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Abstract. The aim of this paper is to proceed in the study of the system which will be
specified below. The system concerns fluid flow in a simple hydraulic system consisting of
a pipe with generator on one side and a valve or some more complicated hydraulic elements
on the other end of the pipe. The purpose of the research is a rigorous mathematical
analysis of the corresponding linearized system.
Here, we analyze the linearized problem near the fixed steady state which already have

been explicitly described. The theory of mixed linear partial differential systems and other
tools are applied to derive as explicit form of the solution as possible.
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1. Introduction

In this paper we analyze the mathematical model of a two phase flow of a real fluid

in a pipe with in-flow and out-flow boundary conditions corresponding to hydraulic

elements and given initial data. The theory and practice of two phase flow has a long

history and there is a vast literature on this theme, from which we hopefully select

a representative sample.

First of all we must mention the book [4], which is considered comprehensive in

introducing general principles of physics of fluids. Second, the relatively recent excel-

lent monograph [5] concentrates on mechanics of mixtures. For us, a very important

source of information is its Chapter 7: “Mixture of two Newtonian fluids.” For our

concrete problem, the classic monograph [11] seems to be crucial for historical insight

into this field of fluid mechanics. Finally, the paper [3] is relevant to our problem

and the recent paper [6] concerns directly our problem.

Supported by GA CR Grant 201/08/0012 and RVO 67985840.
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Note that [8] provides a good combination of the theoretical and practical ap-

proaches to mixtures suitable both for quick information in the theoretical approach

and that aimed at engineering practice. As a general source of information about the

connection between fluid mechanics and the theory of partial differential equations

can serve for example the monograph [2].

In the next section we formulate the general problem which can be derived from

physical balance laws applied in the system (see [7]).

Since the system is highly nonlinear and contains the features of general nonlinear

hyperbolic systems which have not yet been managed even in much simpler cases,

necessary reasonable physical simplification must be made to get at least a partial

picture about what is going on in the real machinery.

One step has already been made in [10], where we found some solutions in a closed

form: stationary solutions, purely time-dependent solutions and a mixture of both

(called combined solutions).

Our ambition in the present paper is to analyze a linearized system around a steady

state.

Let us note that our approach is slightly different from the more frequent one used

e.g. in [5]. Instead of different components of two phases we consider a concept of

concentration γ of bubbles in the fluid and assume that the fluid and bubbles have

the same velocity w and the pressure p. Thus we have three unknowns w, p, γ which

are functions of (x, t). Moreover, the flow is assumed isentropic.

We believe that there are further perspectives in the analysis of the problem in

question. First of all, it is possible to look for so-called local solutions. This means

that we assume either small T or ‘small’ initial conditions. Then we believe to find

smooth solutions for smooth data in the time interval (0, T ) with T dependent on

the data. Of course, it must be expected that larger T will require more restrictions

on the data. Also, a problem is to find suitable function spaces to balance the

technical obstructions. C-spaces would be probably more comfortable than Sobolev-

like spaces, since the latter would probably bring the necessity of additional growth

conditions for the data. On the other hand, we could get results with weaker data

with, of course, weaker solutions.

An interesting approach to small solutions is the reduction to a single fixed point

problem (to appear in [9]). This approach consists in successive expression of one

variable in terms of others so that finally a suitable variable will satisfy one equation

and at the same time the other excluded variables will be expressed in terms of this

new variable. Then solving the equation for this (artificial) variable, we can hope

for the solution of the complete problem. Again the question of suitable function

spaces arises.
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The paper is organized as follows. In Section 2 we formulate the general nonlinear

problem and introduce the stationary solution, which has been derived explicitly

in [10]. Then we linearize the general problem around this stationary solution. The

product of this linearization is the main objective of our analysis here.

Section 3 is devoted to the analysis of the linearized system. In spite of restrictions

we are forced to make, we believe that our approach is useful in the engineering

practice, based on our experience in application of a similar mathematical approach

to other problems.

2. Formulation of the problem and the main result

The equations for the two phase flow of real fluids in a pipe of the length l can be

written in the form (see for instance [7]):

wt + ̺−1

0
px + f(w) = 0,(2.1)

pt + ̺0c
2(p, γ)wx = 0,(2.2)

γt + wγx = g(γ, p), x ∈ (0, l), t ∈ (0, T ), T > 0,(2.3)

w(x, 0) = w0(x),(2.4)

p(x, 0) = p0(x),(2.5)

γ(x, 0) = γ0(x), x ∈ [0, l],(2.6)

C(p(0, t), γ(0, t)) +QV (p(0, t), H(t))− S0w(0, t) + ϕḢ(t) = 0,(2.7)

w(l, t) = h(t),(2.8)

Ḧ(t) + Φ(t,H(t), Ḣ(t), p(0, t), pt(0, t)) = 0, t ∈ [0, T ],(2.9)

H(0) = H0, Ḣ(0) = H1.(2.10)

The quantities occurring in (2.1)–(2.10) have the following meaning:

w = w(x, t) the velocity of the liquid at the point x and at the time t,

p(x, t) the pressure,

γ = γ(x, t) the mass of freed air per unit volume of the liquid,

̺0 the density of the liquid,

c = c(p, γ) the sound speed in the liquid and in the liquid

containing the air (a given function of p and γ),

f = f(w) the coefficient of resistance (the friction of the liquid

on the wall of the duct),

g(γ, p) =

{

Ku((γ − γ)/KH − p), if (γ − γ)/KH > p,

Kr((γ − γ)/KH − p), if (γ − γ)/KH < p,
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Ku, Kr the constants characterizing the proportionality of the

velocity of loosening and dissolution on the pressure

gradient, respectively,

KH the coefficient of absorption,

γ the total mass of the air in the unit volume,

w0, p0, γ0 the initial distribution of the velocity, the

pressure of the loosened air in the unit volume

and the concentration, respectively,

C = C(p, γ) the hydraulic capacity (a given function of p and γ),

H the throw of the valve,

QV = QV (p,H) the flow through the valve (a given function of p, H),

S0 the cross-section of the duct,

ϕ the acting facing of the valve,

h the flow rate caused by the hydrogenerator at the end of the duct,

H0, H1 the initial position and the velocity of the valve, respectively.

In what follows let us assume for simplicity that

(2.11) H(t) ≡ H0 = const.

If we wanted to employ equation (2.9), then we would have to assume something

like

(2.12) Φ(t,H0, 0, y, z) ≡ 0.

Nevertheless, we will assume (2.11) sharp, without any other discussion.

Now, the standard linearization procedure leads us to the following considerations.

First, we consider the linearization around the stationary solution. Its existence and

expression is analyzed in [10] and we remind the basics in the next section.

Denote by (ws, ps, γs)
T the stationary solution, and (w, p, γ)T = (w − ws, p − ps,

γ − γs)
T, where (w, p, γ)T is the linearization variable dependent on x and t. Then,

after some computations we obtain the following system.

Definition 2.1. By a linearized problem of the problem (2.1)–(2.3) we mean the

system

wt + ̺−1

0
px + f ′(ws)w = 0,(2.13)

pt + ̺0wsx
∂c2

∂p
(ps, γs)p+ ̺0wsx

∂c2

∂γ
(ps, γs)γ + ̺0c

2(ps, γs)wx = 0,

γt + γsxw + wsγx =
∂g

∂γ
(γs, ps)γ +

∂g

∂p
(γs, ps)p.
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Now we are going to define rigorously what we mean by a solution of (2.1)–(2.8)

with H(t) ≡ H0. To this end we need some standard notation which we now shortly

describe.

If Ω ⊂ R
n, then Ck(Ω) denotes the space of all functions continuous on Ω together

with all derivatives up to the order k.

We make the following assumptions:

A1) w0, p0, γ0 ∈ C([0, l]),

A2) h ∈ C([0, T ]),

A3) the compatibility condition w0(l) = h(0) is satisfied,

A4) H0 is a given nonnegative constant.

Definition 2.2. By a solution to the problem (2.1)–(2.8) (with H ≡ H0) we

mean a triplet (w, p, γ) with w, p, γ ∈ C1((0, l)× (0, T )) satisfying (2.1)–(2.8) point-

wise.

Definition 2.3. By a stationary solution (with H ≡ H0) we mean the functions

w, p, γ independent of t and satisfying equations (2.1), (2.2), (2.3) and (2.7) with

H ≡ H0 = const.

Definition 2.4. By solution of the linearized problem we mean a triplet (w, p, γ)

satisfying equations (2.13).

Now let us formulate the main result.

Theorem 2.1 (Main result). Let assumptions A1)–A4) be satisfied, let f , f ′ be

continuous in (−∞,∞) and let (4.1) below hold true. Then there exists a unique

solution (w, p, γ) of the system (2.1)–(2.8) with H ≡ H0.

Moreover, having solved the system (6.27), (6.28) below, find ℓi(x) according to

(6.12). Then define L by (6.16) and Λ by (6.19). After that solve (6.25) with respect

to z, put v(x, t) = z(x, t; t), and u = L−1v in accordance with (6.15). Then the

sought solution is given by (w(x, t), p(x, t), γ(x, t)) = u(x, t).

To be selfcontained, in the next section we shortly present results of the analysis

of the stationary solution derived in [10].
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3. Stationary solution

For this case, the equations reduce to a simple system of three ordinary differential

equations and a scalar equation [10]

̺−1

0
p′ + f(w) = 0,(3.1)

̺0c
2(p, γ)w′ = 0,(3.2)

wγ′ = g(γ, p), x ∈ (0, l),(3.3)

C(p(0), γ(0)) +QV (p(0), γ(0))− S0W (0) = 0,(3.4)

where p′ = dp/dx, etc. Analogously as in [7], the function c(p, γ) is assumed in the

form

(3.5) c(p, γ) =
c1p

2

c2p2 + γ + c3
,

where ci > 0, i = 1, 2, 3 are constants. Then a trivial physically reasonable argument

shows us that

w = w0 = constant,(3.6)

p(x) = p0 − ̺0f(w0)x,(3.7)

γ′ =
1

w0

g(γ, p0 − ̺0f(w0)x),(3.8)

C(p(0), γ(0)) +QV (p(0), H0)− S0w(0) = 0.(3.9)

The constants w0, p0 may be chosen arbitrarily. Also the integration of (3.8) gives

us an additional free integration constant γ0. So, given constants w0, γ0, the number

p0 in (3.9) is then determined from

(3.10) C(p0, γ0) +QV (p0, H0)− S0w0 = 0,

supposing that equation (3.10) is solvable with respect to p0. It remains to determine

the function γ from (3.8). This is substantially not difficult but a little bit lengthy

computation. To this end we refer to our paper [10]. After doing that, the steady

state problem is completely solved. Let us denote the stationary solution by w = ws,

p = ps, and γ = γs, where according to the previous analysis

(3.11) ws(x) ≡ w0 = const., ps(x) = p0 − ̺0f(w0)x, γs is given by (3.8).
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4. Oscillatory solutions

Definition 4.1. By an oscillatory solution we mean a solution of (2.1)–(2.3)

which is independent of x, i.e., w = w(t), p = p(t), γ = γ(t).

Proposition 4.1. Let f and f ′ be continuous in R and

(4.1) m = inf
z∈R

f ′(z) > −∞.

Then for any w0, p0, γ0 ∈ R there exists a unique oscillatory solution (w, p, γ) of

the problem (2.1)–(2.6).

P r o o f. Indeed, in this case, the system (2.1)–(2.3) takes the form

ẇ + f(w) = 0,(4.2)

ṗ = 0,(4.3)

γ̇ = g(γ, p), t > 0.(4.4)

Equation (4.2) has a unique solution w due to elementary existence and uniqueness

results for ordinary differential equations. Equation (4.3) implies p ≡ p0, and for

equation (4.4) again the theory of ordinary differential equations can be applied. �

Let us note that the condition (2.7) in this case reads

C(p0, γ(t)) +QV (p0, H0)− S0w(t) = 0

and would make the problem overdetermined.

For example, for the frequent case (see [1])

f(w) = k|w|w

we obtain

w(t) =
w0

1 + k|w0|t
.
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5. Combined solutions

Definition 5.1. By a combined solution we mean a solution of equations (2.1)–

(2.3) which is neither stationary nor oscillatory, and for which at least one of the

functions w, p, γ depends only on x or on t.

In [10] we considered the “Anzatz” w = w(t), p = p(x). In this case the equations

(2.1), (2.2), (2.3) have the form

ẇ +
1

̺0
p′ + f(w) = 0,(5.1)

γt + wγx = g(γ, p).(5.2)

Proposition 5.1. Let f and f ′ be continuous in R and the condition

inf
z∈R

f ′(z) > −∞

be satisfied. Then for any w0, p0, γ0 ∈ R there exists a unique combined solution

(w, p, γ) of the problem (2.1)–(2.6) with H ≡ H0.

P r o o f. We easily obtain that p is a linear function of x independent of t, the

function w satisfies the equation

ẇ + f(w) =
p(l)− p0

̺0l
,

which is solvable by the same argument as above, and the equation (2.3) is solvable

by the method of characteristics. For details see [10]. Proof is complete. �

On the other hand, for the quite frequent friction near the wall modelled by f(w) =

k|w|w (see e.g. [1]) we are able to solve the problem explicitly. The result is

w(t) = −
α0

k

(

1−
(

1−
k2

α2

0

w2

0

)

exp
(

−
α0t

2

)

)1/2

,

where

α0 =
(k(p1 − p0)

̺0l

)1/2

.

Now it is possible to express the whole combined solution via quadratures (see [10]).

Finally, if we assume f ≡ 0, w = w1x+w0, p = p(t), and γ = γ(t), where w0, w1

are constants, then the system reduces to two ordinary differential equations, namely,

ṗ(t) = ̺0c
2(p(t), γ(t)),

γ̇(t) = g(p(t), γ(t)), t > 0,
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with the initial conditions
p(0) = p0 = const.,

γ(0) = γ0 = const.

6. Proof of Theorem 2.1

In this section we will prove the existence and uniqueness for the linearized system

(2.13). The system (2.13) is a first order linear system of the type

(6.1) ut +A(x)ux +B(x)u = G,

where u = u(x, t) = (w(x, t), p(x, t), γ(x, t))T is an unknown three-dimensional vec-

tor, and A(x) and B(x) are given 3 × 3 matrices and G a given three-dimensional

vector, namely,

A(x) =





0 ̺−1

0
0

̺0c
2(ps, γs) 0 0

0 0 ws



 ,(6.2)

B(x) =











f ′(ws) 0 0

0
∂c2

∂p
(ps, γs) ̺0wsx

∂c2

∂γ
(ps, γs)

γsx −
∂g

∂p
(γs, ps) −

∂g

∂γ
(γs, ps)











,(6.3)

G(x) = (0, 0, g(ps(x), γs(x)))
T.(6.4)

Coming out of the theory of first order partial differential equations, we are inter-

ested in the properties of the matrix A(x). Solving the equation

det(λI −A(x)) = 0,

where I is the identity matrix, we get eigenvalues of the matrix A(x):

(6.5) λ1(x) = c(ps(x), γs(x)), λ2(x) = −c(ps(x), γs(x)), λ3(x) = ws(x).

Let us impose initial conditions on the system (2.13):

(6.6) w(x, 0) = w0(x), p(x, 0) = p0(x), γ(x, 0) = γ0(x), x ∈ [0, l].

It remains to input a linearized boundary condition corresponding to the condition

(2.7), which in this particular case is of the form

(6.7) C(p(0, t), γ(0, t)) +QV (p(0, t), H0)− S0w(0, t) = 0.
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By an easy manipulation in the spirit of preceeding linearization procedures we

arrive at the following linearized boundary condition derived from (6.7):

(6.8)
(∂C

∂p
(ps(0), γs(0)) +

∂Qv(ps(0), H0)

∂p

)

(p(0, t)− ps(0))

+
(∂C

∂γ
(ps(0), γ0(0))−

∂C

∂γ
(ps(0), γ0(0))

)

(γ(0, t)− γ0(0))

− S0(w(0, t) − ws(0)) = S0ws(0)− C(ps(0), γs(0))−QV (ps(0), γs(0)).

In terms of w, p, γ condition (6.8) reads

(6.9)
(∂C

∂p
(ps(0), γs(0)) +

∂Qv(ps(0), H0)

∂p

)

p(0, t)

+
(∂C

∂γ
(ps(0), γ0(0))−

∂C

∂γ
(ps(0), γ0(0)

)

γ(0, t)− S0w(0, t)

= S0ws(0)− C(ps(0), γs(0))−QV (ps(0), γs(0)).

We intend to adapt some procedures known from the theory of linear hyperbolic

systems to the problem defined by (2.13), or in more concise equivalent form (6.1),

with initial conditions (6.6) and boundary condition (6.9). To this end we employ

the left eigenvectors

(6.10) ℓi(x) = (ℓi1(x), ℓ
i
2(x), ℓ

i
3(x)), i = 1, 2, 3,

corresponding to the eigenvalues λi, i = 1, 2, 3, of the matrixA(x). These eigenvectors

are computed from the equations

(6.11) (ℓi1(x), ℓ
i
2(x), ℓ

i
3(x))(λi(x)I −A(x)) = 0.

Elementary algebra leads us to the result

ℓ1(x) = (c(ps(x), γs(x)), ̺
−1

0
, 0), if ws(x) 6= c(ps(x), γs(x)),

ℓ2(x) = (−c(ps(x), γs(x)), ̺
−1

0
, 0), if ws(x) 6= −c(ps(x), γs(x)),(6.12)

ℓ3(x) = (0, 0, 1), if ws(x) 6= ±c(ps(x), γs(x)).

Denote for short

(6.13) cs = cs(x) = cs(ps(x), γs(x)).

Multiply system (6.1) by ℓi, i = 1, 2, 3. Then we get

(6.14) ℓiut + λiℓi · ux + ℓi · (B · u) = ℓi ·G, i = 1, 2, 3.
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Substituting

(6.15) v = L · u,

where the matrix L is given by

(6.16) L = (ℓij)
3

i,j=1
, with ℓij = ℓji ,

we obtain system (6.14) in the form

(6.17) (vi)t + λi(vi)x + ℓi · ((I +B) · (L−1v)) = ℓi ·G, i = 1, 2, 3,

which in vector notation reads

(6.18) vt + Λvx + L · (I +B) · (L−1v)) = L ·G,

denoting by Λ the diagonal matrix given by

(6.19) Λ = (λij)
3

i,j=1, where λij = λiδij , i, j = 1, 2, 3.

Denote

(6.20) C = L · (I +B) · L−1 and F = L ·G.

Then system (6.18) reads

(6.21) vt + Λvx + Cv = F.

Now we are in the position to use comfortably the method of characteristics. Define

functions ξi = ξi(x, t; τ) as the solutions of the problems

dξi(x, t; τ)

dτ
= λi(ξi(x, t; τ)), x ∈ [0, l), t > 0, τ > 0,(6.22)

ξi(x, t; t) = x, i = 1, 2, 3.

Clearly, by our assumptions and the theory of ODE’s, the problem (6.22) has a

unique solution for each (x, t).

Then the functions

(6.23) zi(x, t; τ) = vi(x+ λi(ξi(x, t; τ))(τ − t), τ), i = 1, 2, 3,
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(z = (z1, z2, z3)) satisfy the relations

(6.24)
dzi(x, t; τ)

dτ
=

d

dτ
vi(x+ λi(ξi(x, t; τ))(τ − t), τ)

=
∂vi
∂τ

(x+ λi(ξi(x, t; τ))(τ − t), τ)

+
∂vi
∂y

(x+ λi(ξi(x, t; τ))(τ − t), τ))(λi(ξi(x, t; τ))

+ (τ − t)
dλi

dy
(ξi(x, t; τ)λi(ξi(x, t; τ)))

= Fi(ξi(x, t; τ)) −

3
∑

j=1

cij(ξi(x, t; τ)) · zj(ξi(x, t; τ), τ)).

Finally, we arrive at the system

dzi(x, t; τ)

dτ
= Fi(ξi(x, t; τ)) −

3
∑

j=1

cij(ξi(x, t; τ)) · zj(ξi(x, t; τ)),(6.25)

zi(x, t; 0) = (L−1u0)(ξi(x, t; 0), 0)

dξi(x, t; τ)

dτ
= λi(ξi(x, t; τ)),

ξi(x, t; t) = x,

with

λ1,2(x) = ±c(ps(x), γs(x)) = ±
c1ps(x)

2

c2ps(x)2 + γs(x) + c3
,(6.26)

λ3(x) = ws(x).

This implies that the explicit form of the system (6.22) is

dξ1,2i

dτ
(x, t; τ) = ±

c1ps(ξ
1,2
i (x, t; τ))2

c2ps(ξ
1,2
i (x, t; τ))2 + γs(ξ

1,2
i (x, t; τ)) + c3

,(6.27)

dξ3i
dτ

(x, t; τ) = ws(ξi(x, t; τ)),

ξi(x, t; t) = x, i = 1, 2, 3.

Since ws ≡ w0 = const, we find

(6.28) ξ3i (x, t; τ) = w0(τ − t) + x.

As far as the solutions of equations (6.27) are concerned, we know that the so-

lutions ξ1,2i exist. We can decompose the open set {τ ∈ (0,∞)} into components
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where g is given by one prescription and by the other on the complement. On these

intervals the solution is given by one formula which inserted into (6.27) yields the

equation given by one analytical expression.

Let us express the equations (6.27) in a more explicit form. To simplify notation,

write ξ instead of ξ1,2, and K instead of Ku or KH . Then, in the respective interval,

γ satisfies the equation

(6.29)
dγ

dξ
= g(γ, p) = g(γ, p0ξ + p1) = K

(γ − γ

K
− p0ξ − p1

)

,

and (6.29) can be solved independently of other equations of the system, thus making

it possible to resolve the complete system.

The proof of Theorem 2.1 is finished.

A c k n ow l e d g em e n t. I would like to say in this place that these remarks and

other changes in the first version of the paper were inspired by deep insight of a

referee who extended my rather narrow view of the problem.
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