eliminate ẋ1 and ẋ1(t− 1) we apply the lexicographical ordering ẋ1 > ẋ1(t− 1)
> ẏ1(t− 1), and employing the Gröbner bases technique we get the polynomial4

x2ẏ1(t− 1)− ẏ1

which we denote by
h1

1 := x2ẏ1(t− 1)− ẏ1.

Step 2 The condition (13) is not yet satisfied.

Step 1 We compute
ḣ1

1 := ẋ2ẏ1(t− 1) + x2ÿ1(t− 1)− ÿ1.

Again, we constitute the set of equations according to (11) and (12)

ẋ2 − ẋ2(t− 1)u1 = 0
ẋ2ẏ1(t− 1) + x2ÿ1(t− 1)− ÿ1 = 0

ẋ2(t− 1)ẏ1(t− 2) + x2(t− 1)ÿ1(t− 2)− ÿ1(t− 1) = 0.

4In the examples the Maple computer algebra system has been used to carry out the computations.
First, one needs to load the Gröbner base package by calling the command with(Groebner). Then for
instance for the list of polynomials P := [ẋ1 − ẋ1(t− 1)x2, ẏ1 − ẋ1, ẏ1(t− 1)− ẋ1(t− 1)] and the list of
ordered variables O := [ẋ1, ẋ1(t − 1), ẏ1(t − 1)] the command Solve(P,O) returns the Gröbner basis of
which the first element is the polynomial, x2ẏ1(t − 1) − ẏ1, we looked for.
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After application of the lexicographical ordering ẋ2 > ẋ2(t − 1) > ÿ1(t − 2) we,
this time, get by employing the Gröbner bases technique the polynomial

ẏ1(t−1)u1x2(t−1)ÿ1(t−2)− ẏ1(t−1)u1ÿ1(t−1)−x2ÿ1(t−1)ẏ1(t−2)+ ÿ1ẏ1(t−2)

which we denote as

h2
1 := ẏ1(t−1)u1x2(t−1)ÿ1(t−2)−ẏ1(t−1)u1ÿ1(t−1)−x2ÿ1(t−1)ẏ1(t−2)+ÿ1ẏ1(t−2).

Step 2 Since i 6= p we set i := 2.

Step 1 We denote
h0

2 := y2 − x3.

Then
ḣ0

2 := ẏ2 − ẋ3

and by (11) and (12) we constitute the set of equations

ẏ2 − ẋ3 = 0
ẋ3 − ẋ1(t− 1)− u2 = 0

ẋ1 − ẋ1(t− 1)x2 = 0
ẏ2(t− 1)− ẋ3(t− 1) = 0

ẋ3(t− 1)− ẋ1(t− 2)− u2(t− 1) = 0
ẋ1(t− 1)− ẋ1(t− 2)x2(t− 1) = 0.

After choosing the lexicographical ordering ẋ3 > ẋ3(t − 1) > ẋ1 > ẋ1(t − 1) >
ẋ1(t− 2) > ẏ2(t− 1) one gets the resulting polynomial

x2(t− 1)ẏ2(t− 1)− x2(t− 1)u2(t− 1)− ẏ2 + u2

which we denote by

h1
2 := x2(t− 1)ẏ2(t− 1)− x2(t− 1)u2(t− 1)− ẏ2 + u2.

End Finally, we compute the input-output representation for the system. According
to (14) and (15) we, for y1, constitute the set of equations

x2ẏ1(t− 1)− ẏ1 = 0
ẏ1(t− 1)u1x2(t− 1)ÿ1(t− 2)− ẏ1(t− 1)u1ÿ1(t− 1)−

−x2ÿ1(t− 1)ẏ1(t− 2) + ÿ1ẏ1(t− 2) = 0
x2(t− 1)ẏ1(t− 2)− ẏ1(t− 1) = 0.

The polynomial resulting from the Gröbner bases technique, employing the lex-
icographical ordering x2 > x2(t − 1) > ÿ1(t − 2), yields then the input-output
equation

ẏ3
1(t− 1)u1ÿ1(t− 2)− ÿ1(t− 1)ẏ2

1(t− 2)ẏ1

−ẏ2
1(t− 1)u1ÿ1(t− 1)ẏ1(t− 2) + ẏ1(t− 1)ÿ1ẏ

2
1(t− 2) = 0. (20)
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For y2 we can constitute the set of equations according to (14) and (15) as

x2(t− 1)ẏ2(t− 1)− x2(t− 1)u2(t− 1)− ẏ2 + u2 = 0
x2(t− 1)ẏ1(t− 2)− ẏ1(t− 1) = 0.

After choosing the lexicographical ordering x2(t− 1) > ẏ2(t− 1) one can compute
the input-output equation

− ẏ1(t− 1)u2(t− 1) + ẏ2(t− 1)ẏ1(t− 1)− ẏ1(t− 2)ẏ2 + ẏ1(t− 2)u2 = 0. (21)

Thus, the input-output representation for the system is given by (20) and (21).

4.1. Computational complexity

Gröbner bases are implemented in many modern computer algebra systems, as for in-
stance Maple or Mathematica, which enable to solve effectively reasonable sized systems
of polynomial equations. In our case, the complexity of the computations is affected
by the number of the equations (12) and (15), respectively. Note that the number of
these equations is determined by the polynomials in (11) and (14), respectively. To con-
stitute the set (12) one needs to consider a corresponding equation for every (nonzero)
summand in every (nonzero) polynomial p(δ] and pj(δ] in (11). In general, the presence
of the respective polynomial corresponds to the presence of the respective row in (12),
and the presence of the respective summands in that polynomial corresponds to the
time-delays present int that row. Similarly, for the number of equations in (15) the
polynomials bi(δ] and br,j(δ] in (14) play the crucial role.

Besides the number of equations, the computational complexity is affected also by the
choice of the monomial ordering (18) and (19). Note that the lexicographical ordering
we employed is only one choice among the possible orderings one can consider here.

5. CONCLUSIONS

In this paper the state elimination procedure has been extended further to the class
of nonlinear neutral state space systems. It was shown that for such a system there
always exists, at least locally, a set of input-output differential-delay equations which we
can think of as an external, or input-output, representation of the system. In general,
such an input-output representation is neutral again. In addition, it might possess more
delays than the original state-space system (see e. g. Example 3.1). The analysis and
synthesis by using such a representation can then be more complicated.

In case the systems under consideration are polynomial or rational, one can easily
employ the Gröbner bases technique to eliminate the necessary states. Note that the
Gröbner bases package is implemented practically in every computer algebra system.
In this paper, the computations in the examples were carried out by the computer
algebra system Maple, for besides the Gröbner bases package it also has Ore tools
package available, useful for handling non-commutative polynomials. Naturally, the
Gröbner bases technique of the state elimination, as presented in this paper, is applicable
also to nonlinear retarded systems and nonlinear systems without delays, as these form
subclasses of neutral systems.
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public.

e-mail: miroslav.halas@stuba.sk

Pavol Bisták, Institute of Automotive Mechatronics, Fac. of Electrical Engineering and
IT, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava. Slovak Republic.

e-mail: pavol.bistak@stuba.sk


		webmaster@dml.cz
	2016-01-03T22:29:34+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




