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Abstract. Counting subgroups of finite groups is one of the most important topics in
finite group theory. We classify the finite non-nilpotent groups G whose set of numbers of
subgroups of possible orders n(G) has exactly two elements. We show that if G is a non-
nilpotent group whose set of numbers of subgroups of possible orders has exactly 2 elements,
then G has a normal Sylow subgroup of prime order and G is solvable. Moreover, as an
application we give a detailed description of non-nilpotent groups with n(G) = {1, q + 1}
for some prime q. In particular, G is supersolvable under this condition.
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1. Introduction

All groups considered in this paper are finite and G always denotes a group.

We denote by π(G) the set of prime divisors of G and by νp(G) the number of

Sylow p-subgroups of G for a prime p ∈ π(G). Further unexplained notation and

terminology are standard, readers may refer to [4].

One of the most important topics in group theory is to count the subgroups of

finite groups. Recall that the problem was completely solved in abelian case by

establishing an explicit expression of the number of subgroups of abelian groups

in [1]. For non-abelian p-groups, M.Tărnăuceanu in [8] gave an explicit formula

for the number of subgroups having a cyclic maximal subgroup. In 1995, J. Zhang

[9] studied groups by Sylow numbers. Also W.B.Guo [2] in 1996 considered the
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influence of Sylow numbers on groups, which is the indices of the normalizers of

Sylow subgroups in the whole group. Let n(G) be the set of numbers of subgroups

of possible orders of G. In 2010, H.Qu, Y. Sun and Q. Zhang [5] classified p-groups

in which every element in n(G) is no more than 2p2 + p+ 1. In this paper, we focus

on groups where n(G) has exactly 2 elements. Our idea springs from F. Tang’s result

in [7]. He characterized groups whose set of numbers of conjugacy class size of all

subgroups has exactly two elements, he obtained that a non-nilpotent group whose

set of conjugacy class sizes of all subgroups is {1,m}, then:

(1) m = p ∈ π(G). If G has no central decomposition factors, then m is the largest

prime divisor;

(2) G ∼= (Cp ⋊H)× Z, then Z is the central decomposition factors, H is a normal

p′-subgroup of G, H is either cyclic or the direct product of Q8 with an odd

cyclic group. In particular, G is supersolvable.

In the present paper, we use an elementary and skillful method of applying Sylow’s

Theorem to give a description of non-nilpotent groupsG with n(G) = {1,m} for some

integer m > 1. Our result is:

Theorem 1.1. Let G be a non-nilpotent group. If n(G) = {1,m}, then the

following statements hold:

(1) m = p with some prime p. Moreover, G has a normal Sylow p-subgroup P of

order p.

(2) G is solvable. Moreover, G = (P ⋊H) × A, where A 6 Z(G) is a cyclic Hall

subgroup and H is a nilpotent Hall π(p− 1)-subgroup of G.

(3) H/CH(P ) 6 Aut(P ). Moreover, if there is an R ∈ Sylr(H) such that CR(P ) is

a maximal subgroup of R, then R is cyclic.

Further, as an application, we give a description of groups with n(G) = {1, q+1},

where q is a prime:

Corollary 1.2. Let G be a non-nilpotent group. Then n(G) = {1, q + 1} with q

a prime if and only if G = (P ⋊Q)×A, q = 2, |P | = 3 and Q is a cyclic 2-subgroup

of G with (6, |A|) = 1, and A is cyclic. In particular, G is supersolvable.

2. Preliminaries

Before taking up the problem, we present here some results which will be used in

the sequel.
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Lemma 2.1. Let G be a group and q ∈ π(G). If G has a normal subgroup K

such that q ∤ |K|, then νq(G/K) | νq(G).

P r o o f. This follows immediately from [6], Lemma 2.5(3). �

Lemma 2.2 ([4], Theorem 3.8.3). Assume that G is a group of order pn. If

sk(G) = 1 for each 2 6 k 6 n − 1, then G is cyclic, where sk(G) is the number of

subgroups of order pk in G.

Lemma 2.3 ([3], Theorem 9.3.1). Let G be a solvable group of order mn with

(m,n) = 1. Then the number hm of subgroups of order m may be expressed as

a product of factors, each of which (a) is congruent to 1 modulo some prime factor

of m, and (b) is a power of a prime and divides one of the orders of the chief factors

of G.

3. Proof of the main theorem

First we show that G is solvable. Write π(m) = {p1, . . . , pn}, where p1, . . . , pn are

distinct prime divisors ofm. Since m is also a Sylow number of G, we see clearly that

m | |G| by Sylow’s Theorem, yielding that pi ∈ π(G). Let Pi be a Sylow pi-subgroup

of G with i ∈ {1, . . . , n}. Again by Sylow’s Theorem, we obtain that pi ∤ νpi
(G) ∈

n(G) = {1,m} since νpi
(G) ≡ 1 (mod pi). Then νpi

(G) = 1, implying Pi E G.

Consequently, G has a normal nilpotent Hall π(m)-subgroup, say K. Further, the

theorem of Schur-Zassenhaus yields that G has a π(m)-complement, say H1.

Let q be an arbitrary prime in π(H1) and let Q1 be a Sylow q-subgroup of H1.

We see easily that Q1 is also a Sylow q-subgroup of G. Moreover, νq(G/K) | νq(G)

by Lemma 2.1, leading to νq(H1) | νq(G) ∈ {1,m} since G/K ∼= H1. On the other

hand, νq(H1) | |H1| according to Sylow’s Theorem, which implies that νq(H1) = 1

as (m, |H1|) = 1. As a result, Q1 E H1, implying that H1 is also nilpotent. As

a consequence, G is solvable by Wielandt’s Theorem, as required.

We now show that m is a prime power. Assume that this is false. Then n > 2,

where n is the one appearing in the first paragraph. Moreover, as is proved in the first

paragraph,Kpi
E G for each pi ∈ π(m); we see clearly that Kpi

H1 is a Hall subgroup

of G and thus |G : NG(Kpi
H1)| ∈ n(G). Notice that Kpi

6 NG(Kpi
H1). This shows

that pi ∤ |G : NG(Kpi
H1)| ∈ {1,m}, yielding |G : NG(Kpi

H1)| = 1. Consequently,

Kpi
H1 E G, and thus G = Kpi

H1 × K(π(m)−{pi}), where K(π(m)−{pi}) is a Hall

(π(m) − {pi})-subgroup of G. Furthermore, G = K × H1 is nilpotent, contrary to

our assumption. Hence n = 1 and m is a prime power, as required. Write m = pa

with a prime p and a positive integer a.
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Let P be the Sylow p-subgroup of G. We claim that P is a cyclic group of order p.

Otherwise, there exists an integer k ∈ {2, . . . , a} such that sk(P ) 6= 1 by Lemma 2.2,

which implies that sk(P ) ≡ 1 (mod p) according to [4], Theorem 1.7.2. On the

other hand, P E G implies that sk(P ) ∈ n(G), leading to si(P ) = m = pa. This

contradiction shows that P is cyclic. Now we consider the action of H1 on P by

conjugation. By [4], Theorem 3.13.4(b), we obtain that P = [P,H1]×CP (H1). Note

that P is cyclic. Then either [P,H1] = 1 or CP (H1) = 1. If the former holds,

then G is nilpotent, a contradiction to our assumption. Hence CP (H1) = 1, yielding

NG(H1) = H1 and m = |G : NG(H1)| = |P |. It follows by Lemma 2.3(b) that |P |

divides some order of a chief factor of G, implying that P is isomorphic to a chief

factor of G. Since P is cyclic, we conclude that a = 1 and thus m = |P | = p,

hence (1) holds.

Let q ∤ p−1 be a prime in π(H1) and Q a Sylow q-subgroup ofH1. We prove thatQ

is cyclic. Clearly, Q is also a Sylow q-subgroup of G. By Sylow’s Theorem, we see

that νq(G) ≡ 1 (mod q), showing that Q E G since q ∤ (p−1). On the other hand, for

every k ∈ {2, . . . , t} we obtain that si(Q) ≡ 1 (mod q) by [4], Theorem 1.7.2. Hence

it follows that Q is cyclic by Lemma 2.2. As a result, we may write G = (P ⋊H)×A,

where A 6 Z(G) is a cyclic Hall subgroup of G and H is a nilpotent Hall π(p − 1)-

subgroup of G; hence (2) holds.

Because H is not normal in G, there exists a Sylow r-subgroup R of H satisfying

R 5 G, which gives R0 := CR(P ) < R. As a result, R/R0 6 Aut(P ) is cyclic, which

indicates that H/CH(P ) 6 Aut(P ) is cyclic.

Assume that R0 := CR(P ) is a maximal subgroup of R. We assert that R is

cyclic. Easily, it is sufficient to show that R0 is the unique maximal subgroup of R.

If not, then R has at least r + 1 maximal subgroups by [4], Theorem 1.7.2. On the

other hand, R0 E G indicates that
⋂

Ri∈Syl
r
(H) Ri = R0 and thus Ri ∩ Rj = R0 for

distinct i, j ∈ {1, . . . , p}. Hence G has at least rp+ 1 subgroups of order |R0| by [4],

Theorem 1.7.2, a contradiction. Therefore, R is cyclic and (3) holds. Theorem 1.1

is established. �

4. Proof of corollary

The sufficiency is obvious, we only prove the necessity. By Theorem 1.1, we

see that q + 1 = p is a prime, implying that p = 3 and q = 2. Moreover, (3) of the

theorem implies that CQ(P ) 6 Aut(P ) ∼= C2, which gives that CQ(P ) is the maximal

subgroup of Q since G is non-nilpotent. Again by applying (3) of the theorem, Q is

cyclic, this completes the proof. �
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