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ON F ε
2 -PLANAR MAPPINGS OF (PSEUDO-) RIEMANNIAN

MANIFOLDS

Irena Hinterleitner, Josef Mikeš, and Patrik Peška

Abstract. We study special F -planar mappings between two n-dimensional
(pseudo-) Riemannian manifolds. In 2003 Topalov introduced PQε-projectivity
of Riemannian metrics, ε 6= 1, 1 + n. Later these mappings were studied by
Matveev and Rosemann. They found that for ε = 0 they are projective.

We show that PQε-projective equivalence corresponds to a special case
of F -planar mapping studied by Mikeš and Sinyukov (1983) and F2-planar
mappings (Mikeš, 1994), with F = Q. Moreover, the tensor P is derived from
the tensor Q and the non-zero number ε. For this reason we suggest to rename
PQε as F ε2 . We use earlier results derived for F - and F2-planar mappings and
find new results.

For these mappings we find the fundamental partial differential equations in
closed linear Cauchy type form and we obtain new results for initial conditions.

1. Introduction

Diffeomorphisms and automorphisms of geometrically generalized manifolds
constitute one of the current main directions in differential geometry. Many papers
are devoted to geodesic, almost geodesic, quasigeodesic, holomorphically projective,
F -planar mappings and many others. The investigation of special manifolds with
affine connection, (pseudo-) Riemannian, e-Kählerian and e-Hermitian spaces, give
one of the most important area, see [1] – [33]. For example, T. Levi-Civita [15] used
geodesic mappings for modeling mechanical processes, and A.Z. Petrov [27] used
quasigeodesic mappings for modeling in theoretical physics. More general mappings
were studied by Hrdina, Slovák and Vašík, see [10], [11] and [12].

The PQε-projective equivalence between n-dimensional Riemannian manifolds
were introduced by Topalov [32], P and Q are tensors of type (1, 1) for which
PQ = ε Id, ε ∈ R, ε 6= 1, 1 + n. It follows immediately from their definition
that PQε-projective equivalence is the correspondence occurring in the earlier
studied F -planar mappings (Mikeš, Sinyukov [24]) and F = Q. We prove that
these mappings are F2-planar mappings (Mikeš [18]), which generalize geodesic
and holomorphically projective mappings, see [25, 29, 33].
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In paper [32] by Topalov and paper [16] by Matveev and Rosemann, some
properties of this equivalence were studied and among other things it was shown
that if ε = 0 this equivalence is projective. This is the reason, why we study
PQε-projective equivalence where ε 6= 0 only. With a detailed analysis, we found
that the tensor P , with all of its properties, is derived from the tensor Q and the
number ε, so that P = ε F−1. According to these facts, we renamed PQε-projective
equivalence as F ε2 -planar mapping (for which F ≡ Q).

In this paper we study F ε2 -projective mappings between (pseudo-) Riemannian
manifolds for ε 6= 0. For these mappings we find a fundamental system of closed
linear equations in covariant derivatives and we obtain new results for initial
conditions. We proved that a set of (pseudo-) Riemannian manifolds with F 2 6= ε Id,
on which some (pseudo-) Riemannian manifold admits F ε2 -projective mappings,
depends on no more than n(n− 1)/2 parameters.

2. On F -planar mappings

Let An = (M,∇, F ) be an n-dimensional manifold M with affine connection ∇,
and affinor structure F , i.e. a tensor field of type (1, 1).

Definition 1 ([24], [25, p. 213]). A curve `, which is given by the equations
` = `(t), λ(t) = d`(t)/dt ( 6= 0), t ∈ I, where t is a parameter, is called F-planar, if
its tangent vector λ(t0), for any initial value t0 of the parameter t, remains under
parallel translation along the curve `, in the distribution generated by the vector
functions λ and Fλ along `.

In accordance with this definition, ` is F -planar if and only if the following
condition holds ([24], [25, p. 213]): ∇λ(t)λ(t) = %1(t)λ(t) + %2(t)Fλ(t), where %1
and %2 are some functions of the parameter t.

We consider two spaces An = (M,∇, F ) and Ān = (M̄, ∇̄, F̄ ) with torsion-free
affine connections ∇ and ∇̄, respectively. Affine structures F and F̄ are defined on
An, resp. Ān.

Definition 2 (Mikeš, Sinyukov [24], see [25, p. 213]). A diffeomorphism f between
manifolds with affine connection An and Ān is called an F-planar mapping if any
F -planar curve in An is mapped onto an F̄ -planar curve in Ān.

Assume an F -planar mapping f : An → Ān. Since f is a diffeomorphism, we
can suppose local coordinate charts on M and M̄ , respectively, such that locally,
f : An → Ān maps points onto points with the same coordinates, and M̄ = M . We
always suppose that ∇, ∇̄ and the affinors F , F̄ are defined on M (≡ M̄). The
following theorem holds.

Theorem 1. An F -planar mapping f from An onto Ān preserves F-structures
(i.e. F̄ = aF + b Id, a, b are some functions on M), and is characterized by the
following condition
(1) P (X,Y ) = ψ(X) · Y + ψ(Y ) ·X + ϕ(X) · FY + ϕ(Y ) · FX
for any vector fields X,Y, where P = f∗∇̄ −∇ is the deformation tensor field of f ,
ψ and ϕ are some linear forms on M .
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This theorem was proved by Mikeš and Sinyukov [24] for finite dimension n > 3,
a more concise proof of this theorem for n > 3 and also a proof for n = 3 was given
by I. Hinterleitner and Mikeš [3], [25, p. 214].

We remind the following types of F -planar mappings from manifolds An with
affine connection ∇ onto (pseudo-) Riemannian manifolds V̄n with metric ḡ:

Definition 3 ([18], [25, p. 225]). (1) An F -planar mapping of a manifold An =
(M,∇) with affine connection onto a (pseudo-) Riemannian manifold V̄n = (M, ḡ)
is called an F1-planar mapping if the metric tensor ḡ satisfies the condition

(2) ḡ(X,FX) = 0 , for all X .

(2) An F1-planar mapping An → V̄n is called an F2-planar mapping if the
one-form ψ is gradient-like, i.e. ψ(X) = ∇XΨ, where Ψ is a function on An.

If a manifold An admits F2-planar mapping onto V̄n, then the following equations
are satisfied (Mikeš [18], see [25, p. 230]):

(3) ∇kaij = λiδjk + λjδik + ξiF jk + ξjF ik ,

where

(4) aij = e2ψ ḡij , λi = −aiαψα , ξi = −aiαϕα ,

where ψj , ϕi, Fhi are components of ψ, ϕ, F and ḡij are components of the inverse
matrix to the metric ḡ. From (2) and (4) follows that aiαF jα + ajαF iα = 0.

It is clear to see that if An is a (pseudo-) Riemannian manifold Vn = (M, g)
with metric tensor g, after lowering indices in (3), we obtain

(5) ∇kaij = λigjk + λjgik + ξiFjk + ξjFik ,

where aij = aαβgiαgjβ , λi = giαλ
α, ξi = giαξ

α, Fik = giαF
α
k . Evidently aiαF

α
j +

ajαF
α
i = 0.

3. PQε-projective Riemannian manifolds

3.1. Definition of PQε-projective Riemannian manifolds. Let g and ḡ be
two Riemannian metrics on an n-dimensional manifoldM . Consider the (1, 1)-tensors
P,Q which are satisfying the following conditions:

(6)
PQ = ε Id , g(X,PX) = 0 , ḡ(X,PX) = 0 ,

g(X,QX) = 0 , ḡ(X,QX) = 0 ,

for all X and where ε 6= 1, n+ 1 is a real number. These conditions are written in
a different way in [16] (formula (1)).

Definition 4 ([32]). The metrics g, ḡ are called PQε-projective if for the 1-form Φ
the Levi-Civita connections ∇ and ∇̄ of g and ḡ satisfy

(7) (∇̄ − ∇)XY = Φ(X)Y + Φ(Y )X − Φ(PX)QY − Φ(PY )QX

for all X, Y .
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Remark 1. Two metrics g and ḡ are denoted by the synonym PQε-projective if
they are PQε-projective equivalent. On the other hand this notation can be seen
from the point of view of mappings. Assume two Riemannian manifolds (M, g) and
(M̄, ḡ). A diffeomorphism f : M → M̄ allows to identify the manifolds M and M̄ .
For this reason we can speak about PQε-projective mappings (or more precisely
diffeomorphisms) between (M, g) and (M̄, ḡ), when equations (6) and (7) hold. In
these formulas ḡ and ∇̄ mean in fact the pullbacks f∗ḡ and f∗∇̄.

Comparing formulas (1) and (7) we make sure that PQε-projective equivalence
is a special case of the F -planar mapping between Riemannian manifolds (M, g)
and (M, ḡ). Evidently, this is if ψ ≡ Φ, F ≡ Q and ϕ(·) = −Φ(P (·)).

Moreover, it follows elementary from (7) that ψ is a gradient-like form, see [32],
thus a PQε-projective equivalence is a special case of an F2-planar mapping.

Therefore the PQε-projective equivalence formula (3), after lowering the indices
i and j by the metric g, has the following form [32]:

(8) ∇kaij = λigjk + λjgik − λαPαi gjβQ
β
k − λαP

α
j giβQ

β
k .

From conditions (4) and (6) we obtain a(X,PX) = 0 and a(X,QX) = 0 for all X,
and equivalently in local form

(9) aiαP
α
j + ajαP

α
i = 0 and aiαQ

α
j + ajαQ

α
i = 0 .

3.2. New results about PQε-projective Riemannian manifolds for ε 6= 0.
Next, we will study PQε-projective mappings for ε 6= 0. From the condition
PQ = ε Id, it follows

(10) P = εQ−1 .

This implies that P depends on Q and ε. Moreover two conditions in (6) depend
on the other ones, i.e. in the definition of PQε-projective mappings we can restrict
on the conditions g(X,QX) = 0, ḡ(X,QX) = 0, PQ = ε Id. This fact implies the
following lemma:

Lemma 1. If Q satisfies the conditions g(X,QX) = 0 and ḡ(X,QX) = 0 for
ε 6= 0, then we obtain g(X,PX) = 0 and ḡ(X,PX) = 0.

Proof. We can write the first conditions (6) for g in the local form as giαQαj +
gjαQ

α
i = 0. These equations we contract with Q̄ikQ̄

j
l , where Q̄ = Q−1, after some

calculations we obtain
gliQ̄

i
k + gkjQ̄

j
l = 0 ,

i.e. g(X,Q−1X) = 0 for all X. From that follows g(X,PX) = 0 for all X. Analogi-
cally it holds also for the metric ḡ. �

4. F ε2 -projective mapping with ε 6= 0

Due to the above properties, from formula (7) and Lemma 1, we can simplify
the Definition 4.
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Let g and ḡ be two (pseudo-) Riemannian metrics on an n-dimensional mani-
fold M . Consider the regular (1, 1)-tensors F which are satisfying the following
conditions
(11) g(X,FX) = 0 and ḡ(X,FX) = 0 .
for all X.

Definition 5. The metrics g and ḡ are called F ε2 -projective if for a certain
gradient-like form ψ the Levi-Civita connections ∇ and ∇̄ of g and ḡ satisfy
(12) (f∗∇̄ − ∇)XY = ψ(X)Y + ψ(Y )X − εψ(F−1X)FY − εψ(F−1Y )FX,
for all vector fields X,Y and for all x ∈M , ε is a non-zero constant.

From the discussion in section 3 we obtain the following proposition:

Proposition 1. A PQε-projective metrics can be understood as an F ε2 -planar
mapping with
(13) P = εF−1 and Q = F .

We can rewrite formula (12) in the form
(14) Γ̄hij = Γhij + ψ(iδ

h
j) − ψαP

α
(iQ

h
j) .

Contracting h and j we get
Γ̄αiα = Γαiα + (n+ 1− ε) · ψi .

Because ε 6= n + 1 there is a function Ψ which is defined 1-form ψ = ∇Ψ, i.e.

ψi = ∂Ψ/∂xi, where Ψ = 1
n+ 1− ε ln

√∣∣∣∣det ḡ
det g

∣∣∣∣.
We obtain the following theorem:

Theorem 2. If a (pseudo-) Riemannian manifold (M, g, F ) with regular structure
F , for which F 2 6= κ Id and g(X,FX) = 0 for all X, admits an F ε2 -projective
mapping onto a (pseudo-) Riemannian manifold (M̄, ḡ), then the linear system of
differential equations
(15) ∇kaij = λigjk + λjgik − λαPαi gjβF

β
k − λαP

α
j giβF

β
k

and
(16) aiαF

α
j + ajαF

α
i = 0

hold, where P = εF−1, λi = aαβT
αβ
i and Tαβi is a certain tensor obtained from

gij and Fhi .

Proof. We will study the fundamental equations of an F ε2 -planar mapping Vn → V̄n.
From Proposition 1 follows, that formula (8) with help (13) has the form (15).
From (14) and Lemma 1 we may deduce the validity of condition (16).

Now we covariantly differentiate (16) and obtain
(17) ∇kaiαFαj +∇kajαFαi =

1
T
ijk

,

where
1
T
ijk

= −aiα∇kFαj − ajα∇kFαi .
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Using formula (15), we obtain

(18)
λigαkF

α
j + λαF

α
j gik − λβP

β
i gαγF

α
j F

γ
k − ελjgiαF

α
k + λjgαkF

α
i + λαF

α
i gjk

− λβP βj gαγF
α
i F

γ
k − ελigjαF

α
k =

1
T
ijk

.

After some calculation we get

(19)
(ε+ 1)(gαkFαj λi + gαkF

α
i λj) + λαF

α
j gik + λαF

α
i gjk

− λαPαi gβγF
β
j F

γ
k − λαP

α
j gβγF

β
i F

γ
k =

1
T
ijk

.

By cyclic permutation of the indces i, j, k we obtain

(20)
λαF

α
j gik + λαF

α
i gjk + λαF

α
k gij − λαPαi gβγF

β
j F

γ
k − λαP

α
j gβγF

β
i F

γ
k

− λαPαk gβγF
β
i F

γ
j =

1
T
ijk

+
1
T
jki

+
1
T
kij

.

Next, we will subtract equations (19) and (20):

(21) (ε+ 1)(gαkFαj λi + gαkF
α
i λj)− λαFαk gij + λαP

α
k gβγF

β
i F

γ
j =

2
T
ijk

,

where
2
T
ijk

= −
1
T
jki
−

1
T
kij

.

We write the homogeneous linear equation to equation (21)

(22) gαkF
α
j Ai + gαkF

α
i Aj −Bkgij + CkgβγF

β
i F

γ
j = 0 ,

where Ai = (ε+ 1)λi, Bk = λαF
α
k , Ck = λαP

α
k .

Now we prove that (22) has only trivial solution. From that follows that λi =
3
T ,

i.e. is a linear combination of the tensor components aij with coefficients generated
by g and F on Vn.

If Ai 6= 0, from (22) follows rank
∥∥gαkFαj ∥∥ ≤ 3, in the other case gαkFαj we can

decompose into 3 bivectors.
And because the tensors g and F are regular, follows that rank

∥∥gαkFαj ∥∥ = n.
We suppose that n ≥ 4. From that follows Ai = 0. Then equation (22) has the
following form

(23) −Bkgij + CkgβγF
β
i F

γ
j = 0 .

If Bk or Ck 6= 0:

(24) gβγF
β
i F

γ
j = ρgij ,

where ρ is a function.
We multiply formula (24) by P ik. From that follows F 2 = κ Id, where κ is a

function, which is in contradiction with our assumption. For this reason in the

formula (22) we suppose that Ai = Bi = Ci = 0. Therefore λαFαk =
3
T
k
, where

3
T
k

is a tensor which is a linear combination of aij with coefficients generated by g

and F . Let be G = F−1, then λi =
3
T
k
Gki . This means λi = aαβT

αβ
i . �
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5. F ε2 -planar mappings with the ḡ = k · g condition

From the properties of equations (15) and (16) follows a new result for F ε2 -planar
mappings, for which F 2 6= κ Id. These conditions we suppose for the whole studied
(pseudo-) Riemannian manifolds (M, g, F ). The system of equations (15) has the
form of partial linear differential equations of Cauchy type in covariant derivative
with respect to the unknown functions aij(x). From the theory of this system (see
[25, pp. 46–49]) follows that the system of equation (15) for initial condition at the
point x0 ∈M

(25) aij(x0) = 0
a
ij

has only one unique solution.

Due to this, the general solution of (15) depends on the real parameters which
can be, for example, the conditions (25). Because aij is symmetric, conditions can
not be more then n(n+ 1)/2. Moreover, condition (16) implies further reduction of
the parameters.

The structure F at the point x0 can be written in Jordan’s form as F ii = λi,
F i+1
i = µi = 0, 1 and the other components are vanishing. Because det F 6= 0,

all λi 6= 0. We do not exclude that λi are complex numbers (in this case the
transformation equations are complex at the point x0).

Substituting i = j to equation (16), we obtain aiiλi + aii+1µi+1 = 0 (formally
µn+1 ≡ 0), i.e. the diagonal components aii depend on the other components.

This implies that the maximum number of the independent components of 0
a
ij

,
which is not greater than n(n− 1)/2− n, i.e. n(n− 1)/2 parameters.

Therefore this theorem is valid.

Theorem 3. A set of (pseudo-) Riemannian manifolds (M, g, F ), detF 6= 0 and
F 2 6= κ Id, on which some (pseudo-) Riemannian manifold admits an F ε2 -projective
mapping, depends on not more than n(n− 1)/2 parameters.

We have the following theorem.

Theorem 4. Let Vn = (M, g, F ) and V̄n = (M, ḡ, F ) be (pseudo-) Riemannian
manifolds with F 2 6= κ Id and Vn, V̄n have in F ε2 -planar correspondence.

If the condition ḡ = k · g is valid for x0 ∈ M , then g and ḡ are homothetic in
M , i.e.

(26) ḡ(x) = k · g(x) ,

for all x ∈M , with k = const.

Proof. In the assumption of Theorem 4, Theorem 2 is valid. Then equation (15)
holds. For the initial condition (26) there is no more than one unique solution. On
the other hand, a trivial solution of equations (15) is ḡ = k · g, and it satisfies the
initial condition (26). The given mapping is homothetic. �
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