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CALCULATING ALL ELEMENTS OF MINIMAL INDEX

IN THE INFINITE PARAMETRIC FAMILY

OF SIMPLEST QUARTIC FIELDS

István Gaál, Gábor Petrányi, Debrecen

(Received February 11, 2013)

Abstract. It is a classical problem in algebraic number theory to decide if a number field
is monogeneous, that is if it admits power integral bases. It is especially interesting to
consider this question in an infinite parametric familiy of number fields. In this paper we
consider the infinite parametric family of simplest quartic fields K generated by a root ξ of
the polynomial Pt(x) = x4− tx3− 6x2 + tx+1, assuming that t > 0, t 6= 3 and t2 +16 has
no odd square factors. In addition to generators of power integral bases we also calculate
the minimal index and all elements of minimal index in all fields in this family.
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1. Introduction

There is an extensive literature (cf. [3]) of monogenic fields K, that is, algebraic

number fields of degree n having a power integral basis 1, ϑ, . . . , ϑn−1. This is the

case exactly if the index of ϑ, that is

I(ϑ) = (Z+

K : Z[ϑ]+),

(where ZK denotes the ring of integers of K) is equal to 1.

The first author developed algorithms for calculating generators of power integral

bases (cf. [3]) and also succeeded in determining all possible generators of power
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integral bases in some infinite parametric families of number fields, see I.Gaál and

M.Pohst [6], I. Gaál and G. Lettl [4].

Among the best known infinite parametric families of number fields are the fam-

ily of simplest cubic (see [16]), simplest quartic and simplest sextic fields (see [13]).

These are exactly the families of totally real cyclic number fields, having a transfor-

mation of type z 7→ (az + b)/(cz + d) as the generator of the Galois group.

In the present paper we deal with the family of simplest quartic fields, that is

K = Q(ξ), where ξ is a root of the polynomial

(1) Pt(x) = x4 − tx3 − 6x2 + tx+ 1

where t ∈ Z, t 6= 0,±3. This family was considered by M.N.Gras [7], A. J. Lazarus

[11] and many other authors. Using the integral basis constructed by H.K.Kim and

J.H. Lee [10], P.Olajos [15] showed that K has power integral bases only in two

exceptional cases. He used the method of I. Gaál, A. Pethő and M.Pohst [5] to solve

the index form equations.

In the present paper we determine the minimal indices and all elements of minimal

index in the fields belonging to the infinite parametric family of simplest quartic

fields. Our basic tool is the method [5], involving extensive formal calculations using

Maple [1] and the resolution of a great number of special Thue equations using

Kash [2].

Note that B. Jadriević [8], [9] has determined the minimal indices and all elements

of minimal index formerly in certain families of bicyclic biquadratic fields. In those

fields the index form equation splits into the product of three quadratic forms, which

makes the problem much easier.

2. Simplest quartic fields

For simplicity let t > 0, t 6= 3 and let ξ be a root of the polynomial (1). We

also assume that t2 + 16 is not divisible by an odd square since this was needed by

H.K.Kim and J.H. Lee [10] to determine the integral bases. (M.N.Gras [7] showed

that t2 + 16 represents infinitely many square free integers. This implies that there

are infinitely many parameters t with the above properties.)

Lemma 1 (H.K.Kim and J.H. Lee [10]). Under the above assumptions, an inte-

gral basis of K is given by

(

1, ξ, ξ2,
1 + ξ3

2

)

if v2(t) = 0,
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(

1, ξ,
1 + ξ2

2
,
ξ + ξ3

2

)

if v2(t) = 1,

(

1, ξ,
1 + ξ2

2
,
1 + ξ + ξ2 + ξ3

4

)

if v2(t) = 2,

(

1, ξ,
1 + 2ξ − ξ2

4
,
1 + ξ + ξ2 + ξ3

4

)

if v2(t) > 3.

P.Olajos [15] determined all generators of power integral bases (up to translation

by elements of Z).

Lemma 2 (P.Olajos [15]). Under the above assumptions power, integral bases

exist only for t = 2 and t = 4. All generators of power integral bases are given by

⊲ t = 2, α = xξ+y(1+ξ2)/2+z(ξ+ξ3)/2 where (x, y, z) = (4, 2,−1), (−13,−9, 4),

(−2, 1, 0), (1, 1, 0), (−8,−3, 2), (−12,−4, 3), (0,−4, 1), (6, 5,−2), (−1, 1, 0),

(0, 1, 0);

⊲ t = 4, α = xξ + y(1 + ξ2)/2 + z(1 + ξ + ξ2 + ξ3)/4 where (x, y, z) = (3, 2,−1),

(−2,−2, 1), (4, 8,−3), (−6,−7, 3), (0, 3,−1), (1, 3,−1).

3. Elements of minimal index in the family

of simplest quartic fields

If K admits a power integral basis, then its generator has index 1. Otherwise we

call m the minimal index of K if m is the least positive integer such that α ∈ ZK

exists with

I(α) = m.

If there are no power integral bases then it is important to determine the minimal

index of the fieldK and all elements of minimal index. It is easily seen from Lemma 1

that ξ has index 2, 4, 8, 16 according as v2(t) = 0, 1, 2,> 3, respectively. We shall

see that in some cases there are elements of smaller index, as well. Moreover, we

determine all elements of minimal index.

In the following theorem the coordinates of the elements are given in the integral

bases of Lemma 1. We display only the last three coordinates of the elements (and

omit the first) since the index is translation invariant.

Our main result is the following theorem.
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Theorem 3. Assume that t > 0, t 6= 3 and t2 + 16 has no odd square factors.

Except the parameters t = 2, 4, 8, 12, 16, 20, 24, 28, 32, for different values of v2(t) the

minimal indices m of the field K and all elements of minimal index are listed below:

v2(t) = 0, m = 2

(1, 0, 0), (6, t,−2),
(5 + t

2
,
−1 + t

2
,−1

)

,
(5− t

2
,
1 + t

2
,−1

)

;

v2(t) = 1, m = 4

(1, 0, 0), (7, 2t,−2),
(6 + t

2
,−1 + t,−1

)

,
(6− t

2
, 1 + t,−1

)

;

v2(t) = 2, m = 8

(1, 0, 0), (7, 2 + 2t,−4),
(6 + t

2
, t,−2

)

,
(6− t

2
, 2 + t,−2

)

;

v2(t) > 3, m = 16

(1, 0, 0), (9 + 2t, 4− 4t,−4),
(10 + t

2
,−4− 2t,−2

)

,
(6 + 3t

2
,−2t,−2

)

.

For t = 2, 4, 8, 12, 16, 20, 24, 28 the minimal indices and all elements of minimal

index are listed below:

t = 2, m = 1

(4, 2,−1), (−13,−9, 4), (−2, 1, 0), (1, 1, 0), (−8,−3, 2), (−12,−4, 3),

(0,−4, 1), (6, 5,−2), (−1, 1, 0), (0, 1, 0);

t = 4, m = 1

(3, 2,−1), (−2,−2, 1), (4, 8,−3), (−6,−7, 3), (0, 3,−1), (1, 3,−1);

t = 8, m = 4

(−7, 8, 1), (17,−28,−3), (−8, 8, 1), (5,−10,−1), (20,−26,−3), (−4, 10, 1);

t = 12, m = 3

(10, 6,−1), (8, 6,−1), (−4,−20, 3), (−2, 7,−1), (16, 19,−3), (4,−7, 1);

t = 16, m = 8

(−14, 16, 1), (27,−52,−3), (−13, 16, 1), (6,−18,−1), (−34, 50, 3), (−7, 18, 1);

t = 20, m = 5

(14, 10,−1), (0,−32, 3), (12, 10,−1), (6,−11, 1), (−8, 11,−1), (−20,−31, 3);

t = 24, m = 12

(−19, 24, 1), (37,−76,−3), (−20, 24, 1), (−9, 26, 1), (8,−26,−1), (−48, 74, 3);

t = 28, m = 7

(−18,−14, 1), (−16,−14, 1), (−4, 44,−3), (−24,−43, 3), (−13, 14, 1), (10,−15, 1).
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For t = 32, in addition to those given for v2(t) > 3 there are further elements of

index 16 having coefficients

t = 32, m = 16

(−26, 32, 1), (−25, 32, 1), (47,−100,−3), (11,−34,−1), (−10, 34, 1),

(62,−98,−3).

4. Proof of Theorem 3

In this section we list the results that we need to prove Theorem 3 and then we

describe its proof.

4.1. The corresponding family of Thue equations. In our calculation we

shall use the result giving all solutions p, q ∈ Z of the infinite parametric family of

Thue equations

(2) Ft(p, q) = p4 − tp3q − 6p2q2 + tpq3 + q4 = w

for given w ∈ Z.

These equations were considered by G. Lettl and A.Pethő [12] and by G. Lettl,

A. Pethő, P.Voutier [13]. Note that if (p, q) is a solution, then so also is (−p,−q)

but we list only one of them. G. Lettl and A.Pethő [12] showed:

Lemma 4.

For w = 1 all solutions are the following:

For any t > 0, t 6= 3: (p, q) = (1, 0), (0, 1).

For t = 4: (p, q) = (2, 3), (3,−2).

For w = −1 all solutions are the following:

For t = 1: (p, q) = (1, 2), (2,−1).

For w = 4 all solutions are the following:

For t = 1: (p, q) = (3, 1), (1,−3).

For w = −4 all solutions are the following:

For any t > 0, t 6= 3: (p, q) = (1, 1), (1,−1).

For t = 4: (p, q) = (5, 1), (1,−5).

Note that congruence consideration mod 8 shows that equation (2) is not solvable

for w = ±2. Further,

if Ft(p, q) = −4c then Ft

(p− q

2
,
p+ q

2

)

= c
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(in this case indeed p and q have the same parity), and

if Ft(p, q) = c then Ft(p− q, p+ q) = 4c.

Using Lemma 4 and the above notes we can figure out the solutions of (2) for all w

being a power of 2 or its negative, and just this is what we need in our calculation.

4.2. Index form equations in arbitrary quartic fields. In this section we

detail the method of I.Gaál, A. Pethő and M.Pohst [5] (see also I.Gaál [3]) which

will play an essential role in our arguments.

Let K be a quartic field generated by a root ξ with minimal polynomial f(x) =

x4 + a1x
3 + a2x

2 + a3x+ a4 ∈ Z[x]. We represent any α ∈ ZK in the form

(3) α =
1

d
(a+ xξ + yξ2 + zξ3)

with coefficients a, x, y, z ∈ Z and with a common denominator d ∈ Z. Let n = I(ξ),

let

F (u, v) = u3 − a2u
2v + (a1a3 − 4a4)uv

2 + (4a2a4 − a23 − a21a4)v
3

be a binary cubic form over Z and

Q1(x, y, z) = x2 − xya1 + y2a2 + xz(a21 − 2a2) + yz(a3 − a1a2)

+ z2(−a1a3 + a22 + a4),

Q2(x, y, z) = y2 − xz − a1yz + z2a2

ternary quadratic forms over Z.

Lemma 5. If α of (3) satisfies

(4) I(α) = m,

then there is a solution (u, v) ∈ Z2 of

(5) F (u, v) = ±
d6m

n

such that

(6) Q1(x, y, z) = u,

Q2(x, y, z) = v.
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In [5] an algorithm is also given for the resolution of the system of equations (6)

which we shall apply in the sequel.

4.3. Index form equations in simplest quartic fields. Using the coefficients

of the polynomial (1), in Lemma 5 we substitute

a1 = −t, a2 = −6, a3 = t, a4 = 1;

then we become

F (u, v) = (u + 2v)(u2 + 4uv − v2(t2 + 12)),(7)

Q1(x, y, z) = x2 + txy − 6y2 + (t2 + 12)xz − 5tyz + (t2 + 37)z2,(8)

Q2(x, y, z) = y2 − xz + tyz − 6z2.(9)

We deal with all four cases (v2(t) = 0, 1, 2,> 3) in Lemma 1 parallelly. According

to Lemma 5, for a given m, in order to determine the elements of index m we first

have to solve the equation

F (u, v) =
g6m

I(ξ)

with

F (u, v) = (u+ 2v)(u2 + 4uv − v2(t2 + 12)).

Here g = 2, 2, 4, 4 and I(ξ) = 2, 4, 8, 16 according as v2(t) = 0, 1, 2,> 3. We proceed

by taking m = 1, 2, . . . , I(ξ) until we find solutions.

We write g6m/I(ξ) in the form a · 2l with an odd a ∈ {1, 3, 5, 7, 9, 11, 13, 15} and

4 6 l 6 12. We confer

u+ 2v = ±a1 · 2
i,(10)

u2 + 4uv − v2(t2 + 12) = ±a2 · 2
l−i

with odd numbers a1, a2 satisfying a1a2 = a and i = 0, 1, . . . , l. We obtain

(11) a21 · 2
2i ± a2 · 2

l−i = v2(t2 + 16).

The left hand side v2(t2 + 16) is either zero or positive.

Case I. In case v2(t2 + 16) = 0 we get v = 0 for arbitrary t. (11) implies

a21
a2

= 2l−3i,
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which is only possible for a1 = a2 = 1 and (i, l) = (2, 6), (3, 9), (4, 12). By v = 0

equation (10) implies u = ±2i, therefore (following the method of [5])

Q0(x, y, z) = vQ1(x, y, z)− uQ2(x, y, z) = 0

whence

2i(y2 − xz + yzt− 6z2) = 0.

A nontrivial solution of this quadratic equation is (x0, y0, z0) = (−6, 0, 1). Using an

idea of [14] Chapter 7 we parametrize all solutions x, y, z with rational parameters

p, q, r in the form

(12) x = −6p+ r, y = q, z = r.

Substituting it into Q0(x, y, z) = 0 we obtain

r(2ip− 2iqt) = 2iq2.

Multiplying all equations by 2ip− 2iqt we obtain

(13) kx = 2ip2 − 2ipqt− 6 · 2iq2,

ky = 2ipq − 2itq2,

kz = 2iq2

with k ∈ Q. Arrange the coefficients of p2, pq, q2 on the left hand sides of the

equations above into a 3 × 3 matrix C = (cij). Multiplying all equations by the

square of the common denominators of p, q and dividing them by the gcd of the

elements of the matrix C = (cij) we can replace k, p, q by integer parameters

(cf. [14], [5]) and k can be shown to divide

det(C)

(gcd(cij))2
= 2i

(cf. [5], [3]). Substituting (13) into Q1(x, y, z) = ±u we obtain

(14) 22i · Ft(p, q) = ±2i · k2

with

Ft(p, q) = p4 − tp3q − 6p2q2 + tpq3 + q4

where i = 2, 3, 4 and k | 2i.
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This equation is not solvable for k = 1. Using Lemma 4 and the remarks after

it, solutions exist only for i = 2 and i = 4. The corresponding values are l = 6, 12,

respectively. Using the formula

F (u, v) = ±
g6m

I(ξ)
= 2l

we can figure out which v2(t), I(ξ) and m may possibly correspond to i. The case

m = 1 was dealt with by P.Olajos [15]. Using Lemma 4 we obtain the solutions

(p, q) of equation (14), then (x, y, z) is obtained by (13).

Finally, we obtain the following solutions (and their negatives):

For any t with v2(t) = 0 or v2(t) = 1

(x, y, z) = (2, 0, 0), (12, 2t,−2), (5± t,∓1 + t,−1), (−5± t,∓1− t, 1).

For any t with v2(t) = 2 or v2(t) > 3

(x, y, z) = (4, 0, 0), (24, 4t,−4), (10± 2t,∓2 + 2t,−2), (−10± 2t,∓2− 2t, 2).

The corresponding coordinates in the integral basis are listed in Theorem 3.

Case II: Using equation (11) and considering the possible values of a1, a2, i, l in

case v2(t2 + 16) > 0 we obtain specific values for t. The possible triples (t, u, v) are

listed below.

t 2 2 4 4 4 4 4 4 4 4 4 4 7 7 7 7

u 0 −4 20 −28 16 −32 12 20 8 −24 20 −44 1 3 20 12

v 1 1 2 2 4 4 2 2 4 4 6 6 −1 −1 −2 2

t 8 8 8 8 8 8 8 8 8 8 8 8 8 8

u 10 −14 12 20 22 34 14 −18 −2 −10 34 −54 4 −12

v 1 1 2 2 3 3 1 1 3 3 5 5 2 2

t 12 12 12 12 16 16 16 16 16 16 16 16 20 20 20 20

u 20 −28 14 −18 10 −14 28 −36 18 −22 2 −6 14 −18 36 −44

v 2 2 1 1 1 1 2 2 1 1 1 1 1 1 2 2

t 24 24 24 24 24 24 28 28 32 32 32 32 32 32 48 48

u 2 −6 44 −52 18 −22 52 −60 30 −34 2 −6 60 −68 46 −50

v 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1

t 64 64 80 80 96 96 112 112 128 128 144 144 240 240 256 256

u 62 −66 78 −82 94 −98 110 −114 126 −130 142 −146 238 −242 254 −258

v 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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For each triple (t, u, v) we have to solve the system of equations (6). We demon-

strate our procedure for (t, u, v) = (12, 20, 2). We have

Q1(x, y, z) = x2 + 12xy − 6y2 + 156xz − 60yz + 181z2 = ±20,(15)

Q2(x, y, z) = y2 − xz + 12yz − 6z2 = ±2,(16)

Q0(x, y, z) = 2x2 + 24xy − 32y2 + 332xz − 360yz + 482z2 = 0.

The last equation has the nontrivial solution (x0, y0, z0) = (15, 11,−1). We set

(17) x = 15r + p, y = 11r + q, z = −r

(with rational parameters) whence Q0(x, y, z) = 0 implies

(8p− 16q)r = 2p2 + 24pq − 32q2.

Multiplying equation (17) by 8p− 16q and using the above equation we arrive at

kx = −38p2 − 344pq + 480q2,(18)

ky = −22p2 − 272pq + 368q2,

kz = 2p2 + 24pq − 32q2

with k ∈ Q. Multiplying all equations by the square of the common denominators

of p, q and dividing them by the gcd of the elements of the above coefficient matrix

C = (cij) on the right hand side of (18) we can replace k, p, q by integer parameters

(cf. [5]). The number k divides det(C)/(gcd(cij))
2 = 3 · 27. Substituting equations

(18) into the equations (15) and (16) we obtain

F2(p, q) = 8p4 + 128p3q + 128p2q2 − 3072pq3 + 3328q4 = ±2 · k2.

We could solve all these equations by using the program package Kash [2]. The total

CPU time on an average laptop took a couple of hours. The solutions (x, y, z) are

listed below. Note that for (t,−u,−v) we get the solutions (−x,−y,−z).

(p, q) (x, y, z),

(1, 0) (19, 11,−1),

(2, 1) (15, 11,−1),

(10,−1) (−5,−37, 3).

The corresponding coordinates in the integral basis are listed in Theorem 3.
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