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Abstract

It is proved that orthomodular posets are in a natural one-to-one cor-
respondence with certain residuated structures.
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Orthomodular posets are well-known structures used in the foundations of
quantum mechanics (cf. e.g. [4], [5], [9], [10] and [11]). They can be considered
as effect algebras (see e.g. [6]). Residuated lattices were treated in [7]. In [3]
the concept of a conditionally residuated structure was introduced. Since every
orthomodular poset is in fact an effect algebra, it follows that also every ortho-
modular poset can be considered as a conditionally residuated structure. The
question is which additional conditions have to be satisfied in order to get a
one-to-one correspondence. Contrary to the case of effect algebras, orthomodu-
lar posets satisfy also the orthomodular law and a certain condition concerning
the orthogonality of their elements.
We start with the definition of an orthomodular poset.
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by the Project CZ.1.07/2.3.00/20.0051 Algebraic Methods of Quantum Logics is gratefully
acknowledged.
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Definition 1 An orthomodular poset (cf. [8], [2] and [12]) is an ordered quin-
tuple P = (P,≤,⊥ , 0, 1) where (P,≤, 0, 1) is a bounded poset, ⊥ is a unary
operation on P and the following conditions hold for all x, y ∈ P :

(i) (x⊥)⊥ = x

(ii) If x ≤ y then y⊥ ≤ x⊥.

(iii) If x ⊥ y then x ∨ y exists.

(iv) If x ≤ y then y = x ∨ (y ∧ x⊥).

Here and in the following x ⊥ y is an abbreviation for x ≤ y⊥.

Remark 2 If (P,≤) is a poset and ⊥ a unary operation on P satisfying (i) and
(ii) then the so-called de Morgan laws

(x ∨ y)⊥ = x⊥ ∧ y⊥ in case x ⊥ y and

(x ∧ y)⊥ = x⊥ ∨ y⊥ in case x⊥ ⊥ y⊥

hold. Moreover, (iv) is equivalent to the following condition:

(v) If x ≤ y then x = y ∧ (x ∨ y⊥).

If x ≤ y then x ⊥ y⊥ and therefore x ∨ y⊥ is defined. Hence also y ∧ x⊥ is
defined. Moreover, x ⊥ y ∧ x⊥ which shows that x ∨ (y ∧ x⊥) is defined. Thus
the expression in (iv) is well-defined. The same is true for condition (v).
Next we define a partial commutative groupoid with unit.

Definition 3 A partial commutative groupoid with unit is a partial algebra
A = (A,�, 1) of type (2, 0) satisfying the following conditions for all x, y ∈ A:

(i) If x� y is defined so is y � x and x� y = y � x.

(ii) x� 1 and 1� x are defined and x� 1 = 1� x = x.

Now we are ready to define a conditionally residuated structure.

Definition 4 Let A = (A,≤,�,→, 0, 1) be an ordered sixtuple such that (A,≤
, 0, 1) is a bounded poset, (A,�,→, 0, 1) is a partial algebra of type (2, 2, 0, 0),
(A,�, 1) is a partial commutative groupoid with unit and x → y is defined if
and only if y ≤ x. We write x′ instead of x → 0. Moreover, assume that the
following conditions are satisfied for all x, y, z ∈ A:

(i) x� y is defined if and only if x′ ≤ y.

(ii) If x� y and y → z are defined then x� y ≤ z if and only if x ≤ y → z.

(iii) If x → y is defined then so is y′ → x′ and x → y = y′ → x′.

(iv) If y ≤ x and x′, y ≤ z then x → y ≤ z.

Then A is called a conditionally residuated structure.
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Remark 5 Condition (ii) is called left adjointness, see e.g. [1].

Example 6 Let M := {1, . . . , 6} and P := {C ⊆ M | |C| is even}. If one
defines for arbitrary A,B ∈ P

A�M = M �A := A,

A� (M \A) := ∅,
A�B := A ∩B if |A| = |B| = 4 and A ∪B = M,

A → ∅ := M \A,

A → A := M,

M → A := A and

A → B := (M \A) ∪B if B ⊆ A, |B| = 2 and |A| = 4

then (P,⊆,�,→, ∅,M) is a conditionally residuated structure.

The following lemma lists some easy properties of conditionally residuated
structures used later on.

Lemma 7 If A = (A,≤,�,→, 0, 1) is a conditionally residuated structure then
the following conditions hold for all x, y ∈ A:

(i) (x′)′ = x

(ii) If x ≤ y then y′ ≤ x′.

(iii) If x� y is defined then x� y = 0 if and only if x ≤ y′.

(iv) x → y = 1 if and only if x ≤ y.

Proof Let x, y ∈ A. We have x′ ≤ x′. Hence x � x′ exists and therefore
also x′ � x exists which implies (x′)′ ≤ x. Moreover, x′ ≤ x′ = x → 0 and
hence x′ � x ≤ 0 which shows x′ � x = 0 whence x � x′ = 0. Now x � x′ ≤ 0
implies x ≤ x′ → 0 = (x′)′. Together we obtain (x′)′ = x. The inequality
x ≤ y implies that x′ � y exists. Hence y � x′ exists wherefrom we conclude
that y′ ≤ x′. Moreover, if x � y is defined then the following are equivalent:
x � y = 0, x� y ≤ 0, x ≤ y → 0, x ≤ y′. Finally, the following are equivalent:
x → y = 1, 1 ≤ x → y, 1� x ≤ y, x ≤ y. �

We now introduce two more properties of conditionally residuated structures.

Definition 8 A conditionally residuated structureA = (A,≤,�,→, 0, 1) is said
to satisfy the divisibility condition if y ≤ x implies that x� (x → y) exists and
x � (x → y) = y and it is said to satisfy the orthogonality condition if x ≤ y′,
y ≤ z′ and z ≤ x′ together imply z ≤ x′ � y′.

In the following theorem we show that an orthomodular poset can be con-
sidered as a special conditionally residuated structure.
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Theorem 9 If P = (P,≤,⊥ , 0, 1) is an orthomodular poset and one defines

x� y := x ∧ y if and only if x⊥ ≤ y and

x → y := x⊥ ∨ y if and only if y ≤ x

for all x, y ∈ P then A(P) := (P,≤,�,→, 0, 1) is a conditionally residuated
structure satisfying both the divisibility and orthogonality condition.

Proof Let a, b, c ∈ P . Of course, (P,≤, 0, 1) is a bounded poset. The opera-
tions � and → are well-defined since a⊥ ≤ b implies a⊥ ⊥ b⊥ and b ≤ a implies
a⊥ ⊥ b. If a� b is defined then a⊥ ≤ b and hence b⊥ ≤ a which shows that b�a
is defined and a � b = a ∧ b = b ∧ a = b � a. Since a⊥ ≤ 1 we have that a � 1
is defined and a� 1 = a ∧ 1 = a. Because of 1⊥ = 0 ≤ a we have that 1� a is
defined and 1 � a = 1 ∧ a = a showing that (P,�, 1) is a partial commutative
groupoid with unit. Now assume that a� b and b → c are defined. Then a⊥ ≤ b
and c ≤ b. If a� b ≤ c then a ≥ b⊥ and

a = b⊥ ∨ (a ∧ b) = b⊥ ∨ (a� b) ≤ b⊥ ∨ c = b → c.

If, conversely, a ≤ b → c then c ≤ b and

a� b = a ∧ b ≤ (b → c) ∧ b = (b⊥ ∨ c) ∧ b = c.

This proves left adjointness. If b ≤ a then a⊥ ≤ b⊥ and

a → b = a⊥ ∨ b = b ∨ a⊥ = b⊥ → a⊥.

If b ≤ a and a⊥, b ≤ c then a → b = a⊥ ∨ b ≤ c. If b ≤ a then a → b
exists and a⊥ ≤ a⊥ ∨ b = a → b and hence a � (a → b) exists and, by (v)
of Remark 2, a � (a → b) = a ∧ (a⊥ ∨ b) = b showing that A(P) satisfies the
divisibility condition. Finally, if a ≤ b⊥, b ≤ c⊥ and c ≤ a⊥ then there exists
a⊥ � b⊥ = a⊥ ∧ b⊥, c ≤ a⊥ and c ≤ b⊥ and hence c ≤ a⊥ ∧ b⊥ = a⊥ � b⊥

showing that A(P) satisfies the orthogonality condition. �

Conversely, we show that certain conditionally residuated structures can be
converted in an orthomodular poset.

Theorem 10 If A = (A,≤,�,→, 0, 1) is a conditionally residuated structure
satisfying the divisibility and orthogonality condition then P(A) := (A,≤,′ , 0, 1)
is an orthomodular poset.

Proof Let a, b, c ∈ A. Of course, (A,≤, 0, 1) is a bounded poset. According
to Lemma 7, the operation ′ is an antitone involution of (A,≤). We show that
in case a ≤ b′ we have (a′ � b′)′ = a ∨ b. If a ≤ b′ then a′ � b′ and b′ � a′

are defined. Now we have b′ ≤ 1 = a′ → a′ according to Lemma 7, hence
a′ � b′ = b′ � a′ ≤ a′ and therefore a ≤ (a′ � b′)′. By symmetry b ≤ (a′ � b′)′

follows. Now, if a, b ≤ c then a ≤ b′, b ≤ c and c′ ≤ a′ and hence according
to the orthogonality condition c′ ≤ a′ � b′ whence c ≥ (a′ � b′)′. This shows
(a′�b′)′ = a∨b in case a ≤ b′. Since a ≤ (a′)′ we have a∨a′ = (a′�a)′ = 0′ = 1
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according to Lemma 7. Finally, assume a ≤ b. Because of a′ → b′ ≥ a′ → 0 = a
and a′ → b′ ≥ 1 → b′ = b′ we have a′ → b′ ≥ a ∨ b′. Hence, according to the
divisibility condition we obtain

a ∨ (b ∧ a′) = (a′ � (a ∨ b′))′ ≥ (a′ � (a′ → b′))′ = (b′)′ = b.

Since the converse inequality is obvious, we see that the considered poset is
orthomodular. �

Finally, we show that the correspondence described in the last two theorems
is one-to-one.

Theorem 11 If P = (P,≤,⊥ , 0, 1) is an orthomodular poset then P(A(P)) =
P. If A = (A,≤,�,→, 0, 1) is a conditionally residuated structure satisfying
the divisibility and orthogonality condition then A(P(A)) = A.
Proof First assume P = (P,≤,⊥ , 0, 1) to be an orthomodular poset and let
A(P) = (P,≤,�,→, 0, 1) and P(A(P)) = (P,≤,∗ , 0, 1). Then

x∗ = x → 0 = x⊥ ∨ 0 = x⊥

for all x ∈ P and hence P(A(P)) = P.
Conversely, assume A = (A,≤,�,→, 0, 1) to be a conditionally residuated

structure satisfying the divisibility and orthogonality condition and let P(A) =
(A,≤,′ , 0, 1) and A(P(A)) = (A,≤, ◦,⇒, 0, 1). Let a, b, c ∈ A. If a′ ≤ b then
a ◦ b = a ∧ b = (a′ ∨ b′)′ = a� b according to the proof of Theorem 10. Finally,
if b ≤ a then a ⇒ b = a′ ∨ b = a → b according to the proof of Theorem 10. �
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