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SHAPE OPTIMIZATION FOR STOKES PROBLEM

WITH THRESHOLD SLIP
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Abstract. We study the Stokes problems in a bounded planar domain Ω with a friction
type boundary condition that switches between a slip and no-slip stage. Our main goal is to
determine under which conditions concerning the smoothness of Ω solutions to the Stokes
system with the slip boundary conditions depend continuously on variations of Ω. Having
this result at our disposal, we easily prove the existence of a solution to optimal shape
design problems for a large class of cost functionals. In order to release the impermeability
condition, whose numerical treatment could be troublesome, we use a penalty approach.
We introduce a family of shape optimization problems with the penalized state relations.
Finally we establish convergence properties between solutions to the original and modified
shape optimization problems when the penalty parameter tends to zero.
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1. Introduction

An important part of mathematical modeling of fluid flow is the proper choice

of boundary conditions. Solid impermeable walls are traditionally described by the

no-slip condition, i.e.,

u = 0,

where u denotes the velocity field. In some applications, however, one can observe

a tangential velocity along the surface. In this case it is more realistic to use some
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kind of the slip condition. Navier [14] proposed the condition

uτ = −λστ , λ > 0,

saying that the tangential velocity uτ should be proportional to the shear stress στ .

Relations of this type are often used especially in non-Newtonian fluid mechanics,

see e.g. [13], [4].

In this paper we introduce a system with a friction-type condition, which switches

between a slip and no-slip stage depending on the magnitude of the shear stress.

Due to its non-smoothness, the weak formulation of the considered problem leads to

a variational inequality. To demonstrate the difficulties arising from this fact and

still to keep ideas clear, we consider the Stokes problem in a planar domain Ω.

Problems involving friction-type boundary conditions have been analysed e.g. in

[6], [7], [15]. The main goal of this paper is to study under which conditions concern-

ing the smoothness of Ω solutions to the Stokes problem with threshold slip depend

continuously on variations of Ω. This is the basic property enabling us to prove the

existence of optimal shapes for a large class of optimal shape design problems.

It should be stressed that domain dependence of solutions subject to slip boundary

conditions is more delicate than in the case of no-slip. In particular, the control-to-

state mapping for problems with slip boundary conditions can be discontinuous for

some sequences of equi-Lipschitz domains [1], which cannot happen when no slip

is considered. It is also known that uniform C1,1 regularity of boundary pertur-

bations is sufficient for continuous dependence of solutions subject to Navier’s slip

condition [17]. We refer to [3] for more details on this subject.

The slip conditions bring another difficulty also for the numerical treatment. On

polygonal computational domains the impermeability condition cannot be applied

directly due to insufficient approximation of the normal vector. One possible remedy

is to use a penalty approach [12]. We introduce a family of shape optimization

problems with the penalized states and establish mutual relations between solutions

to the original and modified optimization problems when the penalty parameter

tends to zero.

The paper is organized as follows: In the next section we present the fluid flow

model and define a class of shape optimization problems. The domain dependence

of solutions to the state problem is analysed in Section 3. In Section 4 we de-

fine a family of shape optimization problems governed by the Stokes system with

threshold slip but with a penalized form of the impermeability condition. Dis-

cretizations of these problems together with the convergence analysis are presented

in Section 5.

Throughout the paper, the following notation will be used: Hk(Q), k > 0 integer,

stands for the classical Sobolev space of functions which are together with their
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generalized derivatives up to order k square integrable in Q (H0(Q) := L2(Q)) with

the norm denoted by ‖ · ‖k,Q. For the norm in L∞(Q) we use the notation ‖ · ‖∞,Q.

Finally, c denotes a generic, positive constant. To emphasize that c depends on

a particular parameter p, we shall write c := c(p).

2. Formulation of the problem

Let us consider the Stokes problem in a bounded domain Ω ⊂ R
2 with Lipschitz

boundary ∂Ω. The slip boundary conditions are prescribed on a part of the boundary

S and the no-slip condition on Γ = ∂Ω \ S:

−∆u +∇p = f in Ω,(2.1a)

divu = 0 in Ω,(2.1b)

u = 0 on Γ,(2.1c)

uν = 0 on S,(2.1d)

‖στ‖ 6 g on S,(2.1e)

uτ 6= 0 ⇒ ‖στ‖ = g & ∃λ > 0: uτ = −λστ on S.(2.1f)

Here u = (u1, u2) is the velocity field, p is the pressure, and f is the external

force. Further, ν, τ denote the unit outward normal and tangential vector to ∂Ω,

respectively. If a ∈ R
2 is a vector, then aν := a · ν, aτ := a − aνν are its normal

component and the tangential part on ∂Ω, respectively. The Euclidean norm of a is

denoted by ‖a‖. Finally, στ := (∂u/∂ν)τ stands for the shear stress and g > 0 a.e.

on S is a given slip bound. By the classical solution of (2.1) we mean any couple

of sufficiently smooth functions (u, p) satisfying the differential equations and the

boundary conditions in (2.1).

To give the weak formulation of (2.1) we shall need the following function spaces:

V (Ω) = {v ∈ (H1(Ω))2 ; v = 0 on Γ, vν = 0 on S},(2.2)

Vdiv(Ω) = {v ∈ V (Ω); div v = 0 a.e. in Ω},(2.3)

L2
0(Ω) =

{
q ∈ L2(Ω);

∫

Ω

q = 0

}
.(2.4)

The weak formulation of (2.1) reads as follows:

(P) Find (u, p) ∈ V (Ω)× L2
0(Ω) such that

∀v ∈ V (Ω): a(u,v − u)− b(v − u, p) + j(vτ )− j(uτ )> (f ,v − u)0,Ω,

∀ q ∈ L2
0(Ω): b(u, q) = 0,
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where

a(u,v) =

∫

Ω

∇u : ∇v :=

∫

Ω

∇ui · ∇vi,(2.5a)

b(v, q) =

∫

Ω

q div v,(2.5b)

j(ϕ) =

∫

S

g‖ϕ‖.(2.5c)

R em a r k 1. Since we consider a two-dimensional case, we have that ‖vτ‖ = |v ·τ |

on S.

The following existence and uniqueness result is known [6].

Theorem 1. Let f ∈ (L2(Ω))2, g ∈ L∞(S), g > 0 a.e. on S. Then (P) has

a unique solution (u, p) and

(2.6) ‖∇u‖0,Ω + ‖p‖0,Ω 6 c(‖f‖0,Ω + ‖g‖∞,S),

where c is a positive constant which does not depend on f and g.

Up to now, the domain Ω was given. From now on, we shall consider a specific

family of domains, namely

O = {Ω(α) ; α ∈ Uad},

where (see Figure 1)

Ω(α) = {(x1, x2) ; x1 ∈ (0, 1), x2 ∈ (α(x1), γ)},(2.7)

Uad = {α ∈ C1,1([0, 1]); αmin 6 α 6 αmax in [0, 1], |α(j)| 6 Cj ,(2.8)

j = 1, 2 a.e. in (0, 1)}.

Here γ, αmin, αmax, C1, C2 are given positive constants chosen in such a way that

Uad 6= ∅.

The boundary ∂Ω(α) is split into S(α) and Γ(α) = ∂Ω(α) \ S(α), where

S(α) = {(x1, x2) ; x1 ∈ (0, 1), x2 = α(x1)}, α ∈ Uad,

i.e., S(α) is the graph of α. On any Ω(α) we shall solve the Stokes system with the

slip boundary conditions on S(α) and the no-slip condition on Γ(α). To emphasize

the fact that the state problem is parametrized by α ∈ Uad we shall use the following

notation: V (α) := V (Ω(α)), Vdiv(α) := Vdiv(Ω(α)), L
2
0(α) := L2

0(Ω(α)). Similarly,
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x1

x2

Ω(α)

S(α)

Figure 1. Geometry of the domain Ω(α).

the bilinear forms aα, bα and the non-differentiable term jα denote the ones from

(2.5) with Ω, S replaced by Ω(α) and S(α), respectively. The weak form of the state

problem on Ω(α), α ∈ Uad reads as follows:

(P(α)) Find (u(α), p(α)) ∈ V (α)× L2
0(α) such that

∀v ∈ V (α) : aα(u(α),v − u(α))− bα(v − u(α), p(α))

+jα(vτ )− jα(uτ (α)) > (f ,v − u(α))0,Ω(α),

∀ q ∈ L2
0(α) : bα(u(α), q) = 0.

In what follows we shall suppose that f ∈ (L2
loc(R

2))2 and, for simplicity of our

analysis, that g is a positive constant.

Finally, let J : ∆ → R be a cost functional, ∆ = {(α,y, q) ; α ∈ Uad, y ∈

V (α), q ∈ L2
0(α)} and J(α) = J(α,u(α), p(α)), where (u(α), p(α)) is the unique

solution of (P(α)). Next we shall study the following optimal shape design problem:

(P) Find α∗ ∈ Uad such that ∀α ∈ Uad : J(α∗) 6 J(α).

To prove that (P) has a solution we shall need the following lower-semicontinuity

property of J :

(2.9)

αn → α in C1([0, 1]), αn, α ∈ Uad

yn ⇀ y in (H1(Ω̂))2, yn,y ∈ (H1
0 (Ω̂))

2

qn ⇀ q in L2(Ω̂), qn, q ∈ L2
0(Ω̂)





⇒ lim inf
n→∞

J(αn,yn|Ω(αn), qn|Ω(αn)) > J(α,y|Ω(α), q|Ω(α)),
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where Ω̂ is a domain which contains all Ω(α), α ∈ Uad. Here and in what follows,

Ω̂ = (0, 1)× (0, γ) with γ from the definition of Ω(α). Our first goal will be to prove

the following result.

Theorem 2. Let (2.9) be satisfied. Then (P) has a solution.

3. Stability of solutions with respect to shape variations

In this section we shall prove that the solutions of (P(α)) depend on α ∈ Uad

in a continuous way, which is the basic property used to prove the existence of a

solution to (P). To this end we have to introduce convergence of domains belonging

to O and convergence of functions with variable domains of their definition.

Definition 1. Let Ω(αn) ∈ O, n = 1, 2, . . . be given. We say that the sequence

{Ω(αn)} tends to Ω(α) ∈ O (and write Ω(αn) → Ω(α)) if

αn → α in C1([0, 1]).

Definition 2. Let yn ∈ V (αn), αn ∈ Uad, n = 1, 2, . . . be given. We say that

the sequence {yn} tends weakly to y ∈ V (α), α ∈ Uad (and write yn ⇀ y) if

(3.1) παn
yn ⇀ παy (weakly) in (H1(Ω̂))2,

where for any β ∈ Uad, πβ ∈ L(V (β), H1
0 (Ω̂)) denotes an extension mapping from

Ω(β) on Ω̂, whose norm can be estimated independently of β ∈ Uad. If weak conver-

gence in (3.1) can be replaced by the strong one, we say that {yn} tends strongly to

y (and write yn → y).

For functions belonging to H1
0 (αn) := H1

0 (Ω(αn)) or L
2
0(αn) the situation is much

simpler since one can use the zero extension outside of Ω(αn).

Definition 3. Let zn ∈ H1
0 (αn), αn ∈ Uad, n = 1, 2, . . .We say that the sequence

{zn} tends to z ∈ H1
0 (α) weakly, strongly (and write zn ⇀ z, zn → z, respectively)

if

z0n ⇀ z0 in H1
0 (Ω̂),

z0n → z0 in H1
0 (Ω̂),

respectively. Here the symbol “0” stands for the zero extension of functions from

their domain of definition on Ω̂ (analogously we define convergence of a sequence

{qn}, qn ∈ L2
0(αn)).
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R em a r k 2. Since all domains belonging to O satisfy the so-called uniform cone

property, such an extension mapping from Definition 2 can be easily constructed.

Indeed, first we use the uniform extension mapping from V (β) to H1(R2), whose

existence is guarenteed, as follows from [5]. Then extended functions are multiplied

by a suitable cut-off function in order to get zero traces on the boundary of Ω̂.

The following auxiliary result is a direct consequence of the Arzelà-Ascoli and

Lebesgue theorem (see e.g. [16], [9] for further details on convergence of domains).

Lemma 1. It holds:

(i) the system O is compact with respect to convergence from Definition 1;

(ii) if Ω(αn) → Ω(α), αn, α ∈ Uad, then

χn → χ in Lq(Ω̂) ∀ q ∈ [1,∞),

where χn, χ are the characteristic functions of Ω(αn) and Ω(α), respectively.

First we show that the constant c in (2.6) can be chosen to be independent of

α ∈ Uad.

Lemma 2. There exists a constant c > 0 such that

(3.2) ‖παu(α)‖1,Ω̂ + ‖p0(α)‖0,Ω̂ 6 c

holds for any α ∈ Uad.

P r o o f. Using test functions v ∈ Vdiv(α), α ∈ Uad, problem (P(α)) takes the

form:

(3.3) aα(u(α),v−u(α))+ jα(vτ )− jα(uτ (α)) > (f ,v−u(α))0,Ω(α), v ∈ Vdiv(α).

Inserting v = 0 and v = 2u(α) into (3.3) we obtain:

(3.4)

|u(α)|21,Ω(α) := ‖∇u(α)‖20,Ω(α) 6 aα(u(α),u(α)) + jα(uτ (α)) = (f ,u(α))0,Ω(α)

6 ‖f‖0,Ω̂‖παu‖1,Ω̂,

where for simplicity of notation παu := παu(α). The seminorm on the left of (3.4)

can be estimated from below by the Friedrichs inequality with a constant c > 0 which

does not depend on α ∈ Uad [9]. Thus

c‖u(α)‖21,Ω(α) 6 |u(α)|21,Ω(α) 6 ‖f‖0,Ω̂‖παu‖1,Ω̂.
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From this and the fact that also the norm of πα can be estimated uniformly with re-

spect to α ∈ Uad, the boundedness of ‖παu(α)‖1,Ω̂ follows. To prove the boundedness

of the pressure we proceed as follows: Using the fact that

aα(u(α),u(α)) − bα(u(α), p(α)) + jα(uτ (α)) = (f ,u(α))0,Ω(α)),

we obtain from the inequality in (P(α)):

(3.5) bα(v, p(α)) 6 aα(u(α),v) + jα(vτ )− (f ,v)0,Ω(α) 6 c‖v‖1,Ω(α), v ∈ V (α),

where c > 0 does not depend on α ∈ Uad, making use of the boundedness of ‖παu‖1,Ω̂
and the uniform boundedness of the trace mapping Trα ∈ L(H1(Ω(α)), L2(Ω(α)))

with respect to α ∈ Uad [9]. From (3.5) it follows that

(3.6) sup
v∈V (α)

bα(v, p(α))

‖v‖1,Ω(α)
6 c.

From [8] we know that there is a mapping Bα ∈ L(L2
0(α), (H

1
0 (α))

2) such that

divBαq = q a.e. in Ω(α), whose norm is bounded independently of α ∈ Uad (see

also [3], Section 4)1. The choice v := Bαp(α) in (3.6) yields:

sup
v∈V (α)

bα(v, p(α))

‖v‖1,Ω(α)
>

bα(Bαp(α), p(α))

‖Bαp(α)‖1,Ω(α)
=

‖p(α)‖20,Ω(α)

‖Bαp(α)‖1,Ω(α)
> c̄‖p(α)‖0,Ω(α),

where the constant c̄ > 0 is independent of α ∈ Uad. This concludes the proof. �

We shall also need the following auxiliary result.

Lemma 3. Let αn, α ∈ Uad be such that αn → α in C1([0, 1]) and let v ∈ V (α)

be given. Then there exists a sequence {vk}, vk ∈ (H1(Ω̂))2 and a function v ∈

(H1(Ω̂))2 such that v|Ω(α) = v and

(3.7) vk → v in (H1(Ω̂))2, k → ∞.

In addition, for any k ∈ N there exists nk ∈ N such that

(3.8) vk|Ω(αn
k
) ∈ V (αnk

).

P r o o f. Let να := να(x1), ν
αn := ναn(x1) denote the unit outward normal

vector to S(α) and S(αn), respectively. By the same symbols we shall denote their

1 In fact, the norm of Bα depends only on ‖α‖1,∞,[0,1], i.e., it is uniformly bounded for

α ∈ {β ∈ C0,1([0, 1]) ; 0 6 β 6 αmax, |β′| 6 C1 in [0, 1]}.
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natural extensions defined in Ω̂, i.e., να(x) := να(x1) and ν
αn(x) := ναn(x1),

x = (x1, x2) ∈ Ω̂. We set

ϕ(x) := v(x) · να(x), ψ(x) := vτα(x), x ∈ Ω(α).

Then ϕ ∈ H1
0 (Ω(α)), ψ ∈ (H1(Ω(α)))2 and ψ = 0 on Γ(α). Using the density argu-

ments, one can find sequences {ϕk}, ϕk ∈ C∞
0 (Ω(α)) and {ψk}, ψk ∈ (C∞(Ω(α)))2,

dist(suppψk,Γ(α)) > 0 for all k ∈ N such that

ϕk → ϕ in H1
0 (Ω(α)),

ψk → ψ, k → ∞, in (H1(Ω(α))2

and also

ϕ0
k → ϕ0 in H1

0 (Ω̂),

παψk → παψ, in (H1(Ω̂))2.

Moreover, we may assume that dist(suppπαψk, Γ̂) > 0 for all k ∈ N where Γ̂ :=

∂Ω̂ \ [0, 1] × {0}. The sequence {vk} satisfying (3.7)–(3.8) will be constructed as

follows. Suppose for the moment that there exists a filter of indices {nk}, k → ∞,

such that for any k ∈ N it holds that S(αnk
) ∩ suppϕ0

k = ∅ and in addition there

exist functions Nnk
∈ (C0,1(Ω̂))2 such that Nnk

|∂Ω(αn
k
) = ν

αn
k and

(3.9) Nnk
→ να in (H1(Ω̂))2, k → ∞.

Define vk by:

(3.10) vk = ϕ0
kNnk

+ (παψk)τn
k
= ϕ0

kNnk
+ παψk − (παψk ·Nnk

)Nnk
.

From this and the definition of nk it immediately follows that vk ∈ (H1(Ω̂))2, vk = 0

on Γ(αnk
) and vk ·ν

αn
k |S(αn

k
) = ϕ0

k|S(αn
k
) = 0. Hence, vk|Ω(αn

k
) ∈ V (αnk

). Passing

to the limit with k → ∞ in (3.10), we obtain:

vk → ϕ0να + παψ − (παψ · να)να =: v in (H1(Ω̂))2.

It is easy to see that v satisfies v|Ω(α) = v.

It remains to prove (3.9). Since αn → α in C1([0, 1]), we have

(3.11) ναn → να in C(Ω̂)
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and from the definition of O it follows that

(3.12) ‖∇νβ‖∞,Ω̂ 6 C2 for every β ∈ Uad.

Let ξk ∈ C∞([0,∞)) be functions satisfying 0 6 ξk 6 1 in [0,∞), ξk|[0,1/(2k)] = 1,

and ξk|[1/k,∞) = 0 for every k ∈ N. For k, n ∈ N we set

Nn,k(x) := ξk(|x2 − α(x1)|)(ν
αn − να) + να.

It is readily seen that Nn,k ∈ (C0,1(Ω̂))2 for all k, n ∈ N and

(3.13) ‖Nn,k − ν
α‖0,Ω̂ 6 ‖ναn − να‖0,Ω̂ as n → ∞

uniformly with respect to k ∈ N.

Let k ∈ N be fixed. Then from the definition of ξk it follows that there exists an

index n0 := n0(k) ∈ N such that Nn,k|∂Ωn
= ναn for any n > n0. Furthermore:

(3.14) ‖∇(Nn,k − ν
α)‖0,Ω̂ 6 max

(x1,x2)∈Ω̂
|∇(ξk(|x2 − α(x1)|))|‖ν

αn − να‖0,Ω̂

+ ‖∇(ναn − να)‖0,{|x2−α(x1)|<1/k}

6

√
1 + C2

1 ‖ξ
′
k‖∞,[0,∞)‖ν

αn − να‖0,Ω̂ + 2C2/k.

From this we see (still keeping k ∈ N fixed) that there exists an index n1 := n1(k) ∈ N

such that ‖∇(Nn,k−ν
α)‖0,Ω̂ = O(1/k) for any n > n1. SettingNnk

:=Nnk,k, where

nk = max{n0, n1}, we obtain (3.9), making use of (3.13). �

The main result of this section is the following stability result.

Theorem 3. Let αn, α ∈ Uad be such that αn → α in C1([0, 1]) and denote

by (un, pn) := (u(αn), p(αn)) ∈ V (αn) × L2
0(αn) the unique solution of (P(αn)).

Suppose that there exists an element (ū, p̄) ∈ (H1
0 (Ω̂))

2 × L2
0(Ω̂) such that

παn
un ⇀ ū in (H1(Ω̂))2,(3.15a)

p0n ⇀ p̄ in L2
0(Ω̂).(3.15b)

Then (u(α), p(α)) := (ū|Ω(α), p̄|Ω(α)) solves (P(α)).

P r o o f. First we show that (ū|Ω(α), p̄|Ω(α)) ∈ Vdiv(α) × L2
0(α). The fact that

u(α) := ū|Ω(α) = 0 on Γ(α) and p(α) := p̄|Ω(α) ∈ L2
0(Ω(α)) is readily seen. It
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remains to prove that divu(α) = 0 in Ω(α) and u(α) · να = 0 on S(α). This is

equivalent to verifying that

(3.16)

∫

Ω(α)

u(α) · ∇ϕ = 0 ∀ϕ ∈ H1(Ω(α)), ϕ = 0 on Γ(α).

Let ϕ from (3.16) be given and denote by ϕ̃ ∈ H1(Ω̂) its extension such that ϕ̃ = 0

on ∂Ω̂ \ [0, 1]× {0}. Since un ∈ V (αn) for all n ∈ N, we get

(3.17)

∫

Ω(αn)

un · ∇ϕ̃ = 0 ⇔

∫

Ω̂

χnπαn
un · ∇ϕ̃ = 0,

where χn is the characteristic function of Ω(αn). Letting n → ∞ in (3.17), we obtain

∫

Ω̂

χnπαn
un · ∇ϕ̃ →

∫

Ω̂

χū · ∇ϕ̃ =

∫

Ω(α)

u(α) · ∇ϕ = 0,

where χ is the characteristic function of Ω(α), making use of Lemma 1 (ii) and

(3.15a). Hence, u(α) ∈ Vdiv(α). Now we show that the pair (u(α), p(α)) satisfies the

inequality in (P(α)).

Let v ∈ V (α) be given and construct the sequence {vk}, vk ∈ (H1(Ω̂))2 satisfying

(3.7) and (3.8). Since vk|Ω(αn
k
) ∈ V (αnk

) for an appropriate nk ∈ N, it can be

used as a test function in (P(αnk
)) (to simplify notation we shall write ank

:= aαn
k
,

bnk
:= bαn

k
, jnk

:= jαn
k
):

(3.18) ank
(unk

,vk − unk
)− bnk

(vk − unk
, pnk

) + jnk
(vkτ )− jnk

(unkτ )

> (f ,vk − unk
)0,Ω(αn

k
).

Letting k → ∞ in (3.18) and using Lemma 1 (ii), (3.7), (3.15) we obtain (for details

we refer to [9]):

lim sup
k→∞

ank
(unk

,vk − unk
) 6 aα(u(α),v − u(α)),(3.19a)

lim
k→∞

bnk
(vk − unk

, pnk
) = bα(v − u(α), p(α)),(3.19b)

lim
k→∞

(f ,vk − unk
)0,Ω(αn

k
) = (f ,v − u(α))0,Ω(α).(3.19c)

The frictional term can be written as

jnk
(vkτ ) = g

∫ 1

0

|vkτ ◦ αnk
|
√
1 + |α′

nk
|2 dx1

= g

∫ 1

0

|vk ◦ αnk
− (vk ◦ αnk

· ναn
k )ναn

k |2
√
1 + |α′

nk
|2 dx1.
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From [9] we know that

vk ◦ αnk
→ v ◦ α in (L2((0, 1)))2, k → ∞.

Therefore,

jnk
(vkτ ) → jα(vτ ), k → ∞,

using the fact that ναn
k ⇒ να, α′

nk
⇒ α′ (uniformly) in [0, 1] (similarly for

jnk
(unkτ )). From this and (3.19) we see that (u(α), p(α)) satisfies the inequality in

(P(α)), i.e., (u(α), p(α)) solves (P(α)). �

R em a r k 3. It is easy to show that (3.15a) implies that

(3.20) χn∇παn
un → χ∇ū in (L2(Ω̂))2,

where χn, χ are the characteristic functions of Ω(αn) and Ω(α), respectively. To

prove (3.20) it is sufficient to show that

‖χn∇παn
un‖0,Ω̂ → ‖χ∇ū‖0,Ω̂, n → ∞.

Indeed,

‖χn∇παn
un‖

2
0,Ω̂

= aαn
(un,un) = bαn

(un, p
0
n)− jαn

(unτ ) + (f ,un)0,Ω(αn)

→ bα(u(α), p(α)) − jα(uτ (α)) + (f ,u(α))0,Ω(α)

= aα(u(α),u(α)) = ‖χ∇ū‖2
0,Ω̂

.

From (3.20) it easily follows that

un → u(α) in (H1
loc(Ω(α)))

2

(see [9]).

P r o o f of Theorem 2. Let {(un, pn)}, where (un, pn) solves (P(αn)), be a min-

imizing sequence in (P). Since {(παn
un, p

0
n)} is bounded in (H1(Ω̂))2 × L2

0(Ω̂) as

follows from Lemma 2, one can find its subsequence (denoted by the same symbol)

such that (3.15) holds true. The existence of a solution to (P) is then an easy con-

sequence of (2.9) and Theorem 3. �
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4. Shape optimization with the penalized state problem

The aim of this section is to analyse a new shape optimization problem for the

Stokes system with threshold slip but with a penalization of the impermeability

condition (2.1d). In addition to the notation introduced in the previous sections we

denote

Ṽ (α) = {v ∈ (H1(Ω(α)))2 ; v = 0 on Γ(α)},

Ṽdiv(α) = {v ∈ Ṽ (α) ; bα(v, q) = 0 ∀ q ∈ L2
0(α)}, α ∈ Uad,

and define the penalty term

cα(u,v) =

∫ 1

0

(u ◦ α · να)(v ◦ α · να) dx1,

where u ◦α · να := u(x1, α(x1)) · να(x1), x1 ∈ (0, 1). This bilinear form will be used

to approximate the boundary condition u · να = 0 on S(α).

Let α ∈ Uad be fixed and ε > 0 be a penalty parameter. The penalized form of

(P(α)) reads as follows

(P(α)ε) Find (uε, pε) ∈ Ṽ (α)× L2
0(α) such that

∀v ∈ Ṽ (α) : aα(uε,v − uε)− bα(v − uε, pε)

+ jα(vτ )− jα(uετ ) +
1

ε
cα(uε,v − uε) > (f ,v − uε)0,Ω(α),

∀ q ∈ L2
0(α) : bα(uε, q) = 0.

Using the same technique as in [6] one can show that (P(α)ε) has a unique solution

(uε, pε) for any ε > 0. Moreover,

uε → u in (H1(Ω(α)))2,(4.1a)

pε ⇀ p in L2
0(α), ε → 0+(4.1b)

and (u, p) is the unique solution of (P(α)).

Now we introduce the following family of shape optimization problems with the

state problem (P(α)ε). For any ε > 0 fixed, we define

(Pε) Find α∗
ε ∈ Uad such that ∀α ∈ Uad : Jε(α

∗
ε) 6 Jε(α),

where Jε(α) := J(α,uε(α), pε(α)) with (uε(α), pε(α)) being the solution of (P(α)ε).

Using a similar approach as in Section 3 (see also [9]) one can prove the following

result.
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Theorem 4. Let (2.9) be satisfied. Then (Pε) has a solution for any ε > 0.

In the subsequent part of this section we shall analyse the mutual relation between

solutions of (P) and (Pε) for ε → 0+. We start with the following result.

Lemma 4. There exists a constant c := c(‖f‖0,Ω̂) > 0 independent of α ∈ Uad

and ε > 0 such that the solution (uε(α), pε(α)) of (P(α)ε) is bounded:

(4.2) ‖παuε(α)‖1,Ω̂ +
1

ε
cα(uε(α),uε(α)) + ‖p0ε(α)‖0,Ω̂ 6 c.

P r o o f. The boundedness of the first two terms in (4.2) follows easily from the

fact that uε(α) ∈ Ṽdiv(α) and satisfies

(4.3) aα(uε,uε) + jα(uετ ) +
1

ε
cα(uε,uε)

6 aε(uε,v) + jα(vτ ) +
1

ε
cα(uε,v)− (f ,v − uε)0,Ω(α) ∀v ∈ Ṽdiv(α),

making use of the definitions of (P(α)ε) and Ṽdiv(α). Inserting v ≡ 0 into the right-

hand side of (4.3) we obtain the claim. To show the boundedness of {pε(α)} we

proceed as follows: From the inequality in (P(α)ε) we see that

bα(v, pε(α)) 6 aα(uε(α),v) − (f ,v) ∀v ∈ (H1
0 (Ω(α)))

2.

Thus (see also Lemma 2)

c̄‖pε‖0,Ω(α) 6 sup
v∈(H1

0
(Ω(α)))2

v 6=0

bα(v, pε)

‖v‖1,Ω(α)
6 c,

making use of the boundedness of {‖uε(α)‖1,Ω(α)}. Since also c̄ does not depend on

α ∈ Uad and ε > 0, we arrive at (4.2). �

The key role in our analysis plays the following stability type result.

Lemma 5. Let αn → α in C1([0, 1]), αn, α ∈ Uad and {(un, pn)} be the sequence

of solutions to (P(αn)εn), εn → 0+. Then there exist a subsequence of {(un, pn)}

(denoted by the same symbol) and a pair (ū, p̄) ∈ (H1
0 (Ω̂))

2 × L2
0(Ω̂) such that

παn
un ⇀ ū in (H1(Ω̂))2,(4.4a)

p0n ⇀ p̄ in L2
0(Ω̂), n → ∞.(4.4b)

In addition, the pair (ū|Ω(α), p̄|Ω(α)) is a solution of (P(α)).
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P r o o f. The existence of a subsequence satisfying (4.4) follows from Lemma 4.

Clearly, ū|Ω(α) ∈ Ṽdiv(α). Next we show that u := ū|Ω(α) satisfies (2.1d) on S(α).

From (4.2) we see that

(4.5) 0 6 cn(un,un) 6 εnc → 0 as n → ∞,

where for brevity cn := cαn
. On the other hand,

(4.6) cn(un,un) → cα(u,u) as n → ∞.

Indeed,

(4.7) ‖un ◦ αn · ναn − u ◦ α · να‖0,(0,1)

6 ‖(un ◦ αn − u ◦ α) · ναn‖0,(0,1) + ‖u ◦ α(ναn − να)‖0,(0,1) → 0, n → ∞.

Convergence of the first term on the right of (4.7) is shown in [9], Lemma 2.21. From

(4.5) and (4.6) it follows that u · να = 0 on S(α), hence u ∈ Vdiv(α).

It remains to show that u solves (P(α)). Let v ∈ V (α) be given. Then accordingly

to Lemma 3 there exists a sequence {vk}, vk ∈ (H1(Ω̂))2 satisfying (3.7) and (3.8).

Since vk|Ω(αn
k
) can be used as a test function in (P(αnk

)εn
k
), we obtain:

ank
(unk

,vk − unk
)− bnk

(vk − unk
, pnk

) + jnk
(vkτ )− jnk

(unk
) > (f ,vk)0,Ω(αn

k
).

Here we used the fact that

1

εnk

cnk
(unk

,vk − unk
) = −

1

εnk

cnk
(unk

,unk
) 6 0.

The rest of the proof is identical with the one of Theorem 3. �

To establish a relation between solutions of (P) and (Pε) for ε → 0+ we shall also

need the continuity of J in the following sense

(4.8)

αn → α in C1([0, 1]), αn, α ∈ Uad

yn → y in (H1(Ω̂))2, yn,y ∈ (H1
0 (Ω̂))

2

qn ⇀ q in L2(Ω̂), qn, q ∈ L2
0(Ω̂)





⇒ lim
n→∞

J(αn,yn|Ω(αn), qn|Ω(αn)) = J(α,y|Ω(α), q|Ω(α)).
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Theorem 5. Let (2.9) and (4.8) be satisfied. Then from any sequence {α∗
ε} of

solutions to (Pε), ε → 0+, one can choose a subsequence (denoted by the same

symbol) and find a triplet (α∗,u∗, p∗) ∈ Uad × (H1
0 (Ω̂))

2 × L2
0(Ω̂) such that

α∗
ε → α∗ in C1([0, 1]),(4.9a)

πα∗

ε
uε(α

∗
ε) ⇀ u∗ in (H1(Ω̂))2,(4.9b)

p0ε(α
∗
ε) ⇀ p∗ in L2

0(Ω̂), ε → 0+.(4.9c)

Moreover, α∗ is a solution of (P) and (u∗|Ω(α∗), p
∗|Ω(α∗)) solves (P(α∗)). Besides

that, any accumulation point of {(α∗
ε,uε(α

∗
ε), pε(α

∗
ε))} in the sense of (4.9) has this

property.

P r o o f. The existence of a subsequence {α∗
ε} satisfying (4.9a) follows from the

Arzelà-Ascoli theorem. Furthermore, (4.9b), (4.9c), and the fact that (u∗|Ω(α∗),

p∗|Ω(α∗)) solves (P(α∗)) are proven in Lemma 5. Let α ∈ Uad be given and

(u(α), p(α)) be the unique solution of (P(α)). From (4.1) we know that

uε(α) → u(α) in (H1(Ω(α)))2,

pε(α) ⇀ p(α) in L2
0(Ω(α)), ε → 0+

and also

(4.10) παuε(α) → παu(α) in (H1(Ω̂))2,

p0ε(α) ⇀ p0(α) in L2
0(Ω̂), ε → 0+.

The definition of (Pε) yields

J(α∗
ε ,uε(α

∗
ε), pε(α

∗
ε)) 6 J(α,uε(α), pε(α)).

Letting ε tend to zero on the filter of indices for which (4.9) holds, we obtain

J(α∗,u∗|Ω(α∗), p
∗|Ω(α∗)) 6 J(α,u(α), p(α)) ∀α ∈ Uad,

making use of (2.9), (4.8), and (4.10). �
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5. Approximation of (Pε)

In this section, a finite-dimensional approximation of (Pε) will be proposed and

analysed. Next we shall assume that ε > 0 is fixed. We introduce a finite ele-

ment discretization of (P(α)ε) and a discretization of the set Uad. We will show

that the discrete shape optimization problem has a solution. Finally, we will study

convergence properties of such solutions if the discretization parameter h → 0+.

5.1. Formulation of the discrete problem. We start with the approximation

of the admissible set Uad. Since for finite element methods it is convenient to use

polygonal domains, we will consider piecewise linear approximations of Uad. On

the other hand, as Uad contains C
1,1-functions, this approximation of Uad becomes

external and some technical difficulties arise, especially in the convergence analysis.

Let d ∈ N be given and set h := 1/d. By δh we denote the equidistant partition

of [0, 1]:

δh : 0 = a0 < a1 < . . . < ad = 1,

where

aj = jh, j = 0, 1, . . . , d.

The set of discrete admissible shapes Uh
ad consists of continuous, piecewise linear

functions on δh which satisfy constraints analogous to those imposed in (2.8):

Uh
ad := {αh ∈ C([0, 1]) ; αh|[ai−1,ai] ∈ P1([ai−1, ai]) ∀ i = 1, . . . , d;

αmin 6 αh(ai) 6 αmax ∀ i = 0, . . . , d;

|αh(ai)− αh(ai−1)| 6 C1h ∀ i = 1, . . . , d;

|αh(ai+1)− 2αh(ai) + αh(ai−1)| 6 C2h
2 ∀ i = 1, . . . , d− 1}.

The positive constants αmin, αmax, C1 and C2 are the same as in (2.8). We denote

the set of discrete admissible shapes by

Oh := {Ω(αh) ; αh ∈ Uh
ad}.

The symbol Th(αh) will denote a triangulation of Ω(αh) with the norm h. We will

consider the system {Th(αh) ; αh ∈ Uh
ad} which consists of topologically equivalent

triangulations, i.e.:

(T1) the number of nodes as well as the neighbours of each triangle in Th(αh) is the

same for all αh ∈ Uh
ad;

(T2) the position of the nodes in Th(αh) depends continuously on αh;
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(T3) the triangulations Th(αh) are compatible with the decomposition of ∂Ω(αh)

into S(αh) and Γ(αh) for any αh ∈ Uh
ad.

In order to establish convergence results we will also need:

(T4) the system {Th(αh) ; αh ∈ Uh
ad} is uniformly regular with respect to h > 0 and

αh ∈ Uh
ad, i.e., there exists a constant θ0 > 0 such that

θh(αh) > θ0 ∀h > 0 ∀αh ∈ Uh
ad,

where θh(αh) denotes the minimal interior angle of all triangles from Th(αh).

In order to give a finite element discretization of the state problem, we define the

spaces of piecewise polynomial functions

Ṽh(αh) := {vh ∈ (C(Ω(αh)))
2 ; vh|T ∈ (P2(T ))

2 ∀T ∈ Th(αh), vh = 0 on Γ(αh)},

Lh(αh) :=

{
qh ∈ C(Ω(αh)) ; qh|T ∈ P1(T ) ∀T ∈ Th(αh),

∫

Ω(αh)

qh = 0

}
.

Let ε > 0, h > 0 and αh ∈ Uh
ad be given. The discrete penalized state problem reads

as follows:

(Phε(αh)) Find (uhε, phε) := (uhε(αh), phε(αh)) ∈ Ṽh(αh)× Lh(αh) s.t.

∀vh ∈ Ṽh(αh) : aαh
(uhε,vh − uhε)− bαh

(vh − uhε, phε)

+ jαh
(vhτ )− jαh

(uhετ ) +
1

ε
cαh

(uhε,vh − uhε)

> (f ,vh − uhε)0,Ω(αh),

∀ qh ∈ Lh(αh) : bαh
(uhε, qh) = 0.

Since the pair Ṽh(αh) and Lh(αh) satisfies the Babuška-Brezzi condition (see (5.2)

below), problem Phε(αh) has a unique solution.

Lemma 6. There exists a constant c := c(‖f‖0,Ω̂) > 0 independent of ε > 0,

h > 0 and αh ∈ Uh
ad such that the solution (uhε, phε) of (Phε(αh)) is bounded:

(5.1) ‖παh
uhε‖1,Ω̂ +

1

ε
cαh

(uhε,uhε) + ‖p0hε‖0,Ω̂ 6 c.

P r o o f. The boundedness of the first two terms in (5.1) can be shown exactly

as in the proof of Lemma 4. The pressure estimate will be proven provided that the

discrete inf-sup condition

(5.2) inf
q∈Lh(αh)\{0}

sup
v∈Ṽh(αh)\{0}

bαh
(q,v)

‖q‖0,Ω(αh)‖v‖1,Ω(αh)
> c
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holds with a constant c > 0 independent of h > 0 and αh ∈ Uh
ad. Indeed, in [2],

Chapter VI.6, it is shown that (5.2) holds with a constant c := c(c̄), where c̄ is

the constant in the inf-sup condition for the spaces L2
0(αh) and Ṽ (αh). As we have

pointed out before, c̄ does not depend on αh, and so neither does c. �

Analogously to the continuous setting, the discrete shape optimization problem is

defined as the minimization of Jhε on Uh
ad, where

Jhε(αh) := J(αh,uhε(αh), phε(αh)),

with (uhε(αh), phε(αh)) being the solution of (Phε(αh)). Thus, for each ε > 0 and

h > 0, the discrete shape optimization problem reads:

(Phε) Find α∗
hε ∈ Uh

ad such that ∀αh ∈ Uh
ad : Jhε(α

∗
hε) 6 Jhε(αh).

Adapting the approach from the previous section to the discrete case, one can

easily show that the graph

Ghε := {(αh,uhε(αh), phε(αh)) ; αh ∈ Uh
ad,

(uhε(αh), phε(αh)) is the solution of Phε(αh)}

is compact for any ε > 0 and h > 0, so the following result is straightforward.

Theorem 6. Let h, ε > 0 be fixed and Jhε be lower semicontinuous on Uh
ad. Then

(Phε) has a solution.

5.2. Convergence analysis. In this section we will analyse the mutual relation

between solutions to (Phε) and (Pε) as h → 0+ keeping ε > 0 fixed, aiming to show

that the discrete optimal shapes converge in some sense to an optimal shape of the

continuous setting.

We start by recalling some auxiliary results concerning the relationship between

Uh
ad, h → 0+, and Uad, which can be proven using the same arguments as in [10], [11].

Lemma 7. For any α ∈ Uad there exists a sequence {αh}, αh ∈ Uh
ad such that

αh → α in C([0, 1]), h → 0+.

Lemma 8. Let {αh}, αh ∈ Uh
ad be such that αh → α in C([0, 1]), h → 0+. Then

α ∈ Uad and there exists a subsequence {αhm
} ⊂ {αh} satisfying:

(5.3) α′
hm

→ α′ in L∞(0, 1), hm → 0+.

In order to pass to the limit in the variational inequality we also need the following

result.
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Lemma 9. Let {αh}, αh ∈ Uh
ad be such that αh → α in C([0, 1]), h → 0+ and let

v ∈ Ṽ (α) be given. Then there exist a sequence {vh}, vh ∈ (H1(Ω̂))2, and a function

v ∈ (H1(Ω̂))2 such that vh|Ω(αh) ∈ Ṽh(αh), v|Ω(α) = v and

(5.4) vh → v in (H1(Ω̂))2, h → 0+.

P r o o f. Let η > 0 be arbitrary and set v := παv ∈ (H1
0 (Ω̂))

2. By the density

argument one can find ϕ ∈ (C∞
0 (Ω̂))2 such that

(5.5) ‖ϕ− v‖1,Ω̂ <
η

2
.

Let Θ(αh) = Ω̂ \Ω(αh) and T̂h(αh) be a triangulation of Θ(αh) such that the nodes

of Th(αh) and T̂h(αh) on S(αh) coincide and, moreover, the family {T̂h(αh)}, h → 0,

satisfies (T1), (T2) and (T4). By rh we denote the piecewise quadratic Lagrange

interpolation operator in Ω̂ with the triangulation Th(αh) ∪ T̂h(αh). From (T4) it

follows that there exists a constant c > 0 independent of h > 0 and αh ∈ Uh
ad such

that

(5.6) ‖rhϕ−ϕ‖1,Ω̂ 6 ch‖ϕ‖2,Ω̂ ∀ϕ ∈ (H2(Ω̂))2.

We set vh := rhϕ. Then clearly vh|Ω(αh) ∈ Ṽh(αh) for every h > 0. Moreover, from

(5.6) we see that there exists h0 := h0(η) > 0 such that for any h 6 h0 it holds that

‖vh −ϕ‖1,Ω̂ <
η

2
,

which together with (5.5) completes the proof. �

The following lemma establishes convergence properties of solutions to (Phε(αh))

as h → 0+.

Lemma 10. Let {αh}, αh ∈ Uh
ad, h → 0+, be an arbitrary sequence. Then there

exist its subsequence (denoted by the same symbol), a function α ∈ Uad, and a pair

(ū, p̄) ∈ (H1
0 (Ω̂))

2 × L2
0(Ω̂) such that

αh → α in C([0, 1]),

παh
uhε(αh) ⇀ ū in (H1(Ω̂))2,

phε(αh)
0 ⇀ p̄ in L2(Ω̂), h → 0+.

Moreover, (ū|Ω(α), p̄|Ω(α)) is the solution to (P(α)ε).
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P r o o f. The existence of convergent subsequences follows from Lemma 6, the

Arzelà-Ascoli theorem and Lemma 8. From Lemma 9 we know that for any v ∈ Ṽ (α)

one can find a sequence {vh}, vh|Ω(αh) ∈ Ṽh(αh) satisfying (5.4). The limit passage

for h → 0+ in (Phε(αh)) can be done as in the proof of Theorem 3, making use of

(5.3). �

To establish the convergence of solutions to (Phε) as h → 0+ we shall need the

continuity of J in the following sense:

(5.7)

αh → α in C([0, 1]), αh ∈ Uh
ad, α ∈ Uad

παh
yh ⇀ y in (H1(Ω̂))2, yh ∈ Ṽh(αh),y ∈ (H1

0 (Ω̂))
2

q0h ⇀ q in L2(Ω̂), qh ∈ Lh(αh), q ∈ L2
0(Ω̂)





⇒ lim
h→0+

J(αh,yh, qh) = J(α,y|Ω(α), q|Ω(α)).

We have the following convergence result.

Theorem 7. Let {α∗
hε}, h → 0+, be a sequence of solutions to (Phε), h → 0+,

and let (5.7) be satisfied. Then there exist: a subsequence of {α∗
hε} (denoted by the

same symbol) and a triplet (α∗
ε ,u

∗
ε, p

∗
ε) ∈ Uad × (H1

0 (Ω̂))
2 × L2

0(Ω̂) such that

α∗
hε → α∗

ε in C([0, 1]),

πα∗

hε
uhε(α

∗
hε) ⇀ u∗

ε in (H1(Ω̂))2,

p0hε(α
∗
hε) ⇀ p∗ε in L2(Ω̂), h → 0+.

Moreover, α∗
ε is a solution of (Pε) and (u∗

ε|Ω(α∗

ε
), p

∗
ε|Ω(α∗

ε
)) solves (Pε(α

∗
ε)).

The p r o o f is analogous to the one of Theorem 5.
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